Academic literature on the topic 'Greenhouse effects'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Greenhouse effects.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Greenhouse effects"
Bezari, Salah, Sidi Mohammed El Amine Bekkouche, Ahmed Benchatti, Asma Adda, and Azzedine Boutelhig. "Effects of the Rock-Bed Heat Storage System on the Solar Greenhouse Microclimate." Instrumentation Mesure Métrologie 19, no. 6 (December 29, 2020): 471–79. http://dx.doi.org/10.18280/i2m.190608.
Full textKeir, Robin S. "Ironing out greenhouse effects." Nature 349, no. 6306 (January 1991): 198. http://dx.doi.org/10.1038/349198a0.
Full textScarratt, J. B. "Greenhouse Managers: Beware Combustion Fumes in Container Greenhouses." Forestry Chronicle 61, no. 4 (August 1, 1985): 308–11. http://dx.doi.org/10.5558/tfc61308-4.
Full textSeverin, M., R. Fuß, R. Well, F. Garlipp, and H. Van den Weghe. "Soil, slurry and application effects on greenhouse gas emissions." Plant, Soil and Environment 61, No. 8 (June 6, 2016): 344–51. http://dx.doi.org/10.17221/21/2015-pse.
Full textVillagrán, Edwin Andrés, and Carlos Ricardo Bojacá. "Effects of surrounding objects on the thermal performance of passively ventilated greenhouses." Journal of Agricultural Engineering 50, no. 1 (April 23, 2019): 20–27. http://dx.doi.org/10.4081/jae.2019.856.
Full textRasheed, Na, Lee, Kim, and Lee. "Optimization of Greenhouse Thermal Screens for Maximized Energy Conservation." Energies 12, no. 19 (September 20, 2019): 3592. http://dx.doi.org/10.3390/en12193592.
Full textAberkani, Kamal, Xiuming Hao, Damien de Halleux, Martine Dorais, Stephen Vineberg, and André Gosselin. "Effects of Shading Using a Retractable Liquid Foam Technology on Greenhouse and Plant Microclimates." HortTechnology 20, no. 2 (April 2010): 283–91. http://dx.doi.org/10.21273/horttech.20.2.283.
Full textPapadopoulos, Athanasios P. "GREENHOUSE ENVIRONMENT OPTIMIZATION FOR SEEDLESS CUCUMBERS." HortScience 27, no. 6 (June 1992): 662c—662. http://dx.doi.org/10.21273/hortsci.27.6.662c.
Full textPerkins, Sid. "Satellites Verify Greenhouse-Gas Effects." Science News 159, no. 11 (March 17, 2001): 165. http://dx.doi.org/10.2307/3981615.
Full textMitchell, J. F. B. "Local effects of greenhouse gases." Nature 332, no. 6163 (March 1988): 399–400. http://dx.doi.org/10.1038/332399a0.
Full textDissertations / Theses on the topic "Greenhouse effects"
Klaus, Marcus. "Land use effects on greenhouse gas emissions from boreal inland waters." Doctoral thesis, Umeå universitet, Institutionen för ekologi, miljö och geovetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-134767.
Full textAras, Sadiye. "Effects of Precipitation Changes on Switchgrass Biomass and Greenhouse Gas Emission." Thesis, Tennessee State University, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10615045.
Full textClimate change and the energy crisis are two important issues we face in the world today. Bioenergy crops such as switchgrass could be very useful in solving these problems. But the interaction between switchgrass productivity and climate change, for example, precipitation changes, has not been well investigated. For this reason, we conducted a field precipitation experiment in Nashville, Tennessee, to study the effects of precipitation on switchgrass growth and soil respiration. Precipitation treatments included five levels: a control (ambient precipitation), +33%, +50% of ambient to simulate wet, and -33% and -50% of ambient to simulate drought treatments. We measured switchgrass physiology, roots, biomass, and soil respiration. Results showed that photosynthetic rates of switchgrass in the +33% and +50% treatments were about 19.5 µmol CO2 m-2 s-1, significantly higher than that in the other three treatments. The lowest one was found in the -50% treatment (17.26 µmol CO2 m-2 s-1). The biomass in the +50% treatment was the highest and the lowest was observed in the -50% treatment. The results indicate that, although switchgrass is a drought tolerant grass, high precipitation stimulates switchgrass photosynthesis and growth.
Incemehmetoglu, Ali. "Investigation The Effects Of Different Support Medium On Product With Nutrient Film Technique." Master's thesis, METU, 2013. http://etd.lib.metu.edu.tr/upload/12615360/index.pdf.
Full textWinter, Barbara. "The effects of greenhouse-gas and surface thermal forcing on the stratosphere." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=96862.
Full textCette thèse étudie les possibles futurs changements dans la stratosphère dus au forçage par les changements climatiques. Dans ce contexte, les changements climatiques peuvent être séparés en deux composantes: (i) le forçage radiatif dû à un doublage de la concentration de CO2 dans l'atmosphère et (ii) le forçage thermique à la surface. L'emphase est mise sur la réponse dans lacirculation de l'Hémisphère nord en hiver. Toutes les expériences sont réalisées au moyen d'un modèle climat-chimie (un modèle de la circulation générale de l'atmosphère couplé à un modèle de chimie), le IGCM-FASTOC, et les résultats présentés sont les moyennes sur 100 ou 50 ans de simulations en mode répété (ou stationnaire, i.e. chaque année peut être considérée comme un membred'un ensemble ayant 100 ou 50 membres). Ceci permet d'aboutir à des résultats qui sont statistiquement significatifs dans une région où la température et les vents sont hautement variables.Lorsque le IGCM-FASTOC est couplé à un océan homogène de 25m de profondeur et que les températures de surface sont calculées de façon interactive, la réponse dans la basse stratosphère de l'Arctique à un doublage de CO2 est un réchauffement de 4K, accompagné d'un affaiblissement du vortex polaire et d'une augmentation de la circulation Brewer-Dobson (CBD). Ces changements sont reliés à une importante augmentation du flux vertical d'ondes Rossby, qui décélèrent le centre du vortex dès le mois de janvier, puis son bord inférieur en février. Le forçage maximal du vortex par les ondes débute plus tôt dans la saison hivernale et dure pour une plus grande période de temps dans le climat 2xCO2. Quatre paires de simulations supplémentaires (contrôle et 2xCO2) ontété réalisées, dans lesquelles les températures à la surface de l'océan et/ou de la terre étaient soit calculées de manière interactive, soit prescrites comme cycle climatologique fixe ou ayant une variabilité interannuelle. Ces expériences démontrent que la variabilité interannuelle, tout comme les ajustements des températures de surface à l'atmosphère ou des températures de la terre à celle des océans, sont essentielles pour maintenir un forçage réaliste du vortex par les ondes Rossby et donc pour capturer la réponse auxchangements climatiques de façon adéquate. Quand la surface terrestre est interactive mais l'océan couplé est remplacé par des températures imposées qui varient à l'échelle interannuelle, la réponse dans la stratosphère est qualitativement semblable à celle de l'expérience ayant l'océan interactif; par contre, cette réponse a une amplitude inférieure en plus d'être statistiquement significative sur une région moins importante. Les expériences sans variabilité interannuelle ne montrent aucun changement de la circulationdans la stratosphère.Pour évaluer l'importance du rôle de la température de surface dans la circulation stratosphérique, j'ai entrepris une nouvelle série d'expériences dans lesquelles une anomalie thermique de 2K est imposée à tous les points de grille à l'intérieur de bandes zonales larges de 10 ou de 30 degrés de latitude. Lorsque le forçage thermique est imposé à la surface entre 0N et 20N, ou de façon continue entre 0N et 30N, un plus grand flux d'activité ondulatoire accède à la stratosphère dans les moyennes et hautes latitudes. Les ondes se cassent dans le vortex, menant à une augmentation de la CBD et à une anomalie positive dans température de la stratosphère polaire. Un forçage thermique imposé à la surface entre 30N et 60N donne le résultat inverse, soit un vortex plus fort et plus froid. Le forçage thermique imposé à la surface au nord de 60N affaiblit suffisamment le flux vertical d'activité ondulatoire pour que levortex en résulte plus froid et plus fort également. Lorsque le forçage thermique est appliqué à la fois dans une bande équatoriale et dans une bande des moyennes latitudes, le forçage dans les subtropiques domine le signe de la réponse dans le vortex polaire.
Simoes, Barneze Arlete. "Interactive effects of climate change and management on grassland greenhouse gas emissions." Thesis, Lancaster University, 2018. http://eprints.lancs.ac.uk/126417/.
Full textShao, Miaolei. "The effects of greenhouse gas limits on electric power system dispatch and operations." Diss., Wichita State University, 2008. http://hdl.handle.net/10057/2079.
Full textWichita State University, College of Engineering, Dept. of Electrical and Computer Engineering
Mojeremane, Witness. "Effects of site preparation for afforestation on soil properties and greenhouse gas emission." Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/4192.
Full textShao, Miaolei Jewell Ward T. "The effects of greenhouse gas limits on electric power system dispatch and operations /." A link to full text of this dissertation in SOAR, 2008. http://hdl.handle.net/10057/2079.
Full textAlazzawi, Sheymaa. "DESIGNING A SMART GREENHOUSE VENTILATION WINDOW BASED ON NITI SMA ACTUATOR." OpenSIUC, 2019. https://opensiuc.lib.siu.edu/dissertations/1703.
Full textVentura, Robert E. "Wetlands and Greenhouse Gas Fluxes: Causes and Effects of Climate Change – A Meta-Analysis." Scholarship @ Claremont, 2014. http://scholarship.claremont.edu/pomona_theses/107.
Full textBooks on the topic "Greenhouse effects"
John, Mason. The greenhouse effects and global warming. Cheltenham: British Coal, 1990.
Find full textClimatic effects created by atmospheric greenhouse gases. Hauppauge, N.Y: Nova Science Publisher's, Inc., 2011.
Find full textNatty, Urquizo, and Canada Environment Canada, eds. The relative magnitude of the impacts and effects of GHG-related emission reductions. [Ottawa]: Environment Canada, 1999.
Find full textNicoletti, Giuseppe. Global effects of the European carbon tax. Paris: Organisation for Economic Co-operation and Development, 1992.
Find full textHardy, J. T. Human-induced global climate change: Predicted effects and implicatons for the Gulf. Leiden: Backhuys, 2002.
Find full textHapke, Bruce. Applications of an energy transfer model to three problems in planetary regoliths: The solid-state greenhouse, thermal beaming, and emittance spectra. [Washington, DC: National Aeronautics and Space Administration, 1996.
Find full textDahlem Workshop on Limiting the Greenhouse Effect: Options and Controlling Atmospheric Carbon Dioxide Accumulation (1990 Berlin, Germany). Limiting greenhouse effects: Controlling carbon dioxide emissions : report of the Dahlem Workshop on Limiting the Greenhouse Effect: Options for Controlling Atmospheric Carbon Dioxide Accumulation, Berlin 1990, December 9-14. Chichester, West Sussex, England: Wiley, 1992.
Find full textIreland, Derek J. Effects of climatic change on world industry, trade and investment: A discussion paper. Halifax: The Institute for Research on Public Policy = L'Institut de recherches politiques, 1989.
Find full textIreland, Derek J. Effects of climatic change on world industry, trade and investment: A discussion paper. Halifax, N.S: Institute for Research on Public Policy, 1989.
Find full textKooten, G. C. Van. Economic issues relating to climate change effects on Canada's forests. Vancouver, B.C: Forest Economics and Policy Analysis Research Unit, University of British Columbia, 1991.
Find full textBook chapters on the topic "Greenhouse effects"
Padmanabhan, Priya, and Gopinadhan Paliyath. "Hexanal Effects on Greenhouse Vegetables." In Postharvest Biology and Nanotechnology, 243–53. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119289470.ch14.
Full textSonneveld, Cees, and Wim Voogt. "Chemical Effects of Disinfestation." In Plant Nutrition of Greenhouse Crops, 203–25. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2532-6_10.
Full textWiniwarter, Wilfried, and Barbara Muik. "Statistical dependence in input data of national greenhouse gas inventories: effects on the overall inventory uncertainty." In Greenhouse Gas Inventories, 19–36. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-94-007-1670-4_3.
Full textHatano, Ryusuke. "Greenhouse Gas Fluxes: Effects of Physical Conditions." In Encyclopedia of Agrophysics, 339–51. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-3585-1_64.
Full textBlumenthal, M. Benno. "Effects of West African Air Humidity on Atlantic Sea Surface Temperature." In Greenhouse Effect, Sea Level and Drought, 21–40. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0701-0_2.
Full textFaure, H., L. Faure-Denard, and R. W. Fairbridge. "Possible Effects of Man on the Carbon Cycle in the Past and in the Future." In Greenhouse Effect, Sea Level and Drought, 459–62. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0701-0_27.
Full textNtinyari, Winnie, and Joseph P. Gweyi-Onyango. "Greenhouse Gases Emissions in Agricultural Systems and Climate Change Effects in Sub- Saharan Africa." In African Handbook of Climate Change Adaptation, 1081–105. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-45106-6_43.
Full textStraume, A. G., J. P. F. Fortuin, P. Siegmund, H. Kelder, and E. Roeckner. "Modelling the effects of ozone changes on climate." In Non-CO2 Greenhouse Gases: Scientific Understanding, Control and Implementation, 241–46. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-015-9343-4_37.
Full textGullino, Maria Lodovica, and Luciana Tavella. "Chemical and Natural Pesticides in IPM: Side-Effects and Application." In Integrated Pest and Disease Management in Greenhouse Crops, 441–54. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-22304-5_15.
Full textBlümel, Sylvia, Graham A. Matthews, Avi Grinstein, and Yigal Elad. "Pesticides in IPM: Selectivity, Side-effects, Application and Resistance Problems." In Integrated Pest and Disease Management in Greenhouse Crops, 150–67. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/0-306-47585-5_11.
Full textConference papers on the topic "Greenhouse effects"
CLARK, ROBERT A. "WATER; CLIMATE, OZONE AND GREENHOUSE EFFECTS; AND DESERTIFICATION." In Proceedings of the International Seminar on Nuclear War and Planetary Emergencies — 27th Session. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812705150_0055.
Full textFlávio Favaro Blanco and Marcos Vinícius Folegatti. "Nitrogen and Potassium Effects on Tomato Salinity Tolerance in Greenhouse." In 2002 Chicago, IL July 28-31, 2002. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2002. http://dx.doi.org/10.13031/2013.10297.
Full textSapiee, Nor Amalia, Abdul Halim Abd Rahman, Izanoordina Ahmad, Norhaslinawati Ramli, Mohd Azlan Abu, Md Tarmizi Mustaffa, Mohamad Zulhanis Ismail, and Muhammad Haziq Mohamad Salim. "The study of factors that effects growth of plant in greenhouse." In APPLIED PHYSICS OF CONDENSED MATTER (APCOM 2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5118106.
Full textBurke, Hsiao-hua, Bill Snow, and Kris Farrar. "Potential roles of satellite hyperspectral IR sensors in monitoring greenhouse effects." In Defense and Security, edited by Sylvia S. Shen and Paul E. Lewis. SPIE, 2005. http://dx.doi.org/10.1117/12.604905.
Full textReynolds, Tom, Lucy Budd, David Gillingwater, and Robert Caves. "Effects of Airspace Charging on Airline Route Selection & Greenhouse Gas Emissions." In 9th AIAA Aviation Technology, Integration, and Operations Conference (ATIO). Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-7028.
Full textYan, Lei, Yu Bai, Bi-ying Li, Li-yuan Hou, Xiu-yan Zhou, and Zhi-wei Qin. "Effects of Three Kinds of Fungicides on Enzyme Activities in Greenhouse Soil." In 2010 International Conference on E-Product E-Service and E-Entertainment (ICEEE 2010). IEEE, 2010. http://dx.doi.org/10.1109/iceee.2010.5660459.
Full textHe, Keshi, Dayue Chen, and Zhenglu Liu. "Effects of vent configuration and wind regime on the microclimate in the tunnel greenhouse." In 2017 6th International Conference on Agro-Geoinformatics. IEEE, 2017. http://dx.doi.org/10.1109/agro-geoinformatics.2017.8046997.
Full textXie Jie. "Greenhouse effects on the world agriculture—based on computable general equilibrium model analysis." In 2010 International Conference on Mechanic Automation and Control Engineering (MACE). IEEE, 2010. http://dx.doi.org/10.1109/mace.2010.5536266.
Full textZhang, G. F. "Effects of Different Nitrogen Fertilizer on Soil Environment and Soil Fertility for Sunlight Greenhouse." In 2015 International Conference on Industrial Technology and Management Science. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/itms-15.2015.261.
Full textTanveer, Harris, David Gauntlett, Jhonnattan Diaz, and Po-Cheng Yeh. "Design of a flight planning system to reduce persistent contrail formation to reduce greenhouse effects." In 2014 Systems and Information Engineering Design Symposium (SIEDS). IEEE, 2014. http://dx.doi.org/10.1109/sieds.2014.6829890.
Full textReports on the topic "Greenhouse effects"
Saricks, C., D. Santini, and M. Wang. Effects of Fuel Ethanol Use on Fuel-Cycle Energy and Greenhouse Gas Emissions. Office of Scientific and Technical Information (OSTI), February 1999. http://dx.doi.org/10.2172/4742.
Full textBlasing, T. J., R. L. Miller, and L. N. McCold. Potential effects of clean coal technologies on acid precipitation, greenhouse gases, and solid waste disposal. Office of Scientific and Technical Information (OSTI), November 1993. http://dx.doi.org/10.2172/10128275.
Full textYang, Lavender, Nicholas Muller, and Pierre Jinghong Liang. The Real Effects of Mandatory CSR Disclosure on Emissions: Evidence from the Greenhouse Gas Reporting Program. Cambridge, MA: National Bureau of Economic Research, July 2021. http://dx.doi.org/10.3386/w28984.
Full textSnilstveit, Birte, Jennifer Stevenson, Paul Fenton Villar, John Eyers, Celia Harvey, Steven Panfil, Jyotsna Puri, and Madeleine C. McKinnon. Land-use change and forestry programmes: evidence on the effects on greenhouse gas emissions and food security. International Institute for Impact Evaluation, November 2016. http://dx.doi.org/10.23846/egm003.
Full textPorter, C. D., A. Brown, R. T. Dunphy, and L. Vimmerstedt. Transportation Energy Futures Series. Effects of the Built Environment on Transportation. Energy Use, Greenhouse Gas Emissions, and Other Factors. Office of Scientific and Technical Information (OSTI), March 2013. http://dx.doi.org/10.2172/1219931.
Full textPorter, C. D., A. Brown, J. DeFlorio, E. McKenzie, W. Tao, and L. Vimmerstedt. Transportation Energy Futures Series. Effects of Travel Reduction and Efficient Driving on Transportation. Energy Use and Greenhouse Gas Emissions. Office of Scientific and Technical Information (OSTI), March 2013. http://dx.doi.org/10.2172/1219932.
Full textPorter, Christopher D., Austin Brown, R. T. Dunphy, and Laura Vimmerstedt. Transportation Energy Futures Series: Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors. Office of Scientific and Technical Information (OSTI), March 2013. http://dx.doi.org/10.2172/1069163.
Full textPorter, Christopher D., Austin Brown, Joshua DeFlorio, Elaine McKenzie, Wendy Tao, and Laura Vimmerstedt. Transportation Energy Futures Series: Effects of Travel Reduction and Efficient Driving on Transportation: Energy Use and Greenhouse Gas Emissions. Office of Scientific and Technical Information (OSTI), March 2013. http://dx.doi.org/10.2172/1069182.
Full textAkbari, Hashem, Tengfang Xu, Haider Taha, Craig Wray, Jayant Sathaye, Vishal Garg, Surekha Tetali, M. Hari Babu, and K. Niranjan Reddy. Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment. Office of Scientific and Technical Information (OSTI), May 2011. http://dx.doi.org/10.2172/1026804.
Full textHu, Tao, Xianqiang Mao, Xuedu Lu, and Gloria P. Gerilla-Teknomo. Air Pollutants and Greenhouse Gas Emissions Co-control Evaluation in the People’s Republic of China. Asian Development Bank, December 2020. http://dx.doi.org/10.22617/wps200387-2.
Full text