Academic literature on the topic 'Greenroof'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Greenroof.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Greenroof"

1

Starry, O. S. "Ecosystem ecology as a framework for organizing and advancing greenroof research." Israel Journal of Ecology and Evolution 62, no. 1-2 (April 12, 2016): 97–102. http://dx.doi.org/10.1080/15659801.2015.1031470.

Full text
Abstract:
This paper explores the application of an ecosystem ecology framework to greenroof systems. It investigates how aspects of greenroof design or structure relate to functions such as rates of nutrient and energy cycling. Three main sections include energy budgets, cycling of nutrients and water, and ecosystem response to disturbance. Comparisons between greenroofs and other systems indicated that, functionally, greenroofs may be very different from ecosystem analogs. A further assessment of the greenroof energy budget called into question how food webs are supported. An evaluation of factors predicting system response to disturbance identified ways in which greenroofs may be less resilient to disturbance. One challenge with the ecosystem approach is a lack of sufficient data for fully holistic models, especially with respect to management practices. Ecosystem ecology is nevertheless shown to be a valuable framework for integrating existing greenroof research as well as targeting areas for future research and model development.
APA, Harvard, Vancouver, ISO, and other styles
2

Feng, Chi, Chen Chen Wu, and Qing Lin Meng. "Experimental Study on the Radiative Properties of a Sedum lineare Greenroof." Applied Mechanics and Materials 174-177 (May 2012): 1986–89. http://dx.doi.org/10.4028/www.scientific.net/amm.174-177.1986.

Full text
Abstract:
Greenroofs are increasingly popular throughout the world. Radiative properties of greenroofs are important for the analysis and enhancement of their thermal performance. The radiative properties of a typical Sedum lineare greenroof were studied in this paper. Experimental results revealed that the solar radiation absorptivity, longwave radiation absorptivity and emissivity of this Sedum lineare greenroof were 0.84, 1.0 and 1.0 respectively.
APA, Harvard, Vancouver, ISO, and other styles
3

de Munck, C. S., A. Lemonsu, R. Bouzouidja, V. Masson, and R. Claverie. "The GREENROOF module (v7.3) for modelling green roof hydrological and energetic performances within TEB." Geoscientific Model Development 6, no. 6 (November 8, 2013): 1941–60. http://dx.doi.org/10.5194/gmd-6-1941-2013.

Full text
Abstract:
Abstract. The need to prepare cities for climate change adaptation requests the urban modeller community to implement sustainable adaptation strategies within their models to be tested against specific city morphologies and scenarios. Greening city roofs is part of these strategies. In this context, the GREENROOF module for TEB (town energy balance) has been developed to model the interactions between buildings and green roof systems at the scale of the city. This module, which combines the ISBA model (Interaction between Soil Biosphere and Atmosphere) and TEB, allows for one to describe an extensive green roof composed of four functional layers (vegetation – grasses or sedums; substrate; retention/drainage layers; and artificial roof layers) and to model vegetation-atmosphere fluxes of heat, water and momentum, as well as the hydrological fluxes throughout the substrate and the drainage layers, and the thermal fluxes throughout the natural and artificial layers of the green roof. TEB-GREENROOF (SURFEX v7.3) should therefore be able to represent the impact of climate forcings on the functioning of green roof vegetation and, conversely, the influence of the green roof on the local climate. An evaluation of GREENROOF is performed for a case study located in Nancy (France) which consists of an instrumented extensive green roof with sedums and substrate and drainage layers that are typical of this kind of construction. After calibration of the drainage layer hydrological characteristics, model results show good dynamics for the substrate water content and the drainage at the green roof base, with nevertheless a tendency to underestimate the water content and overestimate the drainage. This does not impact too much the green roof temperatures, which present a good agreement with observations. Nonetheless GREENROOF tends to overestimate the soil temperatures and their amplitudes, but this effect is less important in the drainage layer. These results are encouraging with regard to modelling the impact of green roofs on thermal indoor comfort and energy consumption at the scale of cities, for which GREENROOF will be running with the building energy version of TEB – TEB-BEM. Moreover, with the green roof studied for GREENROOF evaluation being a type of extensive green roof widespread in cities, the type of hydrological characteristics highlighted for the case study will be used as the standard configuration to model extensive green roof impacts at the scale of cities.
APA, Harvard, Vancouver, ISO, and other styles
4

de Munck, C. S., A. Lemonsu, R. Bouzouidja, V. Masson, and R. Claverie. "The GREENROOF module (v7.3) for modelling green roof hydrological and energetic performances within TEB." Geoscientific Model Development Discussions 6, no. 1 (February 20, 2013): 1127–72. http://dx.doi.org/10.5194/gmdd-6-1127-2013.

Full text
Abstract:
Abstract. The need to prepare cities for climate change adaptation requests the urban modeller community to implement within their models sustainable adaptation strategies to be tested against specific city morphologies and scenarios. Greening city roofs is part of these strategies. In this context, a GREENROOF module for TEB (Town Energy Balance) has been developed to model the interactions between buildings and green roof systems at the scale of the city. This module allows one to describe an extensive green roof composed of four functional layers (vegetation – grasses or sedums, substrate, retention/drainage layers and artificial roof layers) and to model vegetation-atmosphere fluxes of heat, water and momentum, as well as the hydrological and thermal fluxes throughout the substrate and the drainage layers, and the thermal coupling with the structural building envelope. TEB-GREENROOF (v7.3) is therefore able to represent the impact of climate forcings on the functioning of the green roof vegetation and, conversely, the influence of the green roof on the local climate. A calibration exercise to adjust the model to the peculiar hydrological characteristics of the substrates and drainage layers commonly found on green roofs is performed for a case study located in Nancy (France) which consists of an extensive green roof with sedums. Model results for the optimum hydrological calibration show a good dynamics for the substrate water content which is nevertheless under-estimated but without impacting too much the green roof temperatures since they present a good agreement with observations. These results are encouraging with regard to modelling the impact of green roofs on thermal indoor comfort and energy consumption at the scale of cities, for which GREENROOF will be running with the building energy version of TEB, TEB-BEM. Moreover, the green roof studied for GREENROOF evaluation being a city-widespread type of extensive green roof, the hydrological characteristics derived through the evaluation exercise will be used as the standard configuration to model extensive green roofs at the scale of cities.
APA, Harvard, Vancouver, ISO, and other styles
5

Vystrčil, J., O. Nespešný, K. Šuhajda, D. Bečkovský, and P. Selník. "Measurement of the runoff coefficient of extensive greenroof." IOP Conference Series: Materials Science and Engineering 1209, no. 1 (December 1, 2021): 012034. http://dx.doi.org/10.1088/1757-899x/1209/1/012034.

Full text
Abstract:
Abstract Describes the procedure of experimental measurement of the runoff coefficient C, both of individual layers and the entire composition extensive green roofs. Experimental measurements make it possible to determine the reference behaviour of runoff characteristics, namely runoff coefficient C, with emphasis on the simulation of the real behaviour of extensive green roofs. The aim is an elementary description of the structural and physical behaviour of extensive green roofs. For the needs of experimental measurement, the dimensional and shape limits of test specimens are described, the conditions for conditioning of individual specimens, the boundary conditions of execution and individual steps of the experiment. Then is specified the method of evaluation and subsequent verification of measured data. The result of the experimental measurement is the amount of drained water from the tested specimens of the extensive green roof at time t, which shows a nonlinear behaviour. From the set of measured data, it is then possible to predict the behaviour of extensive green roofs in real conditions and to determine the runoff coefficient C of the tested specimens. These data represent reference values for the subsequent design of sub-elements and structures of buildings.
APA, Harvard, Vancouver, ISO, and other styles
6

Velazquez, Linda S. "Organic greenroof architecture: Design considerations and system components." Environmental Quality Management 15, no. 1 (2005): 61–71. http://dx.doi.org/10.1002/tqem.20068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Velazquez, Linda S. "Organic greenroof architecture: Sustainable design for the new millennium." Environmental Quality Management 14, no. 4 (2005): 73–85. http://dx.doi.org/10.1002/tqem.20059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Buccola, Norman, and Graig Spolek. "A Pilot-Scale Evaluation of Greenroof Runoff Retention, Detention, and Quality." Water, Air, & Soil Pollution 216, no. 1-4 (July 9, 2010): 83–92. http://dx.doi.org/10.1007/s11270-010-0516-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Baek, So-Young, and Moo-Young Han. "Water conservation effect of concave greenroof system and its influential factors." Journal of the Korean Society of Water and Wastewater 29, no. 2 (April 30, 2015): 165–69. http://dx.doi.org/10.11001/jksww.2015.29.2.165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kim, Si-Man, Seung-Won Han, Ha-Kyung Jang, Jae-Soon Kim, and Myung-Il Jeong. "Characteristics of Soil Moisture Rate for Optimal Growth Conditions on Greenroof Plants1a." Korean Journal of Environment and Ecology 29, no. 6 (December 30, 2015): 947–51. http://dx.doi.org/10.13047/kjee.2015.29.6.947.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Greenroof"

1

Henderson, Beau Tyler. "Human-Driven Extensive Greenroof Design." Thesis, Virginia Tech, 2003. http://hdl.handle.net/10919/34257.

Full text
Abstract:
Throughout history, utopian ideals have existed promoting nature as a necessary affect for better aesthetic and psychological being. Yet, as human populations climb so do stresses upon the natural environment - therefore, bringing "the city in harmony with nature" becomes more challenging. Fortunately, hope exists through the use of greenroof technology. Greenroofs are a green space created by continuous layers of drainage, protection, growing medium, and plants either onto or integral to a roofing system. This paper explores extensive greenroofs, characterized by low-maintenance and shallow growing medium. Greenroof benefits (ecological, economical, aesthetic, psychological) are classified as: Market and Human. Further exploration of human-driven benefits result in the definitions of active and passive sensation (the division of sensation): Active sensation is the immediate, present, unimagined engagement of a specific sense. Passive sensation is the imagined perception (sensing) of an object or element. As defined, Active Sensations are real and, therefore, have limits/defects/boundaries; yet, Passive Sensations are imagined, and therefore, limitless. As alluded by William James, "The philosophy which is so important in each of us is not a technical matter; it is our more or less dumb sense of what life honestly and deeply means. It is only partly got from books; it is our individual way of just seeing and feeling the total push and pressure of the cosmos." The remainder of the document explores human-driven greenroof design; emphasizing design as a form of inquiry.
Master of Landscape Architecture
APA, Harvard, Vancouver, ISO, and other styles
2

Minareci, Melike. "A FIELD INVESTIGATION FOR THE WIND LOAD PERFORMANCE OF VEGETATED GREENROOFS USING MONITORING SYSTEMS." Master's thesis, University of Central Florida, 2010. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2355.

Full text
Abstract:
Greenroof systems have been shown to be an environmentally friendly alternative based on various factors; such as, reduced lifecycle cost, improved air quality, ambient temperature reduction, stormwater management credit, sustainability and preservation of the environment. Recent research studies attempt to determine the construction methods of an ideal greenroof for environmental purposes, yet there is an absence of standards for the best design required to achieve acceptable structural performance and sustainability under wind loads. As a result, there is a need to document the effectiveness of greenroofs under high wind events by addressing the following questions: Do winds have an effect on greenroof material loss? Do greenroof materials modify local pressure conditions that would need a modification to current design codes? Does the level of vegetation establishment affect the material loss and pressure distribution? This thesis first focuses on vegetated greenroof construction techniques and issues along with some of the most recent studies conducted by UCF researchers. Then, the literature focuses on wind uplift of vegetated roofs constructed using different wind erosion control methods with respect to vegetation cover, geosynthetic liners, and wind breaks. As part of this research, two monitoring systems with a grid of very low differential pressure transducers and a high speed anemometer were designed and implemented on the East and West coasts of Florida to collect data for the pressure distribution across the greenroofs in relation to wind direction and speed. In addition to this, the design of this monitoring system with specific information about the sensing and data acquisition systems is presented. Subsequently, the analysis of the monitoring data compares the peak wind gusts for each time interval to their corresponding pressure measurement to obtain pressure coefficients identified at each pressure node on the roof. Based on this analysis, pressure changes for hurricane speed winds are predicted to have an overall average uplift pressure envelope within ASCE Code 7-05 design standards with vegetation cover enhancing sustainability under wind events. For future studies, controlled field investigations to reduce in situ limitations due to natural climatic conditions as well as long term monitoring are discussed as recommended studies for the evaluation of wind effects.
M.S.C.E.
Department of Civil and Environmental Engineering
Engineering and Computer Science
Civil Engineering MSCE
APA, Harvard, Vancouver, ISO, and other styles
3

Beck, Deborah Aileen. "Effects of Biochar-Amended Soil on the Water Quality of Greenroof Runoff." PDXScholar, 2010. https://pdxscholar.library.pdx.edu/open_access_etds/47.

Full text
Abstract:
As the numbers of installed greenroofs continue to grow internationally, designing greenroof growing media to reduce the amount of nutrients in the stormwater runoff is becoming essential. Biochar, a carbon-net-negative soil amendment, has been promoted for its ability to retain nutrients in soils and increase soil fertility. This study evaluated the effect on water quality of greenroof runoff after adding biochar to a typical extensive greenroof soil. Prototype greenroof trays with and without 7% biochar (by weight) were planted with sedum or ryegrass, with barren soil trays for controls. The greenroof trays were subjected to two sequential 2.9 in/hr rainfall events using a rainfall simulator. Runoff from the rainfall events was collected and evaluated for total nitrogen, total phosphorus, nitrate, phosphate, total organic carbon, and inorganic carbon. Greenroof trays containing biochar showed lower quantities of nutrients in the stormwater runoff compared to trays without biochar. Biochar-amended soil with and without plants showed a 3- to 25-fold decrease in release of nitrate and total nitrogen concentrations, as well as a decrease in phosphate and total phosphorus concentrations release into the rainfall runoff. Phosphorus results from trays planted with sedum indicate that sedum interacted with both soils to cause a decrease of phosphorus in the greenroof runoff. In correlation with a visual effect in turbidity, biochar-amended soil showed a reduction of total organic carbon in the runoff by a factor of 3 to 4 for all soil and plant trays. Inorganic carbon was similar for all tests showing that inorganic carbon neither reacted with, nor was retained by, biochar in the soil. The addition of biochar to greenroof soil is an effective way to retain nutrients in a greenroof soil, reduce future fertilizer demands, and improve the water quality of the stormwater runoff by reducing nitrogen, phosphorus, and total organic carbon concentrations in the runoff water.
APA, Harvard, Vancouver, ISO, and other styles
4

Dickson, J. "Greenroofs : phytomateriality and ecotopia." Thesis, University College London (University of London), 2015. http://discovery.ucl.ac.uk/1467990/.

Full text
Abstract:
With growing concerns over human relations with respect to Nature within the Anthropocene increasingly expressed in terms of changing climates, the agentive relations between humans and the world come more sharply into anthropological focus. Cities, often described as devoid of Nature, are currently being recognised as one way to govern the twin problems of managing a changing climate and an increasingly compact city form. There are currently, 700 green (deliberately vegetated) roofs in place in London. This thesis examines the material culture of greenroofs, through a re-evaluation of J.J. Gibson’s Affordance Theory. Materials and plants in combination provide the conditions for agentive action, not only for flora and fauna but for people. I propose that these resulting socio-biological capacities be described as phyto-materiality. This phyto-materiality becomes central to flexible and ongoing classificatory practices which, in turn, enables greenroofs to become incorporated into a palimpsest of policymaking at the local and city levels and facilitates the mainstreaming of greenroofing practice. During a greenroofing project, phyto-materiality becomes central to achieve movement across geographical and organisational boundaries re-shaping the governance of London’s built environment and the working practices of professionals. However the material effects of greenroofing become problematic as imagined future plants become a source of concern for leaseholders or current flora and fauna escape the roof, revealing tensions and fractures in greenroofing practice. The thesis is informed by more than a year’s participant observation within a local authority and a network of greenroof designers, builders, ecologists, policymakers and ecological activists. Greenroofing comes out of an engagement with British environmental discourses and in making greenroofs and greenroof policy-making people remake themselves as greenroofers. For these respondents, phyto-materiality becomes both the ends-in-sight vision of, and the methodology for, ecotopia.
APA, Harvard, Vancouver, ISO, and other styles
5

Hanumesh, Mithun. "Impact of ageing of green roof substrates on their hydrological and thermal performances." Electronic Thesis or Diss., Université de Lorraine, 2022. http://www.theses.fr/2022LORR0368.

Full text
Abstract:
Une toiture végétalisée (TV) est un système complexe qui peut être décrit par ses propriétés, en considérant d'une part les propriétés de ses composants abiotiques (substrat et couche de drainage) et d'autre part ses composants biotiques (végétation, faune spontanée et microbiote). Comme dans tous les systèmes biotiques/abiotiques des interactions complexes se produisent. Tout d'abord, le système externe - introduit ici comme étant des facteurs - induit un effet de vieillissement qui se traduit par l'évolution des propriétés. De plus, les interactions entre les composants abiotiques et biotiques peuvent également induire une évolution des propriétés. Ces interrelations et interactions entre tous les facteurs et propriétés peuvent contrôler le niveau des performances qui pourraient être soumit à des changements dans le temps. Notre approche met en lumière la possibilité de simplifier les relations entre les performances de chaque facteur et donc de mieux comprendre l'évolution et les performances d'une TV. Ce besoin de recherche est né du fait que la plupart des études pertinentes menées à ce jour ont négligé cette dynamique temporelle de l'évolution des TV et des propriétés du technosol hautement réactives. Cette thèse vise à atteindre un point de croisement entre le vieillissement des matériaux inertes et la pédogenèse qui décrit l'évolution des milieux vivants puis à évaluer l'évolution des performances des TV au fil du temps. Pour ce faire, une méta-analyse a d'abord été menée, dont les principaux résultats ont mis en évidence que la plupart des facteurs et des propriétés ont une influence positive sur les performances des TV, montrant qu'il existe de nombreux leviers pour améliorer leurs performances et résoudre certains des principaux problèmes environnementaux urbains. Mais, considérant que ce recensement était loin d'être exhaustif, il a été noté qu'un énorme potentiel dans la détermination des performances des TV reste à découvrir. Des expériences ont été conduites afin de reproduire dans des conditions contrôlées certains facteurs considérés comme influents (e.g. pluie, végétation, alternance gel/dégel), sur des mésocosmes de 3 substrats de TV différentes choisis en fonction de leur composition et de leur granulométrie. Les propriétés de leurs substrats ont été suivies en suivant un protocole de vieillissement artificiel sur une période de 2 mois pour simuler l'évolution en temporelle. Nos résultats ont montré des preuves de pédogenèse précoce, en particulier pour le substrat le plus fin. Selon le substrat : i) la végétation stimule ou maintient la microbiologie ii) la pluie modifie la granulométrie par des processus de lessivage iii) le gel modifie la granulométrie par fractionnement. Il y a également un changement dans la structure porale, ce qui modifie les performances de rétention d'eau. De plus, les changements dans les performances des autres propriétés étudiées semblent plus dus à l'évolution temporelle qu'à une influence des facteurs. Le suivi des échantillons de référence ont révélé une diminution ou une augmentation du pH selon le substrat, de petites variations dans la microbiologie et dans les concentrations de carbone organique et d'azote total. Enfin, des prélèvements in situ, nous ont permis de mesurer l'évolution des propriétés vieillies de 7 substrats provenant de deux sites d'âges différents et de 3 végétations différentes. Elles ont révélé que l'évolution est principalement déterminée par l'âge ; les substrats les plus jeunes (3 ans) subissant une pédogenèse rapide par rapport aux substrats plus anciens (10 ans) dont l'évolution semble s'être relativement stabilisée. En considérant l'ensemble des résultats, on peut dire que dans les premières années, les trajectoires de pédogenèse des substrats de TV sont principalement dominées par la nature et la composition de leurs matériaux intrinsèques. Puis, après un certain temps, les facteurs semblent régir les performances
The green roof system is a complex system that could be described by its “properties”, considering on the nature and physical, chemical, and thermal properties of its abiotic components (i.e., substrate and drainage layers) and on the other hand its biotic components (i.e., vegetation, spontaneous fauna, and microbiota). As in all biotic/abiotic systems, complex interactions happen. First, the external system—here described as “factors”—induces an ageing effect that results in the evolution of “properties” over time (e.g., rain may induce leaching of fine particles; cold temperature may alter the vegetation development). Moreover, interactions between abiotic and biotic components may also induce evolution of “properties” (e.g., plant litter may increase the organic matter content in the substrate; decrease of the substrate physico-chemical fertility can decrease the biomass production). Eventually, such inter-relations and interactions between all “factors” and “properties” can control the level of performances that could be submitted to changes over time. Though the system is complex, our approach sheds light on the potential of simplifying each Factor property performance relations and hence understanding the system evolution and performances better. This research need originated from the fact that most of the relevant studies conducted to date have neglected these temporal dynamics of green roof evolution and their high reactive technosol properties. This PhD aimed to reach a crossroad point between ageing -of inert materials and pedogenesis- that describes evolution of living media and to evaluate the performance evolution of green roof over time. To evaluate this, first, a meta-analysis was conducted whose main findings highlighted that most factors and properties have a positive influence on the performances of green roofs, showing there are many existing levers to enhance the green roof performances and tackle some of the main urban environmental issues. But, considering that these lists were far from exhaustive, it was noted that a huge potential in determining green roof performances remains unearthed. Thus, experiments were designed and conducted with the purpose to reproduce certain factors considered as influential (i.e. rain, vegetation and freeze/thaw alternation), under controlled conditions, on mesocosms of 3 different green roof substrates chosen based on composition and granulometry. Their substrate properties were monitored over time through self-designed artificial aging over a period of 2 months to mimic real time evolution. Our results showed evidence of early pedogenesis especially for the finer substrate. Depending on the substrate: i) vegetation stimulates or maintains microbiology; ii) rain modifies granulometry through leaching processes; iii) frost modifies granulometry through fractionation. There was also change in the poral structure thus modifying the water retention performance. Other than that, the changes in the performance of other studied properties seem more due to the temporal evolution rather than factorial based. It was also noted in monitoring of the reference samples which revealed: a decrease or increase in pH depending on the substrate, small variations in microbiology and in organic carbon and total nitrogen concentrations. As a final step, in situ aged property evolution measurements from 7 substrates originating from two different sites of different ages and 3 different vegetation, revealed that the evolution is mainly driven by the age where the younger substrates (3 years) could be seen undergoing a rapid pedogenisis compared to the older substrates (10 years) whose evolution seem to have comparatively settled. Considering the results overall, it can be said that within the first years, the pedogenesis trajectories of green roof substrates are mostly dominated by the nature and composition of their parent materials. Then, after a while, the factors could take the lead
APA, Harvard, Vancouver, ISO, and other styles
6

Harlaß, Ralf. "Verdunstung in bebauten Gebieten." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1223146119806-27644.

Full text
Abstract:
Die Verdunstung ist die Klimaanlage der Erde. Sie verbindet den globalen Wasserkreislauf mit dem Energiekreislauf. Die Komponenten des Wasser- und Energiekreislaufs stehen für jeden Standort in einem dynamischen Gleichgewicht. Mit der Ausführung von Bauvorhaben wird in das Gleichgewicht eingegriffen. Entscheidend für die Beurteilung der Folgen für die Umwelt sind die langfristigen Auswirkungen. Diese können durch den Vergleich langjähriger mittlerer Jahresbilanzen vor und nach der Bebauung aufgezeigt werden. Bei der Genehmigung neuer Baugebiete müssen diese Auswirkungen ein Entscheidungskriterium werden, wenn der Eingriff in den Naturhaushalt so gering wie möglich gehalten werden soll. Nur die Betrachtung von einzelnen Starkregenereignissen ist nicht ausreichen. Von der Versiegelung der Oberflächen ist die Verdunstung in der Jahresbilanz stärker als die anderen Komponenten des Wasserkreislaufs betroffen. Trotzdem werden bisher bei der Planung neuer Baugebiete hauptsächlich der Oberflächenabfluss und in zunehmendem Maße die Versickerung untersucht. Die Reduzierung der Verdunstung wird zumeist vernachlässigt. Ursache für diese Reduzierung ist die fehlende Zwischenspeicherung des Wassers. Das wirkt sich direkt auf den Energiekreislauf aus, da die nicht für den Verdunstungsprozess benötigte Energie in den bodennahen Schichten bleibt. Im ersten Teil werden die Einflussfaktoren auf die Verdunstung erläutert und ein Überblick über die Berechnungsmethoden gegeben. Im zweiten Teil werden die Oberflächen unbebauter und bebauter Gebiete systematisiert und in Landnutzungsarten unterteilt. Für diese werden die hydrologischen und energetischen Eigenschaften und deren Auswirkungen auf den Wasser- und Energiehaushalt erläutert und die mittleren Jahresbilanzen berechnet. Die tatsächliche Verdunstung wird auf der Basis der Gras-Referenzverdunstung und der Landnutzungsart ermittelt. Ausgangswerte sind langjährige meteorologische Jahresmittelwerte. Die Verdunstung von Wasserflächen wird mit dem Temperaturgleichgewichtsverfahren berechnet. Mit den vorgestellten Verfahren können Einzugsgebiete von Bebauungsplangröße untersucht werden. Es werden Lösungen zur Beibehaltung eines möglichst hohen Verdunstungsanteils in bebauten Gebieten vorgeschlagen. Ansatzpunkt ist dabei stets die Zwi-schenspeicherung des Regenwassers. Am wirkungsvollsten sind dabei Dachbegrünungen, Wasserflächen und Bäume. Das Verfahren wird an zwei Beispielen angewandt - die Erschließung eines Industriegebietes auf einer vorher land- und forstwirtschaftlich genutzten Fläche in Treuen im Vogtland und der Neubau einer Untergrundstation im Zentrum der schwedischen Großstadt Malmö
Evapotranspiration could be called the air-conditioner of the earth. It is connecting the water and the energy cycle. The components of the water and energy cycle are related to each other in a dynamic system. Urban development is interfering with this system. Changes of the water and energy balance resulting from construction can be calculated on the basis of long-standing annual average balances and compared with the balance in the catchment area before construction. Before granting building permission, the impacts on the water and energy balance should be evaluated in order to minimize interference with nature. Causing long-term impacts must be considered beforehand in planning. Coping only with design storm events does not suffice. Evaporation is more intensely affected by the paving of streets and squares and by constructing buildings then the other components of the water cycle. However, up to now, in the process of design and planning permission of new development areas, the focus is on runoff and, increasingly, on infiltration of rainwater. The large reduction of evaporation is mostly neglected. The reason for the reduction is the lack of buffer storage for water. Thus directly affects the energy cycle. Energy which is not used for evaporation remains in the near-ground layers. In the first part, the factors influencing evaporation are explained and an overview over the methods of calculation is given. In the second part all surfaces of urban and natural areas are systematized and subdivided into types of land use. The hydrological and energy properties as well as their effects on the water and energy balance are elucidated for this types of land use and their average annual balances are calculated. Solutions are presented for retaining in urban areas an evaporation rate as high as possible. Starting point hereby is always the buffer storage of rainwater. Most effective measures are the installation of rooftop greening, open water surfaces and trees. The calculations are performed on the basis of the FAO reference evaporation and the types of land use. Starting values are long-stand average annual meteorologic values. The evaporation of water surfaces is calculated with the temperature balance model. The method is applied to two examples showing the impacts of land use change on water and energy balance: the development of agricultural and forest land in Saxony into an industrial development site, and the impact of the construction of an underground station in the centre of the City Malmö, Sweden
APA, Harvard, Vancouver, ISO, and other styles
7

Harlaß, Ralf. "Verdunstung in bebauten Gebieten." Doctoral thesis, Technische Universität Dresden, 2007. https://tud.qucosa.de/id/qucosa%3A23856.

Full text
Abstract:
Die Verdunstung ist die Klimaanlage der Erde. Sie verbindet den globalen Wasserkreislauf mit dem Energiekreislauf. Die Komponenten des Wasser- und Energiekreislaufs stehen für jeden Standort in einem dynamischen Gleichgewicht. Mit der Ausführung von Bauvorhaben wird in das Gleichgewicht eingegriffen. Entscheidend für die Beurteilung der Folgen für die Umwelt sind die langfristigen Auswirkungen. Diese können durch den Vergleich langjähriger mittlerer Jahresbilanzen vor und nach der Bebauung aufgezeigt werden. Bei der Genehmigung neuer Baugebiete müssen diese Auswirkungen ein Entscheidungskriterium werden, wenn der Eingriff in den Naturhaushalt so gering wie möglich gehalten werden soll. Nur die Betrachtung von einzelnen Starkregenereignissen ist nicht ausreichen. Von der Versiegelung der Oberflächen ist die Verdunstung in der Jahresbilanz stärker als die anderen Komponenten des Wasserkreislaufs betroffen. Trotzdem werden bisher bei der Planung neuer Baugebiete hauptsächlich der Oberflächenabfluss und in zunehmendem Maße die Versickerung untersucht. Die Reduzierung der Verdunstung wird zumeist vernachlässigt. Ursache für diese Reduzierung ist die fehlende Zwischenspeicherung des Wassers. Das wirkt sich direkt auf den Energiekreislauf aus, da die nicht für den Verdunstungsprozess benötigte Energie in den bodennahen Schichten bleibt. Im ersten Teil werden die Einflussfaktoren auf die Verdunstung erläutert und ein Überblick über die Berechnungsmethoden gegeben. Im zweiten Teil werden die Oberflächen unbebauter und bebauter Gebiete systematisiert und in Landnutzungsarten unterteilt. Für diese werden die hydrologischen und energetischen Eigenschaften und deren Auswirkungen auf den Wasser- und Energiehaushalt erläutert und die mittleren Jahresbilanzen berechnet. Die tatsächliche Verdunstung wird auf der Basis der Gras-Referenzverdunstung und der Landnutzungsart ermittelt. Ausgangswerte sind langjährige meteorologische Jahresmittelwerte. Die Verdunstung von Wasserflächen wird mit dem Temperaturgleichgewichtsverfahren berechnet. Mit den vorgestellten Verfahren können Einzugsgebiete von Bebauungsplangröße untersucht werden. Es werden Lösungen zur Beibehaltung eines möglichst hohen Verdunstungsanteils in bebauten Gebieten vorgeschlagen. Ansatzpunkt ist dabei stets die Zwi-schenspeicherung des Regenwassers. Am wirkungsvollsten sind dabei Dachbegrünungen, Wasserflächen und Bäume. Das Verfahren wird an zwei Beispielen angewandt - die Erschließung eines Industriegebietes auf einer vorher land- und forstwirtschaftlich genutzten Fläche in Treuen im Vogtland und der Neubau einer Untergrundstation im Zentrum der schwedischen Großstadt Malmö.
Evapotranspiration could be called the air-conditioner of the earth. It is connecting the water and the energy cycle. The components of the water and energy cycle are related to each other in a dynamic system. Urban development is interfering with this system. Changes of the water and energy balance resulting from construction can be calculated on the basis of long-standing annual average balances and compared with the balance in the catchment area before construction. Before granting building permission, the impacts on the water and energy balance should be evaluated in order to minimize interference with nature. Causing long-term impacts must be considered beforehand in planning. Coping only with design storm events does not suffice. Evaporation is more intensely affected by the paving of streets and squares and by constructing buildings then the other components of the water cycle. However, up to now, in the process of design and planning permission of new development areas, the focus is on runoff and, increasingly, on infiltration of rainwater. The large reduction of evaporation is mostly neglected. The reason for the reduction is the lack of buffer storage for water. Thus directly affects the energy cycle. Energy which is not used for evaporation remains in the near-ground layers. In the first part, the factors influencing evaporation are explained and an overview over the methods of calculation is given. In the second part all surfaces of urban and natural areas are systematized and subdivided into types of land use. The hydrological and energy properties as well as their effects on the water and energy balance are elucidated for this types of land use and their average annual balances are calculated. Solutions are presented for retaining in urban areas an evaporation rate as high as possible. Starting point hereby is always the buffer storage of rainwater. Most effective measures are the installation of rooftop greening, open water surfaces and trees. The calculations are performed on the basis of the FAO reference evaporation and the types of land use. Starting values are long-stand average annual meteorologic values. The evaporation of water surfaces is calculated with the temperature balance model. The method is applied to two examples showing the impacts of land use change on water and energy balance: the development of agricultural and forest land in Saxony into an industrial development site, and the impact of the construction of an underground station in the centre of the City Malmö, Sweden.
APA, Harvard, Vancouver, ISO, and other styles
8

Jonsson, Mattias. "Moss-sedumtakets bullerdämpande egenskaper : The noise reduction capability of greenroofs." Thesis, Växjö University, School of Technology and Design, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:vxu:diva-5340.

Full text
Abstract:

Syftet med arbetet är att få en förståelse för moss-sedumtakets bullerdämpande egenskaper. Jag kommer även att försöka förutsäga med hjälp av akustikteori vilken utav de två olika uppbyggnadssystemen av moss-sedumtak som ger den bästa bullerdämpande effekten.

Mätningarna kommer att bestå i att registrera ljudtrycksnivån i rummet, vid varje oktavband i frekvensområdet 125-4000 Hz. Först utan moss-sedummattan och sedan med moss-sedum mattan. Storleken på differensen i ljudnivån ger en bild av i vilket frekvensområde som ljudabsorptionen är effektivast. För att ytterliggare öka förståelsen för hur moss-sedum absorberar ljud så kommer även absorptionsfaktorn att beräknas. Utifrån resultaten kan man se en tydlig bild på hur xeroflor moss-sedum mattan absorberar i frekvenserna 125-4000 Hz. Den har sin bästa absorption i området 500-4000 Hz och i detta område så är det runt 1000 Hz som den absorberar effektivast.

 

Om vi tittar på de två olika systemen som Veg Tech använder för att bygga upp ett sedumtak på så sker dämpningen i XMS 0-4 med hjälp av luftspalten och i system XMS 2-27 i VT-filten. Men i detta fall så är luftspalten endast 25 mm så en märkbar ökad dämpning är svårt att föreställa sig. VT-filten som används i XMS 2-27 har öppna celler och kan liknas vid mineralull, som är en bra absorbent. Min slutsats är att 10 mm VT-filt ger bättre dämpning än en luftspalt på 25 mm.

 

APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Shan. "Further study of the “GreenRoom” concept – an approach to sustainable datacenter cooling solution : Identification of improvement possibilities using Life Cycle Assessment (LCA) and discussion about the effect of the choice of Life Cycle Impact Assessment (LCIA) methods on the results." Thesis, KTH, Hållbar utveckling, miljövetenskap och teknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-116474.

Full text
Abstract:
The growing industry of Information and Communication Technology requires higher computing capacity of data centers/technical sites. The air conditioning in data centers is the key to assure a sustainable computing environment. However, the traditional cooling systems cost are responsible for large environmental footprints especially on energy consumption and greenhouse gas emissions. As a result, a green innovation of data center cooling solutions is taking place. The telecommunication company Teliasonera is developing a high density data center cooling system - the “Green Room” and has been studying the environmental performance of this system using a Life Cycle approach. As an extension of the previous study, more aspects of the project i.e. the location, life span, alternative cooling solutions, energy recovery possibilities and uncertainty analysis is explored by using Life Cycle Assessment (LCA) methodology. The comparison of the locations of the Green Room indicates that the local temperature and electricity production sources are essential factors for the environmental performance of the Green Room. The analysis of the Green Room’s life span reveals that the utilization phase may not always cause the most significant impact during the whole life cycle of the Green Room. If the life span changes, the manufacture phase may predominate the life cycle of the Green Room. The comparative result of alternative cooling technologies addresses that utilizing “natural coolant” (e.g. geo cooling) is a key for sustainable cooling innovation as it would significantly reduce the environmental footprint of the cooling system. Besides, heating a single building (partly) by the waste heat generated from the Green Room could save 30% of cumulative energy input and could reduce more than half of the total environmental impact. Additionally, results uncertainties caused by the choice of different LCIA methods are discussed in the end of the study.
The Teliasonera Green Room Concept for high and mid density of ICT equipment
APA, Harvard, Vancouver, ISO, and other styles
10

Camm, Eric. "An evaluation of engineered media for phosphorus removal from greenroof stormwater runoff." Thesis, 2011. http://hdl.handle.net/10012/5827.

Full text
Abstract:
Greenroofs are increasingly being recognized as an effective site level best management practice (BMP) to reduce the volume of stormwater runoff in urban environments. For some water quality constituents, greenroofs can improve runoff water quality but recent studies demonstrate greenroofs are sources rather than sinks of phosphorus (P). Accordingly, further research is required to evaluate treatment technologies that improve the performance of these BMPs. This study examined the use of two engineered media types to reduce phosphorus loadings from a greenroof located on the Archetype Sustainable House at Kortright in Vaughan, Ontario. A treatment system was installed to capture and remove P in stormwater runoff using sorptive properties of an engineered media. A mass balance approach was used to evaluate pre and post-treatment water quality. Pre and post-treatment water samples were collected for 25 rainfall events from July 11, 2009 to August 22, 2010 and analyzed for soluble reactive phosphorus (SRP), total phosphorus (TP), suspended solids (SS) and total dissolved solids (TDS). Storm events ranged in return frequencies from < 2 years to 35 year periods. The results show that the greenroof was a consistent source of P. The volume weighted mean concentrations were 0.769 mg/L and 0.630 mg/L for 2009 and 2010 events, respectively. The media used in 2009 reduced SRP loadings by 32.0% and TP loadings by 25.4%. The media evaluated in 2010, reduced SRP loadings by 82.4% and TP loadings by 86.6%. The greater P removal demonstrated by the 2010 media is attributed to a higher specific surface area and increased P sorptive capacity. Results of this study will help inform the use of sorptive materials in greenroof applications and a wider range of best management practices for stormwater quality treatment.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Greenroof"

1

Rea, E. D. Emporium: The Greenroom. Independently Published, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Stone, Rob. Secret at Greenrock. Impressions, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Theatrical digs: Tales from the greenroom. Newton Abbot: David & Charles, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Autocrat in the Greenroom: With a Play after Othello. Creative Media Partners, LLC, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Literally No Place: Communes, Bars And Greenrooms. Book Works, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Carlisle, Carol Jones. Shakespeare from the Greenroom: Actors' Criticisms of Four Major Tragedies. University of North Carolina Press, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Palmer, Janet Larsen. From the greenroom to the boardroom: Performance studies as management training. Communication Excellence Institute, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Czukor, Ted (Srinathadas). Notes from the Greenroom: Taking Cues from the Promptbook of Life. PublishAmerica, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Theatrical and Circus Life: Or, Secrets of the Stage, Greenroom and Sawdust Arena. Creative Media Partners, LLC, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

The Beauty Pageant's Greenroom: The Ultimate Grooming Bible by the Leading Industry Expert. Academic Foundation, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Greenroof"

1

Carpenter, Donald D., and Preethi Kaluvakolanu. "The Lawrence Technological University Greenroof Performance Evaluation Project." In World Environmental and Water Resources Congress 2009. Reston, VA: American Society of Civil Engineers, 2009. http://dx.doi.org/10.1061/41036(342)157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dela Cruz, Jennifer, Meo Vincent Caya, Anne Drea Fajardo, Michael Jubert Manzanilla, Mark Raven Sabuco, Adrian Chummac, and Nadiatulhuda Binti Zulkifli Fke. "Greenroof Irrigation Using Evapotranspiration for Alfalfa and Basil." In 2020 IEEE 12th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM). IEEE, 2020. http://dx.doi.org/10.1109/hnicem51456.2020.9400151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Han, S. W., J. S. Park, and J. S. Kim. "The Use of Infrared Thermography and Growth Rates for Nondestructive Analysis on Greenroof Plants." In Quantitative InfraRed Thermography Asia 2017. QIRT Council, 2017. http://dx.doi.org/10.21611/qirt.2017.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Moran, Amy, Bill Hunt, and Greg Jennings. "A North Carolina Field Study to Evaluate Greenroof Runoff Quantity, Runoff Quality, and Plant Growth." In World Water and Environmental Resources Congress 2003. Reston, VA: American Society of Civil Engineers, 2003. http://dx.doi.org/10.1061/40685(2003)335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Brown, Neil, Phil Stevens, and Michael Kölling. "Greenroom." In the fifteenth annual conference. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1822090.1822181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Liptan, Tom, and Eric Strecker. "EcoRoofs (Greenroofs) — Stormwater Research Results in America." In World Water and Environmental Resources Congress 2005. Reston, VA: American Society of Civil Engineers, 2005. http://dx.doi.org/10.1061/40792(173)179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Olyssa S Starry, John D Lea-Cox, Andrew G Ristvey, and Steven M Cohan. "Utilizing sensor networks to assess evapotranspiration by greenroofs." In 2011 Louisville, Kentucky, August 7 - August 10, 2011. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2011. http://dx.doi.org/10.13031/2013.37771.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Alpuche, Mari´a G., Irene Marincic, Jose´ M. Ochoa, Hugo C. Moreno, and Paloma Giottonini. "Thermal Analysis of Low-Cost Dwellings in Mexico Using Greenroofs." In ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/es2011-54610.

Full text
Abstract:
According to the National Energy Balance (1), the electricity consumption in the residential and commercial sector represents thirty-three percent of the total consumed in the country. Most of the energy is consumed during the summer, when it is necessary to use air conditioning to maintain comfort conditions inside buildings. This aspect takes relevance in warm-dry climates, where a deficient design of building envelope and a wrong location of windows can increase the thermal loads producing an extra load to air conditioning systems and high costs by electricity energy consumption. For this reason, adequate design strategies and thermodynamic concepts have to be applied in order to make dwellings comfortable. Two dwellings are simulated and analyzed, the first one is made of regional materials like traditional concrete block walls, reinforced concrete roofs and economic finishes, the second one is proposed with a green roof and insulation in walls. The heat gains through the different constructive elements have been obtained, to analyze their impact on global thermal comfort and the electricity energy consumption of air cooling systems. Also, an exergy analysis has been applied to analyze exergy efficiency of air cooling systems and the influence that the building envelope can have in them with the proposed changes. The minimum exergy expenditure of air conditioning systems required to achieve comfort conditions inside dwellings could be a useful benchmark for the comparison of various dwelling designs.
APA, Harvard, Vancouver, ISO, and other styles
9

Teemusk, A., and Ü. Mander. "The use of greenroofs for the mitigation of environmental problems in urban areas." In SUSTAINABLE CITY 2006. Southampton, UK: WIT Press, 2006. http://dx.doi.org/10.2495/sc060011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ostroff, Gary M. "A Micro & Macro-Model Approach to Evaluating Greenroofs as a CSO Control in New York City." In World Water and Environmental Resources Congress 2005. Reston, VA: American Society of Civil Engineers, 2005. http://dx.doi.org/10.1061/40792(173)206.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Greenroof"

1

Beck, Deborah. Effects of Biochar-Amended Soil on the Water Quality of Greenroof Runoff. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.47.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Garcia, Paula, Ashtin Massie, Bridget Saunders Vial, Edyta Sitko, James Gignac, John Rogers, John Walkey, et al. En la ruta hacia 100% energía renovable, Los estados pueden liderar una transición energética equitativa. Union of Concerned Scientists, April 2022. http://dx.doi.org/10.47923/2022.141.

Full text
Abstract:
La energía renovable puede proporcionar el 100% de la electricidad que consumen los estados líderes para el año 2035, incluso ante un aumento en la demanda energética a causa de la electrificación en el sector transporte y la calefacción, según un análisis realizado por la Unión de Científicos Conscientes (o UCS, por sus siglas en inglés) junto con las organizaciones Michigan Environmental Justice Coalition, COPAL y GreenRoots. La sustitución de la generación de electricidad de las centrales eléctricas de carbón y gas por energías renovables disminuye las emisiones de agentes contaminantes del aire, lo que representaría una reducción de entre 6.000 y 13.000 muertes prematuras y evitaría 700.000 días de trabajo perdidos entre los años 2022 y 2040. Esta transición también crea miles de puestos de trabajo, reduce la carga económica de energía de los hogares y disminuye significativamente las emisiones de gases que atrapan el calor el calor en la atmósfera.1 Las principales recomendaciones del análisis se enfocan en dejar de usar rápidamente los combustibles fósiles y aumentar la inversión en energías renovables, además de garantizar que los beneficios de la transición lleguen a las comunidades más afectadas por el racismo ambiental y la contaminación, y a los trabajadores y las comunidades que dependen de los combustibles fósiles. Aunque las acciones a nivel estatal no pueden sustituir al liderazgo nacional, estas son cruciales para lograr un futuro energético limpio y equitativo.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography