Academic literature on the topic 'Grinding additives'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Grinding additives.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Grinding additives"

1

Wang, Jian Feng, Dong Min Wang, Duan Le Li, Guan Bao Tang, and Cheng Du. "The Theoretical Research on Development Direction of Cement Grinding Aids." Advanced Materials Research 668 (March 2013): 269–73. http://dx.doi.org/10.4028/www.scientific.net/amr.668.269.

Full text
Abstract:
Cement grinding aids has been widely used in cement grinding process. The development of traditional compound cement grinding aids, such as triethanolamine and salts based has encountered a bottleneck. Synthesis of cement grinding aids can be improved by the molecular structure design of traditional cement grinding aids, or even lay aside the shackles of traditional cement additive and synthesize high-grinding effect, high performance and low cost cement grinding aids. In this paper, it has proposed two types of cement additives research direction,medium-small molecule and polymer synthesis system. Finally, it had introduced the application performance advantages of two new synthetic grinding aids, compared to triethanolamine and triisopropanolamine.
APA, Harvard, Vancouver, ISO, and other styles
2

Zhou, Zhao Zhong, Kai Ping Feng, Bing Hai Lv, Hong Wei Fan, and Ju Long Yuan. "Analysis on Wear of Self-Sharpening Fine Super-Hard Abrasive Tool." Advanced Materials Research 797 (September 2013): 528–33. http://dx.doi.org/10.4028/www.scientific.net/amr.797.528.

Full text
Abstract:
In order to improve the efficiency of ultra-precision processing, the self-sharpening fine super-hard abrasive tool is presented to reduce or eliminate the surface and subsurface defects and improve the process efficiency. In the study of efficient experimental research of self-sharpening fine super-hard abrasive tool, base on single factor experiments such as additives composition, grinding speed, grinding pressure and processing liquid. The results showed that the wear rate of the self-sharpening fine super-hard abrasive tool can reach appropriate rate when the additive concentration 30wt%, grinding pressure 45N, grinding speed 60rpm and processing liquid 1wt%.
APA, Harvard, Vancouver, ISO, and other styles
3

Miethke, Lina, Paul Prziwara, Jan Henrik Finke, and Sandra Breitung-Faes. "Opposing Effects of Additives in Dry Milling and Tableting of Organic Particles." Pharmaceutics 13, no. 9 (September 9, 2021): 1434. http://dx.doi.org/10.3390/pharmaceutics13091434.

Full text
Abstract:
Applying additives and excipients during the dry processing of fine particles is a common measure to control the particle–particle interactions, to specifically influence the powder properties and to enhance the process efficiency or product quality. In this study, the impacts of a particulate lubricant, a nano-disperse flow additive and liquid grinding aids on the dry fine milling and subsequent tableting of the ground material were investigated for three different organic model compounds. It is presented that the three additive classes cause varying and partly opposing effects during these process steps. Especially the lubricant and the grinding aids were shown to increase the efficiency of the milling process as well as the product fineness of the ground material, and to avoid critical product adhesions on the machine surfaces. Thereby, stable and efficient grinding conditions were partially not possible without the addition of such additives. However, as these positive effects are attributed to a reduction of the adhesive forces between the particles, much lower tablet strengths were achieved for these additives. This propagation of powder, and in turn, final product properties over whole process chains, has not been studied in detail so far. It was further revealed that the material behavior and the microstructure of the product particles is decisive for the processing as well, which is why additive effects may be product-specific and can even be suppressed under certain processing conditions. In comparison to the process performances, the powder properties and surface energies of the product particles were less influenced by the additives. On the contrary, particle-based morphologies or deformation behavior seem to play a major role in comparison to inorganic materials. Thus, it can be stated that global bulk properties and surface energies provide first indications of powder behavior and susceptibility. However, additional specific properties need to be evaluated to more clearly understand the influences of additives.
APA, Harvard, Vancouver, ISO, and other styles
4

Prziwara, Paul, and Arno Kwade. "Grinding aid additives for dry fine grinding processes – Part II: Continuous and industrial grinding." Powder Technology 394 (December 2021): 207–13. http://dx.doi.org/10.1016/j.powtec.2021.08.039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Wei, Bin Hu, and Ming Ming Ma. "Grinding Performance of Permeated Grinding Wheel." Advanced Materials Research 189-193 (February 2011): 121–24. http://dx.doi.org/10.4028/www.scientific.net/amr.189-193.121.

Full text
Abstract:
The permeated grinding wheel was a new kind of grinding wheel, which was permeated by the chemical additives and solid lubricant into the interior gaps of the grinding wheel. Therefore, the grinding wheel can form a lubrication film on the surface of the grinding wheel. This grinding wheel has some good features, such as lower grinding temperature, smaller grinding force, higher life of the grinding wheel, and can prevent the adhesion of chip onto the grinding wheel surface. The experimental results indicate that the ground surface quality and grinding efficiency have been remarkably improved for more hard-to-cut materials.
APA, Harvard, Vancouver, ISO, and other styles
6

Samchenko, Svetlana, and Dmitriy Zorin. "Electricity costs for grinding of cement with expanding additives." International Journal of Engineering & Technology 7, no. 2.23 (April 20, 2018): 274. http://dx.doi.org/10.14419/ijet.v7i2.23.11930.

Full text
Abstract:
The most popular building material, including on transport facilities, is cement. Cement production is associated with the electricity costs. The biggest cost item is the consumption for the cement clinker grinding. It is known that disperse characteristics of cements, such as fineness of grinding, specific surface, coarseness of grading, largely determine their hydraulic properties, and for expanding cements - the deformation ones. In the paper, the issues of electric power consumption were considered when grinding extender expanders: aluminous slag, sulfoaluminate, sulfoferrite and sulfoalumoferrite clinkers.
APA, Harvard, Vancouver, ISO, and other styles
7

NAKAYAMA, Mamoru, Katsuhisa KUDO, Kentaro TAMAMURA, and Katsuhiko IKEDA. "Effect of EP-additives in grinding oil upon grinding performances - Cylindrical plunge grinding of stainless steels." Journal of the Japan Society of Precision Engineering 51, no. 7 (1985): 1409–13. http://dx.doi.org/10.2493/jjspe1933.51.1409.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zaikin, Pavel A., Ok Ton Dyan, Innokenty R. Elanov, and Gennady I. Borodkin. "Ionic Liquid-Assisted Grinding: An Electrophilic Fluorination Benchmark." Molecules 26, no. 19 (September 23, 2021): 5756. http://dx.doi.org/10.3390/molecules26195756.

Full text
Abstract:
We demonstrated the influence of liquid additives on the rate and selectivity of mechanochemical fluorination of aromatic and 1,3-dicarbonyl compounds with F-TEDA-BF4. Substoichiometric catalytic quantities of ionic liquids speed up the reaction. We proposed an improved protocol for ionic liquids-assisted fluorination that allows easy and efficient isolation of fluorinated products by vacuum sublimation. A careful choice of additive results in high yields of fluorinated products and low E-factor for the overall process. Here, we report a benchmarking study of various ionic liquids in comparison with representative molecular solvents. A lower viscosity of ionic liquid additive is typically associated with higher yields and a higher degree of difluorination. Ionic liquids with fluorous anions (triflate and triflimide) are shown to be the most efficient catalysts for ionic liquid-assisted grinding.
APA, Harvard, Vancouver, ISO, and other styles
9

Apriliani, Ari, Sukarsa Sukarsa, and Hexa Apriliana Hidayah. "KAJIAN ETNOBOTANI TUMBUHAN SEBAGAI BAHAN TAMBAHAN PANGAN SECARA TRADISIONAL OLEH MASYARAKAT DI KECAMATAN PEKUNCEN KABUPATEN BANYUMAS." Scripta Biologica 1, no. 1 (March 25, 2014): 78. http://dx.doi.org/10.20884/1.sb.2014.1.1.30.

Full text
Abstract:
People can’t detached from plants in fulfilling their needs, such as plant as food additives. This study aimed to know the types and parts of plants as food additives, and its benefits, as well as its utilization by people of Pekuncen District Banyumas Regency. This research used survey method with purposive random sampling and semi-structured interviews. Data were analyzed descriptively. The results of this study indicated 34 species of 19 familia plants used as food additives. The part of plants used as food additives were tubers, rhizomes, seeds, stems, leaves and fruits. Food additive plants were utilized as flavor enhancer, natural dye, preservatives and acid flavor. The plants were utilized by cooking, cuting, crushing, shredding, grinding, "dikeprek", roasting, boiling, and marinating.
APA, Harvard, Vancouver, ISO, and other styles
10

Dai, Qiu Lian, Can Bin Luo, and Cui Jiao Liao. "Experimental Study on Porous Metal Bonded Diamond Grinding Wheels (II) ─ Grinding Performance of Porous Wheels." Key Engineering Materials 359-360 (November 2007): 48–52. http://dx.doi.org/10.4028/www.scientific.net/kem.359-360.48.

Full text
Abstract:
In this paper, two metal-bonded diamond wheels with different porosity were fabricated. The porosity of diamond wheel without additives of pore inducers is 7% and the wheel with pore inducers is 38%. Grinding experiments with these two grinding wheels on marbles were carried out under different grinding conditions. Experimental results revealed that highly porous grinding wheel has smaller grinding forces and better self-sharpening ability than the compact grinding wheel under the same grinding conditions.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Grinding additives"

1

Chipakwe, Vitalis. "Comparative Study of Chemical Additives Effects on Dry Grinding Performance." Licentiate thesis, Luleå tekniska universitet, Mineralteknik och metallurgi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-85155.

Full text
Abstract:
The application of chemical additives, known as grinding aids (GA), dates back to 1930 in the cement industry. As opposed to the cement industry, where the use of GAs is on the final processing step, it could be one of the first process steps in ore beneficiation. A few investigations addressed the GA applications in ore dressing; therefore, further studies are required to better understand the GA effects on the product properties and downstream separation processes. This thesis undertakes a comparative study on the dry grinding of magnetite and the resulting product characteristics with and without GAs. The main aim is to reduce energy consumption and to address some of the challenges associated with dry processing.  The effects of GAs on the dry batch ball milling of magnetite were examined to analyze the energy consumption (Ec), particle size distribution, flow properties, bulk properties, surface morphology, particle fineness, and surface chemistry of products. Their effects on the ground product were systematically explored by sieve analysis, powder rheology, BET surface measurements, optical microscopy analysis, and zeta potential measurements. Compared with the absence of GAs, the dry grinding efficiency of magnetite increased after using GAs; however, an optimal dosage exists based on the GA type. Among GAs which considered in this investigation (Zalta™ GR20-587 (Commercial GA) and Zalta™ VM1122 (Commercial viscosity aid) as well as sodium hydroxide), Zalta™ VM1122, a polysaccharide-based additive, was the most effective GA where by using this GA; the Ec decreased by 31.1% from 18.0 to 12.4 kWh/t. The PSD became narrower and finer (P80 decreasing from 181 to 142 µm), and the proportion of the particles (38–150 µm) increased from 52.5 to 58.3%. In general, the results reveal that at sufficient GA dosages, they reduce the average particle size, increase the specific surface area, and narrow the particle size distribution. However, an excessive amount of GAs could be detrimental to the grinding performance.  Further studies on powder rheology indicated that the used GAs resulted in improved material flowability compared to grinding without additives (in the examined dosage range). The rheology measurements by the FT4 Powder Rheometer showed strong linear correlations between basic flow energy, specific energy, and the resulting work index when GAs was considered for grinding. There was a strong correlation between the grinding parameters and flow parameters (r > 0.93). These results confirmed the effect of GA on ground particles' flowability. Zalta™ VM1122 showed the best performance with 38.8% reduction of basic flow energy, 20.4 % reduction of specific energy, 24.6% reduction of aerated basic flow energy, and 38.3% reduction of aerated energy. The present investigation showed that the predominant mechanism of GAs is based on the alteration of rheological properties. Further investigation on the surface properties showed that using GAs could increase the surface roughness, which is beneficial for downstream processes such as froth flotation. Zalta™ VM1122 resulted in increased surface roughness and minimum microstructural defects from the optical microscope images. Furthermore, Zalta™ VM1122 (non-ionic) resulted in similar zeta potentials and pH values for the product compared to experiments without GA. These comparable product properties are advantageous as they minimize any potential negative effects on all possible downstream processes.
Kolarctic CBC (KO1030 SEESIMA)
APA, Harvard, Vancouver, ISO, and other styles
2

Kozdas, Ondřej. "Aktivátory mletí." Doctoral thesis, Vysoké učení technické v Brně. Fakulta chemická, 2013. http://www.nusl.cz/ntk/nusl-233364.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Carmo, Carolina de Almeida. "Grau de moagem do milho, inclusão de subprodutos agroindustriais e aditivo microbiológico em rações para vacas leiteiras." Universidade de São Paulo, 2005. http://www.teses.usp.br/teses/disponiveis/11/11139/tde-09082005-125013/.

Full text
Abstract:
Foram realizados três experimentos para avaliar o grau de moagem do milho, sua substituição por subprodutos agroindustriais e o fornecimento de aditivos microbiológicos em rações para vacas leiteiras recebendo silagem de milho como volumoso. Experimento 1: Foram utilizadas trinta e seis vacas da raça Holandesa (330 DEL) para avaliar o fornecimento de aditivo microbiológico (Levucell SC20 da Lallemand Animal Nutrition) em rações com ou sem substituição parcial (50%) de milho finamente moído por polpa cítrica. Foi utilizado delineamento em Quadrados Latinos 4x4 repetidos. A ingestão de matéria seca, produção e composição do leite e teor de glicose plasmática não foram afetadas (P>0,05) pelos tratamentos. O nitrogênio uréico no leite foi maior (P<0,05) nos animais que receberam aditivo microbiológico. O nitrogênio uréico no plasma foi reduzido pela substituição parcial do milho pela polpa cítrica (P<0,05). A substituição parcial do milho por polpa cítrica não teve efeito negativo sobre o desempenho de vacas produzindo em média 19 kg/d de leite. Experimento 2: Foram utilizadas vinte e oito vacas da raça Holandesa (230 DEL) para avaliar os efeitos de vários teores de amido na matéria seca da ração sobre o desempenho lactacional dos animais. O teor de amido variou através da substituição do milho moído fino pela polpa cítrica. Os tratamentos foram: 15% (AM15), 20% (AM20), 25% (AM25) e 30% de amido (AM30). Foi utilizado delineamento em Quadrados Latinos 4x4 repetidos. As produções de leite foram 27,94; 29,17; 31,11 e 29,64 kg/d para os tratamentos AM15, AM20, AM25 e AM30, respectivamente, apresentando efeito cúbico significativo (P<0,05). Para produção de gordura, proteína, lactose e sólidos totais do leite também houve efeito cúbico (P<0,05). Para teor de proteína, sólidos totais e nitrogênio uréico no leite houve efeito linear (P<0,05). Não houve efeito dos tratamentos sobre teor de gordura do leite e glicose e nitrogênio uréico plasmáticos (P>0,05). Vacas produzindo em torno de 30 kg/d apresentaram melhor desempenho quando alimentadas com rações contendo 25% de amido, não havendo vantagem no fornecimento de rações com teor de amido de 30%. Experimento 3: Foram utilizadas trinta e duas vacas da raça Holandesa (160 DEL) para comparar o grau de moagem do milho (fino ou grosso) em combinação com polpa cítrica peletizada ou casca de soja nas rações. Os tratamentos foram: milho moído fino + polpa cítrica (MFPC), milho moído grosso + polpa cítrica (MGPC), milho moído fino + casca de soja (MFCS), milho moído grosso + casca de soja (MGCS). Foi utilizado delineamento em Quadrados Latinos 4x4 repetidos. A ingestão de matéria seca, produção de leite, teores de gordura, proteína e lactose do leite, glicose e nitrogênio uréico plasmáticos não foram afetados pelos tratamentos (P>0,05). Houve efeito significativo da interação grau de moagem versus tipo de subproduto (P<0,05) para produção de leite corrigido para gordura, produção de gordura e de sólidos totais do leite. O grau de moagem do milho e o tipo de subproduto não afetaram o desempenho de vacas leiteiras com produção ao redor de 24 kg/d.
Three experiments were conducted to assess the effects of corn grain grinding, byproducts and yeast culture supplementation in dairy cow rations containing corn silage as forage. Experiment 1: Thirty six lactating Holstein cows (330 days in milk - DIM) were used to study the supplementation of yeast culture (Levucell SC20 – Lallemand Animal Nutrition) in dairy rations with partial (50%) replacement of finely ground corn by dried citrus pulp. A repeated 4x4 Latin Square design was used. Dry matter intake, milk yield and composition and plasma glucose were not affected (P>0,05) by treatments. Milk urea nitrogen was raised by yeast culture supplementation (P<0,05). Plasma urea nitrogen was reduced by feeding citrus pulp in partial replacement of corn (P<0,05). The partial replacement of finely ground corn by dried citrus pulp did not affect the cows performance with 19 kg/d milk yield. Experiment 2: Twenty eight lactating Holstein cows (230 DIM) were used to evaluate the effects on performance of varying contents of starch in the ration. Starch contents was varied by replacing fine ground corn by dried citrus pulp. Treatments were: 15% (AM15), 20% (AM20), 25% (AM25) e 30% of starch (AM30) in the ration dry matter. A repeated 4x4 Latin Square design was used. Milk yield was 27,94; 29,17; 31,11 e 29,64 kg/d for treatments AM15, AM20, AM25 and AM30, respectively, with cubic effect (P<0,05). Milk fat, protein, lactose and total solids yield were affected cubically (P<0,05). Linear effects were detected for protein, total solids and milk urea nitrogen contents (P<0,05). Milk fat contents, plasma urea nitrogen and glucose were not affected by treatments (P>0.05). Cows producing about 30 kg/d got better performance when fed with rations 25% starch contents. Did not have advantage by supplying 30% starch contents rations. Trial 3: Thirty two mid lactating Holstein cows (160 DIM) were used to study the effects on performance of corn grain grinding (coarse or fine) and its combination with dried citrus pulp or soy hulls. A repeated 4x4 Latin Square design was used. The treatments were: fine ground corn + citrus pulp (MFPC), coarse ground corn + citrus pulp (MGPC), fine ground corn + soy hulls (MFCS), coarse ground corn + soy hulls (MGCS). Treatments did not affect DMI, milk yield, milk fat, protein and lactose contents, plasma urea N and glucose (P>0.05). The interaction corn grain grinding and byproduct source was significative for fat corrected milk, fat and total solids yield (P<0,05). Corn grain grinding and byproduct variety did not affect the cows performance with 24 kg/d milk yield.
APA, Harvard, Vancouver, ISO, and other styles
4

Amad, Abdulkarim Abdulmaged. "Zum Einfluss unterschiedlicher Behandlungsverfahren und Zusatzstoffe auf ernährungsphysiologische Parameter und Leistung wachsender Broiler nach Verabreichung weizenbetonter Futtermischungen." 2001. http://hdl.handle.net/11858/00-1735-0000-0006-AB8E-D.

Full text
Abstract:
In mehrfaktoriellen 2 x 2 x 4 Untersuchungen im Zeitraum vom 7. - 28. Lebenstag und in Bilanzversuchen vom 15. - 20. Lebenstag mit männlichen Broilerküken (Cobb 500) wurden die Effekte der Versuchsfaktoren Zerkleinerung (Hammermühle vs. Walzenstuhl), thermische Behandlung (Konditionierung bei 70°C vs. Konditionierung/Expandierung 100°C) und Zusätze von Zink-Bacitracin bzw. Roxazym G2 (ohne Zusatz, mit Zink-Bacitracin 50 mg, mit Roxayzm G2 150 ppm und deren Zusatzkombination A+E) sowie die Interaktionen untersucht. Als Kriterien dienten die Parameter Futterverzehr, Lebendmassezunahme, Futteraufwand, Nährstoffansatz und -verwertung, ileale Verdaulichkeit von ausgewählten Aminosäuren, Proteinverwertung/Proteinqualität und Umsetzbarkeit der Energie. Die Versuchstiere erhielten ab dem 7. Lebenstag die entsprechenden Versuchsmischungen. Der Gehalt an XP und MEn aller Versuchsmischungen war einheitlich (XP 21,7% und MEn 12,3 MJ/kg Futter). Die Lysinversorgung wurde auf 90 % unter der optimalen Bedarfsdeckung in allen Futtermischungen limitiert. Die Auswirkungen der Versuchsfaktoren lassen sich wie folgt zusammenfassen: - Zerkleinerung : Die Zerkleinerungstechnologie mit dem Walzenstuhl übte einen signifikanten Einfluss auf den Futterverzehr (-3,5 %) und Futteraufwand (-2,8 %) gegenüber der Zerkleinerung mit der Hammermühle aus. Die Nährstoffverwertung (XP und Energie) zeigten durch Walzenstuhl-Zerkleinerung tendenzielle Verbesserungen. Die ileale Lysinverdaulichkeit blieb unverändert, die ileale Verdaulichkeit von Threonin und Met+Cys wurde signifikant erhöht. Die Walzenstuhl-Zerkleinerung führte zu einer besseren Futterstruktur und zu einer höheren Nährstoffdichte in den Pellets. Das wird deutlich durch die höhere N-Aufnahme bzw. N-Bilanz sowie durch gesteigerte N-Verwertungsparameter und einen erhöhten Gehalt an N-korrigierter umsetzbarer Energie (MEn). - Thermische Behandlung : Durch erhöhte Hitzeapplikation mit dem Expander konnten in der vorliegenden Arbeit hinsichtlich der Leistungsparameter, Nährstoffansatz und -verwertung keine Unterschiede gegenüber der Konditionierung festgestellt werden. Die Expandierung führte zu einer signifikant erhöhten ilealen Lysinverdaulichkeit, die durch die gemessene Lysinwirksamkeit im Bilanzversuch jedoch nicht widergespiegelt wurde. Auch signifikant niedrigere N-Bilanz und physiologische Proteinnutzwerte (PNu) sowie die tendenzielle Verringerung der N-Verdaulichkeit und des Gehaltes an umsetzbarer Energie deuten auf eine negative Wirkung der intensiveren thermischen Behandlung durch Expandieren hin. Hierzu sind weitere klärende Untersuchungen notwendig. - Futterzusätze: Durch die alleinige Supplementierung mit dem Antibiotikum Zink-Bacitracin oder NSP-spaltenden Enzym Roxazym G2 bzw. deren Kombination reagierten Mastleistung und Futterverwertung signifikant positiv. Während der Effekt der Enzymzulagen bei Nährstoffverwertung und ilealer Verdaulichkeit ausgewählter Aminosäure signifikant höher gegenüber der unsupplementierten Gruppe war, blieb ein Effekt von Zink-Bacitracin hinsichtlich dieser Parameter aus. Der Effekt der Zusatzkombination war bei Mastleistung, Nährstoffansatz und -verwertung und bei der ilealen Verdaulichkeit der ausgewählten Aminosäuren gegenüber der Kontrolle oder dem alleinigen Zusatz signifikant höher. Das deutet auf einen synergistischen Effekt der gleichzeitigen Applikation der beiden Additive hin. Die N-Verwertung einschließlich des Gehalts an N-korrigierter scheinbar umsetzbarer Energie lag nach alleiniger Applikation von Zink-Bacitracin unerwartet signifikant niedriger gegenüber den anderen Zusätzen bzw. tendenziell gegenüber der Kontrolle. Die Gehalte an scheinbar umsetzbarer Energie (AMEn) waren deutlich durch den Enzymzusatz allein oder in Kombination mit Zink-Bacitracin erhöht. -Interaktionen: Die Abhängigkeit der Versuchsfaktoren voneinander im Mastversuch war nicht stark ausgeprägt. Die Zerkleinerung in Verbindung mit anschließender thermischer Behandlung führte zur Beeinflussung der Futterverzehrsdaten. Danach verbesserten die Verfahrenskombinationen Hammermühle x Konditionierung oder Walzenstuhl x Expandierung bedingt durch einen erhöhten Futterverzehr die Lebendmassezunahme und den Nährstoffansatz signifikant. Hinsichtlich der ilealen Aminosäurenverdaulichkeit zeigten die Futterzusätze eine Abhängigkeit von der Behandlung bzw. Zerkleinerung und Behandlung. Die Enzymzulage allein oder in Kombination mit Zink-Bacitracin zeigte stärkere Effektivität in Verbindung mit der thermischen Behandlung durch Expandieren.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Grinding additives"

1

Li, X. J., Dong Ming Guo, R. K. Ren, and Zhu Ji Jin. "Research on Effects of Slurry Additives in Cu CMP for ULSI Manufacturing." In Advances in Grinding and Abrasive Technology XIII, 350–54. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-986-5.350.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

"Optimization Design of Process Parameters for Different Workpiece Materials in NMQL Grinding With Different Vegetable Oils." In Enhanced Heat Transfer Mechanism of Nanofluid MQL Cooling Grinding, 337–57. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-1546-4.ch015.

Full text
Abstract:
This research shows with superior lubricating, heat-conducting properties, and proper market price, Al2O3 and MoS2 nanoparticles have broad application prospects as lubricant additives. This work has been researched, and most researches are restricted to using one kind of lubricants to machine specific workpiece or multiple workpieces. There has been no systematic and detailed analysis of grinding performances from cutting mechanisms and debris formation mechanisms of different workpieces. Therefore, analysis of signal to noise ratio(S/N), variance, microstructure, and morphology analysis were used to study the influence of different typical nanofluid lubricants on the grinding performance of different materials in this chapter. Results showed that the optimal grinding parameters are using nodular cast iron and MoS2 nanofluid. Compared with other lubricants, MoS2 nanofluid can exert a significant effect on reducing wear of grinding wheel. In order to reduce surface roughness, MQL lubricating oils of the following sequence can be used: Al2O3 nanofluid, MoS2 nanofluid, and pure palm oil.
APA, Harvard, Vancouver, ISO, and other styles
3

Sniezhkin, Yurii, Raisa Shapar, and Olena Husarova. "GRINDING AND FRACTIONATION OF DRIED PLANT MATERIALS." In Priority areas for development of scientific research: domestic and foreign experience. Publishing House “Baltija Publishing”, 2021. http://dx.doi.org/10.30525/978-9934-26-049-0-35.

Full text
Abstract:
In the absence of large-scale pectin production in Ukraine, pectin-containing powders are an alternative source. They are used as natural additives in the manufacture of health products, due primarily to the presence of pectin, as well as other useful natural components of raw materials. The purpose of the work is to conduct research on the dispersion and fractionation of dried plant materials and to determine the energy-saving regimes of these processes. The task of the research is to develop optimal modes of dispersion of dried plant materials; determine the depend-ence of the micromill performance and power consumption on the rotation speed of the dispersant rotor; to establish the influence of the load on the sieve and the scattering time on the fractionation process. Objects, equipment and research methods. Dried pectin-containing apples and table beets were used as research objects. Studies of the dispersion process were performed on an micromill (8-MM), the coarse part was ground on a disintegrator (ДЕЗІ), the study of the dispersed composition of powders was carried out on the device 029. The paper analyzes the existing methods of grinding and equipment for its implementation. The analysis showed that percussion mills are the most suitable for grinding dried pectin-containing apples and table beets. The dispersed composition of pectin-containing powders is determined in the article. The influence of material loading on the sieve and scattering time on the yield of the fine fraction was investigated. It is proved that the scattering process is more influenced by the scattering time. The paper graphically shows the effect of rotor speed on the equivalent particle diameter and powder dispersion; differential and integral particle distribution curves depending on rotor speed and scattering time for apple and beet powders; the dependence of micromill productivity and power consumption on the speed of the disperser rotor, etc. The optimal operating speed of the rotor is 50 m/s. At this speed, energy consumption for grinding dried materials is minimal. It is proved that the fractionation process almost does not depend on the load on the sieve, but depends on the scattering time. It is impractical to increase the process duration over 3 minutes. Increasing the time to 4 minutes increases the mass of the fine fraction by only 2…5%. The yield of the fine fraction of powders according to the optimal modes of dispersion and separation is: apple – 65...68%, beet – 62...65%. The possibility of re-grinding in order to increase the fine fraction yield is shown. Conclusions. According to the results of the research, the optimal dispersion regimes, the dependence of micromill productivity and power consumption on the dispersant rotor speed, as well as the effect of load on the sieve and scattering time of apple and beet powders on the fractionation process are determined. On the basis of the conducted researches energy-saving conditions of processes of dispersion and fractionation of pectin-containing powders and proper work of the corresponding equipment are defined.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Grinding additives"

1

Shahova, Lyubov Dmitrievna, Elena Sergeevna Chernositova, and Julia Vladimirovna Denisova. "Flowability and durability of cement containing technological additives during grinding process." In International Conference "Actual Issues of Mechanical Engineering" 2017 (AIME 2017). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/aime-17.2017.27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wu, Zhi-Yuan, Shu-Hui Wang, Kai-Wen Ji, Xiu-Jian Tang, and Xin-Li Tian. "Influence on the Blockage of Diamond Grinding Wheel by Carbon Chain Characteristic of Additives." In The 2nd Annual International Workshop on Materials Science and Engineering (IWMSE 2016). WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813226517_0046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wu, Zhi-Yuan, Shu-Hui Wang, Xin-Li Tian, Xiu-Jian Tang, and Jun-Wei Yang. "Research on Interaction of Additive in Paraffin Base Grinding Fluid." In 2016 International Conference on Mechanics and Materials Science (MMS2016). WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813228177_0133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tillmann, W., J. Zajaczkowski, I. Baumann, C. Schaak, D. Biermann, and M. Kipp. "Qualification of the Low-Pressure Cold Gas Spraying for the Additive Manufacturing of Copper-Nickel-Diamond Grinding Wheels." In ITSC2021, edited by F. Azarmi, X. Chen, J. Cizek, C. Cojocaru, B. Jodoin, H. Koivuluoto, Y. C. Lau, et al. ASM International, 2021. http://dx.doi.org/10.31399/asm.cp.itsc2021p0590.

Full text
Abstract:
Abstract Grinding wheels are usually manufactured by powder metallurgical processes, i.e. by moulding and sintering. Since this requires the production of special moulds and the sintering is typically carried out in a continuous furnace, this process is time-consuming and cost-intensive. Therefore, it is only worthwhile for medium and large batches. Another influencing factor of the powder metallurgical process route is the high thermal load during the sintering process. Due to their high thermal sensitivity, superabrasives such as diamond or cubic boron nitride are very difficult to process in this way. In this study, a novel and innovative approach is presented, in which superabrasive grinding wheels are manufactured by thermal spraying. For this purpose, flat samples as well as a grinding wheel body were coated by low-pressure (LP) cold gas spraying with a blend of a commercial Cu-Al2O3 cold gas spraying powder and nickel-coated diamonds (8-12 μm). The coatings were examined metallographically in terms of their composition. Afterwards, the grinding wheel was conditioned for the grinding application and the topography was evaluated. This novel process route offers great flexibility in the combination of binder and hard material as well as a costeffective single-part and small-batch production.
APA, Harvard, Vancouver, ISO, and other styles
5

Pavel, Radu, and Anil K. Srivastava. "Investigations for Safe Grinding of Ti-6Al-4V Parts Produced by Direct Metal Laser Sintering (DMLS) Technology." In ASME 2014 International Manufacturing Science and Engineering Conference collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/msec2014-4130.

Full text
Abstract:
Direct Metal Laser Sintering (DMLS) is an additive manufacturing technology that can construct medium to small size parts very efficiently in comparison to traditional machining processes. The ability of this technology to grow complex parts made of high strength titanium- and nickel-based alloys led to increasing interest from aerospace, defense, and medical industries. Although the technology allows growing parts close to their final shape, the active surfaces still need a finishing operation such as grinding to meet the tight tolerances and surface finish requirements. Due to the novelty of the DMLS technology, and the relatively recent developments of titanium alloy powders, there is a need for testing and validating the capabilities of the components manufactured through a combination of DMLS and grinding processes. This paper presents the findings of an experimental study focused on the effect of various grinding conditions on the surface integrity of titanium alloy (Ti-6Al-4V) specimens produced using DMLS technology. The goal is to identify dressing and grinding conditions that would result in ground surfaces free of defects such as micro-cracks, discoloration of surfaces and/or burn marks due to high heat generated during grinding. The residual stresses were used to quantify the effect of the grinding conditions on the ground surfaces. These investigations were conducted on an instrumented CNC surface grinding machine, using a silicon-carbide grinding wheel and a water-based fluid. The X-ray diffraction method was used to measure the residual stresses. Two batches of specimens were manufactured for these tests. The growing strategy of the specimens and the presence of apparent defects in material structure are considered some of the main causes for the differences observed in the outcomes of the grinding trials. The results of these investigations support the need for continuing research in the additive manufacturing field to develop methods and technologies that will ensure a high level of consistency of the grown parts.
APA, Harvard, Vancouver, ISO, and other styles
6

Wu, Zhi-Yuan, Shu-Hui Wang, Kai-Wen Ji, and Jun-Wei Yang. "The Blockage of Diamond Grinding Wheel with Normal Acid and Alcohol Additive." In The 2nd Annual International Workshop on Materials Science and Engineering (IWMSE 2016). WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813226517_0047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Paramasivam, Ramasamy, and Baskaran Rajendran Nair. "Effect of Calcium Stearate as Grinding Additive for Grinding of Calcite in Ball Mill, Rod Mill and Vibration Ball Mill: A Comparative Study." In 5th Asian Particle Technology Symposium. Singapore: Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-2518-1_299.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Agu, Obiora S., Lope G. Tabil, Edmund Mupondwa, Duncan Cree, and Bagher Emadi. "Effect of biochar additive in torrefied biomass: energy consumption, mass yield, grinding performance, and thermochemical properties." In 2021 ASABE Annual International Virtual Meeting, July 12-16, 2021. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2021. http://dx.doi.org/10.13031/aim.202100926.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fashanu, Felicia F., Denis J. Marcellin-Little, and Barbara S. Linke. "Review of Surface Finishing of Additively Manufactured Metal Implants." In ASME 2020 15th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/msec2020-8419.

Full text
Abstract:
Abstract Metal additive manufacturing (AM) technologies, commonly referred to as 3D printing, provide a good prospect for medical applications because complex geometries and customized parts can be fabricated to meet individual patient needs. Orthopedic implants are a group of medical parts with high relevance for AM. This paper discusses relevant AM technologies, several orthopedic applications, materials and material properties, mechanical surface finishing techniques, and measurement techniques from the literature. Today, most metal 3D printed implants are manufactured through metal powder bed fusion technology which includes direct metal laser sintering (DMLS), selective laser melting (SLM), and electron beam melting (EBM). Common materials include titanium alloys, cobalt chromium (CoCr) and stainless steel, chosen because of their biocompatibility and mechanical properties. Surface finishing is most often required for 3D printed implants due to the relatively poor surface quality to meet the desired surface texture for the application. Typically, postprocessing is done mechanically, including manual and automated grinding, sandblasting, polishing, or chemically, including electrochemical polishing. This review also covers an overview of surface quality characterization of AM metal implants which includes surface texture and topography. The surface parameters used to characterize the surface of the implants: surface roughness (Ra), differences between the peak and valley (Rz), waviness, and micro-finish.
APA, Harvard, Vancouver, ISO, and other styles
10

Quadrini, F., D. Bellisario, G. M. Tedde, and L. Santo. "Recycling of Printed Circuit Boards by Direct Molding Technology." In ASME 2019 14th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/msec2019-2745.

Full text
Abstract:
Abstract The recovery and reuse of printed circuit boards (PCBs) is becoming crucial in the management of electronic waste that is undergoing an exponential increase. In this study, a simple and eco-friendly process for recycling waste PCBs is discussed. In particular, composite panels were produced by reusing 100% of waste PCBs without the addition of any additive or virgin material. After a two-step grinding process, ground PCB was used to mold panels by direct molding which is pure compression molding without material sorting. Results were very promising in terms of process feasibility and part performances. Molded samples had density about 1.45 g/cm3, flexural modulus and flexural about 3 GPa and 16 MPa, respectively. A smooth surface with low friction coefficient was obtained for the recycled panels. The study shows that despite the presence of metal and other non-metal non-organic fractions, waste PCBs can be re-processed in profitable and environmentally conscious way without the addition of any bonding agent or additive. The recycling technology can be extended to the reuse of the non-metallic fraction only, after separation and recovery of metals.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography