Academic literature on the topic 'GROMACS'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'GROMACS.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "GROMACS"
Irrgang, M. Eric, Caroline Davis, and Peter M. Kasson. "gmxapi: A GROMACS-native Python interface for molecular dynamics with ensemble and plugin support." PLOS Computational Biology 18, no. 2 (February 14, 2022): e1009835. http://dx.doi.org/10.1371/journal.pcbi.1009835.
Full textvan der Spoel, David, and Berk Hess. "GROMACS—the road ahead." WIREs Computational Molecular Science 1, no. 5 (April 25, 2011): 710–15. http://dx.doi.org/10.1002/wcms.50.
Full textBriones, Rodolfo, Christian Blau, Carsten Kutzner, Bert L. de Groot, and Camilo Aponte-Santamaría. "GROmaρs: A GROMACS-Based Toolset to Analyze Density Maps Derived from Molecular Dynamics Simulations." Biophysical Journal 116, no. 1 (January 2019): 4–11. http://dx.doi.org/10.1016/j.bpj.2018.11.3126.
Full textBriones, Rodolfo, Christian Blau, Carsten Kutzner, Bert L. de Groot, and Camilo Aponte-Santamaría. "Gromaps: A Gromacs-Based Toolset to Analyse Density Maps Derived from Molecular Dynamics Simulations." Biophysical Journal 116, no. 3 (February 2019): 142a—143a. http://dx.doi.org/10.1016/j.bpj.2018.11.790.
Full textvan der Spoel, D., P. J. van Maaren, and C. Caleman. "GROMACS molecule & liquid database." Bioinformatics 28, no. 5 (January 11, 2012): 752–53. http://dx.doi.org/10.1093/bioinformatics/bts020.
Full textNava, M. "Implementing dimer metadynamics using gromacs." Journal of Computational Chemistry 39, no. 25 (September 30, 2018): 2126–32. http://dx.doi.org/10.1002/jcc.25386.
Full textVan Der Spoel, David, Erik Lindahl, Berk Hess, Gerrit Groenhof, Alan E. Mark, and Herman J. C. Berendsen. "GROMACS: Fast, flexible, and free." Journal of Computational Chemistry 26, no. 16 (2005): 1701–18. http://dx.doi.org/10.1002/jcc.20291.
Full textNguyen, Trang Truc, Man Hoang Viet, and Mai Suan Li. "Effects of Water Models on Binding Affinity: Evidence from All-Atom Simulation of Binding of Tamiflu to A/H5N1 Neuraminidase." Scientific World Journal 2014 (2014): 1–14. http://dx.doi.org/10.1155/2014/536084.
Full textSellis, Diamantis, Dimitrios Vlachakis, and Metaxia Vlassi. "Gromita: A Fully Integrated Graphical user Interface to Gromacs 4." Bioinformatics and Biology Insights 3 (January 2009): BBI.S3207. http://dx.doi.org/10.4137/bbi.s3207.
Full textHyun, Haelee, Do Heon Kim, and Young-Ouk Lee. "Validation of Thermal Neutron Scattering Cross Sections for Heavy Water based on Molecular Dynamics Simulation." EPJ Web of Conferences 211 (2019): 06001. http://dx.doi.org/10.1051/epjconf/201921106001.
Full textDissertations / Theses on the topic "GROMACS"
Schwing, Gregory John. "Implementation of Replica Exchange with Dynamic Scaling in GROMACS 2018." ScholarWorks@UNO, 2018. https://scholarworks.uno.edu/honors_theses/117.
Full textTRINDADE, L. C. "Simulação computacional do efeito da pressão sobre a enzima pectina metilesterase do tomate." Universidade Federal do Espírito Santo, 2018. http://repositorio.ufes.br/handle/10/7374.
Full textEste trabalho descreve o desenvolvimento de uma simulação computacional, desenvolvida através do programa GROMACS. Mais especificamente, estudamos os resultados da simulação computacional referente a evolução do raio de giro da proteína Pectina Metilesterase (PME) do tomate em função da pressão aplicada, mantendo a temperatura fixa. Foi realizada uma descrição sobre os modelos físicos utilizados pelo programa. Também foi descrito, de forma suscinta, características sobre sistemas e estruturas dos aminoácidos e proteínas. As simulações computacionais consideraram uma temperatura de 26, 85oC e pressões aplicadas de 1 bar, 1 kbar, 3 kbar, 5 kbar, 7 kbar, 9 kbar e 10 kbar. As simulações trabalharam com um tempo de ação da pressão de até 100 pico segundos. Os resultados da simulação computacional indicaram uma redução não linear do raio de giro da enzima Pectina Metilesterase (PME) do tomate de acordo com o aumento da pressão aplicada, mantendo temperatura fixa.
Anton, Nygren. "Experimental and theoretical studies of water droplet surfaces in the presence of glycerol." Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-330979.
Full textVattenaerosoler påverkar klimatet eftersom de har en inverkan på strålningsbalansen och molnbildningen. Vatten finns i alla former i atmosfären (vatten, is och ånga) som bland annat regn och hagel. Vatten aerosolerna spelar en viktig roll i många kemiska och biologiska processer i atmosfären. Den vanligaste formen av vatten i atmosfären är små vattendroppar eller ånga som ofta kommer från hav och sjöar och som ofta innehar organiska föreningar. Då vattenaerosoler påverkar klimatet och organiska föreningar är vanligt förekommande i vattendroppar är det intressant att undersöka om organiska föreningar, i detta fall glycerol, hamnar på ytan eller inuti vattnet. Undersökningarna har gjorts genom att använda teoretiska perspektiv, molekylärdynamiska simuleringar i GROMACS, samt experimentella undersökningar i form av röntgen fotoelektronspektroskopi med en vätskejet. Dessa experiment utfördes i BESSY II, Berlin. Koncentrationerna av glycerol varierades från75:1; 8:1 till 4:1 (vatten: glycerolmolekyler). Resultaten från experimenten och simuleringarna indikerade att när koncentrationen av glycerol ökade så ökade glycerolkoncentrationen på ytan av vattendroppen tills det bildades ett monolager av glycerolmolekyler på vattenytan. När monolagret hade bildats så placerades mindre och mindre glycerolmolekyler på vattenytan och fler och fler glycerolmolekyler placerades inne i vattendroppen.
Lansing, Eric, Jennie Lodén, and Jonathan Ström. "Datorsimuleringar av modifierade cellulosafibriler." Thesis, KTH, Skolan för kemivetenskap (CHE), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-173482.
Full textAbrikossov, Alexei. "Computer simulations : Orientation of Lysozyme in vacuum under the influence of an electric field." Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-151484.
Full textBaskaran, Preetisri. "Computer simulation of protein superabsorbents." Thesis, Högskolan i Borås, Institutionen Ingenjörshögskolan, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-20927.
Full textBenazieb, Othmène. "Rheology of lipids layers at molecular length scales." Thesis, Strasbourg, 2020. http://www.theses.fr/2020STRAE003.
Full textPhospholipids undoubtedly have a crucial role in the lubrication properties of biosystems. The most convincing example is the case of biological contacts such as human joints, which have a very low coefficient of friction. The comprehension of such biophysical systems implicates both fundamental as well as applied challenges, for instance in regard to osteoarthritis and the manufacture of joint prostheses. Using the molecular dynamics engine GROMACS, we simulate a lipid bilayer (DSPC) undergoing stress applied in different ways and observe the response of the membrane depending on the physical state (fluid or gel). The first method (CPF: constant pull force) consists in applying a pair of constant forces to two subsystems, and therefore induce a stationary relative displacement of these two subgroups. The second method (FKR: force kick relaxation) consists in preparing the two subsystems with an opposite finite relative velocity, so as to guarantee the immobility of the center of mass of the complete system, and to follow over time the mechanical relaxation of these systems towards equilibrium. The results clearly show the presence of a viscoelastic regime that we attribute to the elasticity of lipids tilt. In the gel state, we observe a nonlinear regime, corresponding to a shear thinning. The apparent friction coefficient b tends to decrease when the force increases. Therefore, the bilayer in the gel state is subject to a slow and more complex dynamics than in the fluid state. Moreover, our approach can be generalized to supported bilayers for which we obtain results on the diffusion and friction of the different layers
Perret, Alexandre. "Etude des propriétés de transport du CO2 et de l'éthanol en solution hydroalcoolique par dynamique moléculaire classique : Application aux vins de Champagne." Thesis, Reims, 2014. http://www.theses.fr/2014REIMS024/document.
Full textThe work presented in this manuscript is devoted to the study of the diffusion of dissolved carbon dioxide and ethanol in a hydroalcoholic solution model representing Champagne wines. The first part of this work deals with the different formalisms of molecular diffusion, as well as theoretical and experimental methods used to account for this phenomenon of transport. Particular attention is paid to the classical force field molecular dynamics that is used in this work with the GROMACS software. This theoretical approach provides a new perspective in research on champagne and particularly on the role of each of the main species in CO2 diffusion. NMR spectroscopy, and an experimental method based on the study of the bubbles growth rate, were also used. In the second part, the theoretical and experimental results are presented and compared with each other to validate the protocol of molecular dynamics simulations. The viscosities of the model solution and of the champagne, as well as the hydrodynamic radii of CO2 and ethanol, are also investigated. The last part of the manuscript focuses on the partnership with the Bull company and the study of the GROMACS software performance. The expertise of and the tools developed by the Bull company are used to study the scalability and the parallel behavior of GROMACS for modeling champagne
Cordomí, Montoya Arnau. "Molecular dynamics simulations of seven-transmembrane receptors." Doctoral thesis, Universitat Politècnica de Catalunya, 2008. http://hdl.handle.net/10803/6464.
Full textThe current limitations in the experimental techniques necessary for microscopic studies of the membrane as well as membrane proteins emerged the use of computational methods and specifically molecular dynamics simulations. The lead motif of this thesis is the study of GPCR by means of this technique, with the ultimate goal of developing a methodology that can be generalized to the study of most 7-TM as well as other membrane proteins. Since the bovine rhodopsin was the only protein of the GPCR family with a known threedimensional structure at an atomic level until very recently, most of the effort is centered in the study of this receptor as a model of GPCR.
The scope of this thesis is twofold. On the one hand it addresses the study of the simulation conditions, including the procedure as well as the sampling box to get optimal results, and on the other, the biological implications of the structural and dynamical behavior observed in the simulations. Specifically, regarding the methodological aspects of the work, the bovine rhodopsin has been studied using different treatments of long-range electrostatic interactions and sampling conditions, as well as the effect of sampling the protein embedded in different one-component lipid bilayers. The binding of ions to lipid bilayers in the absence of the protein has also been investigated.
Regarding the biological consequences of the analysis of the MD trajectories, it has been carefully addressed the binding site of retinal and its implications in the process of isomerization after photon uptake, the alteration a group of residues constituting the so-called electrostatic lock between helices TM3 and TM6 in rhodopsin putatively used as common activation mechanism of GPCR, and the structural effects caused by the dimerization based on a recent semi-empirical model. Finally, the specific binding of ions to bacteriorhodopsin has also been studied.
The main conclusion of this thesis is provide support to molecular dynamics as technique capable to provide structural and dynamical informational about membranes and membrane proteins, not currently accessible from experimental methods). Moreover, the use of an explicit lipidic environment is crucial for the study the membrane protein dynamics as well as for the protein-protein and lipidprotein interactions.
Östlin, Christofer. "Single-molecule X-ray free-electron laser imaging : Interconnecting sample orientation with explosion data." Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-231009.
Full textBooks on the topic "GROMACS"
Koshelev, V. A. "Onegina" vozdushnai͡a︡ gromada--. Sankt-Peterburg: Akademicheskiĭ proekt, 1999.
Find full textMate, Maras, and Maroević Tonko 1941-, eds. Mazere =: Gromače = Muri a secco. Castel Maggiore: Book Editore, 1993.
Find full textŠapat groma: Izbor poezije. Podgorica: Narodna biblioteka "Radoslav Ljumović", 1999.
Find full textBook chapters on the topic "GROMACS"
Kutzner, Carsten, David van der Spoel, Martin Fechner, Erik Lindahl, Udo W. Schmitt, Bert L. de Groot, and Helmut Grubmüller. "Improved GROMACS Scaling on Ethernet Switched Clusters." In Recent Advances in Parallel Virtual Machine and Message Passing Interface, 404–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11846802_57.
Full textASC Community. "Optimization for the Molecular Dynamics Software GROMACS." In The Student Supercomputer Challenge Guide, 193–201. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-3731-3_12.
Full textHernandez, Monica L., Matthieu Dreher, Carlos J. Barrios, and Bruno Raffin. "Asynchronous in Situ Processing with Gromacs: Taking Advantage of GPUs." In Communications in Computer and Information Science, 89–106. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-26928-3_7.
Full textTang, Xudong, Tao Wu, Tiejun Wang, and Jiliang Wu. "Molecular Dynamics Simulation Optimization Based on GROMACS on Sunway TaihuLight." In Lecture Notes in Computer Science, 112–23. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-24265-7_10.
Full textZalevsky, Arthur O., Roman V. Reshetnikov, and Andrey V. Golovin. "New QM/MM Implementation of the MOPAC2012 in the GROMACS." In Communications in Computer and Information Science, 279–88. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-05807-4_24.
Full textPáll, Szilárd, Mark James Abraham, Carsten Kutzner, Berk Hess, and Erik Lindahl. "Tackling Exascale Software Challenges in Molecular Dynamics Simulations with GROMACS." In Lecture Notes in Computer Science, 3–27. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15976-8_1.
Full textMarkov, S., P. Petkov, and V. Pavlov. "Large-Scale Molecular Dynamics Simulations on Modular Supercomputer Architecture with Gromacs." In Advances in High Performance Computing, 359–67. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-55347-0_30.
Full textChen, Yu Wai, Yong Wang, Yun-Chung Leung, and Kwok-Yin Wong. "Parameterization of Large Ligands for Gromacs Molecular Dynamics Simulation with LigParGen." In Methods in Molecular Biology, 277–88. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0892-0_16.
Full textCostantini, Alessandro, Eduardo Gutierrez, Javier Lopez Cacheiro, Aurelio Rodriguez, Osvaldo Gervasi, and Antonio Laganà. "Porting of GROMACS Package into the Grid Environment: Testing of a New Distribution Strategy." In Computational Science and Its Applications – ICCSA 2010, 41–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12189-0_4.
Full textYu, Yang, Hong An, Junshi Chen, Weihao Liang, Qingqing Xu, and Yong Chen. "Pipelining Computation and Optimization Strategies for Scaling GROMACS on the Sunway Many-Core Processor." In Algorithms and Architectures for Parallel Processing, 18–32. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65482-9_2.
Full textConference papers on the topic "GROMACS"
Goga, Nicolae, Iuliana Marin, Andrei Vasilateanu, Ionel-Bujorel Pavaloiu, Kamoru Oluwatoyin Kadiri, and Oludele Awodele. "Improved GROMACS algorithms using the MPI parallelization." In 2015 E-Health and Bioengineering Conference (EHB). IEEE, 2015. http://dx.doi.org/10.1109/ehb.2015.7391443.
Full textAlekseenko, Andrey, Szilárd Páll, and Erik Lindahl. "Experiences With Adding SYCL Support to GROMACS." In IWOCL'21: International Workshop on OpenCL. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3456669.3456690.
Full textGoga, Nicolae, Siewert Marrink, Stefania Victoria Costache, and Florica Moldoveanu. "Multiscaling algorithms for molecular dynamics simulations with GROMACS." In 2009 3rd Annual IEEE Systems Conference. IEEE, 2009. http://dx.doi.org/10.1109/systems.2009.4815825.
Full textPáll, Szilárd, and Roland Schultz. "Advances in the OpenCL offload support in GROMACS." In IWOCL'19: International Workshop on OpenCL. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3318170.3318176.
Full textSarkar, Arkadeep, Lucia Sessa, Luigi Di Biasi, and Stefano Piotto. "YAMACS: A Python Based Tool Kit for GROMACS." In ECMC 2022. Basel Switzerland: MDPI, 2022. http://dx.doi.org/10.3390/ecmc2022-13433.
Full textWagner, Michael, Jens Doleschal, and Andreas Knupfer. "Tracing long running applications: A case study using Gromacs." In 2015 International Conference on High Performance Computing & Simulation (HPCS). IEEE, 2015. http://dx.doi.org/10.1109/hpcsim.2015.7237031.
Full textGarces, Nathalia, Harold Castro, Paula Delgado, Andres Gonz'lez, Carlos A. Jaramillo, Natalia Penaranda, and Maria del Pilar Delgado. "Analysis of Gromacs MPI Using the Opportunistic Cloud Infrastructure UnaCloud." In 2012 Sixth International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS). IEEE, 2012. http://dx.doi.org/10.1109/cisis.2012.142.
Full textOlivier, Stephen, Jan Prins, Jeff Derby, and Ken Vu. "Porting the GROMACS Molecular Dynamics Code to the Cell Processor." In 2007 IEEE International Parallel and Distributed Processing Symposium. IEEE, 2007. http://dx.doi.org/10.1109/ipdps.2007.370560.
Full textLi, Ce, Wenbo Chen, Yang Zhang, and Qifeng Bai. "Analyses on Performance of Gromacs in Hybrid MPI+OpenMP+CUDA Cluster." In 2014 IEEE International Conference on High Performance Computing and Communications (HPCC), 2014 IEEE 6th International Symposium on Cyberspace Safety and Security (CSS) and 2014 IEEE 11th International Conference on Embedded Software and Systems (ICESS). IEEE, 2014. http://dx.doi.org/10.1109/hpcc.2014.157.
Full textGoga, Nicolae, Siewert Marrink, Ruxandra Cioromela, and Florica Moldoveanu. "GPU-SD and DPD parallelization for Gromacs tools for molecular dynamics simulations." In 2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE). IEEE, 2012. http://dx.doi.org/10.1109/bibe.2012.6399683.
Full textReports on the topic "GROMACS"
Junghans, Christoph, Joshua Phillips, and Michael Wall. Gromacs IC Tutorial. Office of Scientific and Technical Information (OSTI), July 2014. http://dx.doi.org/10.2172/1136453.
Full text