Journal articles on the topic 'GROMACS'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'GROMACS.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Irrgang, M. Eric, Caroline Davis, and Peter M. Kasson. "gmxapi: A GROMACS-native Python interface for molecular dynamics with ensemble and plugin support." PLOS Computational Biology 18, no. 2 (February 14, 2022): e1009835. http://dx.doi.org/10.1371/journal.pcbi.1009835.
Full textvan der Spoel, David, and Berk Hess. "GROMACS—the road ahead." WIREs Computational Molecular Science 1, no. 5 (April 25, 2011): 710–15. http://dx.doi.org/10.1002/wcms.50.
Full textBriones, Rodolfo, Christian Blau, Carsten Kutzner, Bert L. de Groot, and Camilo Aponte-Santamaría. "GROmaρs: A GROMACS-Based Toolset to Analyze Density Maps Derived from Molecular Dynamics Simulations." Biophysical Journal 116, no. 1 (January 2019): 4–11. http://dx.doi.org/10.1016/j.bpj.2018.11.3126.
Full textBriones, Rodolfo, Christian Blau, Carsten Kutzner, Bert L. de Groot, and Camilo Aponte-Santamaría. "Gromaps: A Gromacs-Based Toolset to Analyse Density Maps Derived from Molecular Dynamics Simulations." Biophysical Journal 116, no. 3 (February 2019): 142a—143a. http://dx.doi.org/10.1016/j.bpj.2018.11.790.
Full textvan der Spoel, D., P. J. van Maaren, and C. Caleman. "GROMACS molecule & liquid database." Bioinformatics 28, no. 5 (January 11, 2012): 752–53. http://dx.doi.org/10.1093/bioinformatics/bts020.
Full textNava, M. "Implementing dimer metadynamics using gromacs." Journal of Computational Chemistry 39, no. 25 (September 30, 2018): 2126–32. http://dx.doi.org/10.1002/jcc.25386.
Full textVan Der Spoel, David, Erik Lindahl, Berk Hess, Gerrit Groenhof, Alan E. Mark, and Herman J. C. Berendsen. "GROMACS: Fast, flexible, and free." Journal of Computational Chemistry 26, no. 16 (2005): 1701–18. http://dx.doi.org/10.1002/jcc.20291.
Full textNguyen, Trang Truc, Man Hoang Viet, and Mai Suan Li. "Effects of Water Models on Binding Affinity: Evidence from All-Atom Simulation of Binding of Tamiflu to A/H5N1 Neuraminidase." Scientific World Journal 2014 (2014): 1–14. http://dx.doi.org/10.1155/2014/536084.
Full textSellis, Diamantis, Dimitrios Vlachakis, and Metaxia Vlassi. "Gromita: A Fully Integrated Graphical user Interface to Gromacs 4." Bioinformatics and Biology Insights 3 (January 2009): BBI.S3207. http://dx.doi.org/10.4137/bbi.s3207.
Full textHyun, Haelee, Do Heon Kim, and Young-Ouk Lee. "Validation of Thermal Neutron Scattering Cross Sections for Heavy Water based on Molecular Dynamics Simulation." EPJ Web of Conferences 211 (2019): 06001. http://dx.doi.org/10.1051/epjconf/201921106001.
Full textSmith, Andrea, Xin Dong, and Vijaya Raghavan. "An Overview of Molecular Dynamics Simulation for Food Products and Processes." Processes 10, no. 1 (January 7, 2022): 119. http://dx.doi.org/10.3390/pr10010119.
Full textTAMAKI, Teppei, Tomohiro KABASHIMA, Kazuki MORI, Satoshi MINAMOTO, and Kazuyoshi UEDA. "Development of Gromacs Support Program: GISP (2)." Journal of Computer Chemistry, Japan 13, no. 3 (2014): 159–60. http://dx.doi.org/10.2477/jccj.2014-0018.
Full textUllmann, R. Thomas, and Helmut Grubmueller. "A Versatile Lambda-Dynamics Module for GROMACS." Biophysical Journal 118, no. 3 (February 2020): 138a. http://dx.doi.org/10.1016/j.bpj.2019.11.881.
Full textRawat, Ravi, Kamal Kant, Anoop Kumar, Kajal Bhati, and Saurabh M. Verma. "HeroMDAnalysis: an automagical tool for GROMACS-based molecular dynamics simulation analysis." Future Medicinal Chemistry 13, no. 5 (March 2021): 447–56. http://dx.doi.org/10.4155/fmc-2020-0191.
Full textAragones, J. L., E. G. Noya, C. Valeriani, and C. Vega. "Free energy calculations for molecular solids using GROMACS." Journal of Chemical Physics 139, no. 3 (July 21, 2013): 034104. http://dx.doi.org/10.1063/1.4812362.
Full textBussi, Giovanni. "Hamiltonian replica exchange in GROMACS: a flexible implementation." Molecular Physics 112, no. 3-4 (August 25, 2013): 379–84. http://dx.doi.org/10.1080/00268976.2013.824126.
Full textKutzner, Carsten, David Van Der Spoel, Martin Fechner, Erik Lindahl, Udo W. Schmitt, Bert L. De Groot, and Helmut Grubmüller. "Speeding up parallel GROMACS on high-latency networks." Journal of Computational Chemistry 28, no. 12 (2007): 2075–84. http://dx.doi.org/10.1002/jcc.20703.
Full textAbraham, Mark J. "Performance enhancements for GROMACS nonbonded interactions on BlueGene." Journal of Computational Chemistry 32, no. 9 (April 5, 2011): 2041–46. http://dx.doi.org/10.1002/jcc.21766.
Full textBerendsen, H. J. C., D. van der Spoel, and R. van Drunen. "GROMACS: A message-passing parallel molecular dynamics implementation." Computer Physics Communications 91, no. 1-3 (September 1995): 43–56. http://dx.doi.org/10.1016/0010-4655(95)00042-e.
Full textFaccioli, R. A., L. O. Bortot, and A. C. B. Delbem. "Multi-Objective Evolutionary Algorithm NSGA-II for Protein Structure Prediction using Structural and Energetic Properties." International Journal of Natural Computing Research 4, no. 1 (January 2014): 43–53. http://dx.doi.org/10.4018/ijncr.2014010104.
Full textSinelnikova, Anna, and David van der Spoel. "NMR refinement and peptide folding using the GROMACS software." Journal of Biomolecular NMR 75, no. 4-5 (March 28, 2021): 143–49. http://dx.doi.org/10.1007/s10858-021-00363-z.
Full textNoel, Jeffrey K., Paul C. Whitford, Karissa Y. Sanbonmatsu, and Jos� N. Onuchic. "SMOG@ctbp: simplified deployment of structure-based models in GROMACS." Nucleic Acids Research 38, suppl_2 (June 4, 2010): W657—W661. http://dx.doi.org/10.1093/nar/gkq498.
Full textMakarewicz, Tomasz, and Rajmund Kaźmierkiewicz. "Molecular Dynamics Simulation by GROMACS Using GUI Plugin for PyMOL." Journal of Chemical Information and Modeling 53, no. 5 (May 6, 2013): 1229–34. http://dx.doi.org/10.1021/ci400071x.
Full textKumari, Rashmi, Rajendra Kumar, and Andrew Lynn. "g_mmpbsa—A GROMACS Tool for High-Throughput MM-PBSA Calculations." Journal of Chemical Information and Modeling 54, no. 7 (June 19, 2014): 1951–62. http://dx.doi.org/10.1021/ci500020m.
Full textVermaas, Josh V., David J. Hardy, John E. Stone, Emad Tajkhorshid, and Axel Kohlmeyer. "TopoGromacs: Automated Topology Conversion from CHARMM to GROMACS within VMD." Journal of Chemical Information and Modeling 56, no. 6 (June 2016): 1112–16. http://dx.doi.org/10.1021/acs.jcim.6b00103.
Full textPáll, Szilárd, Artem Zhmurov, Paul Bauer, Mark Abraham, Magnus Lundborg, Alan Gray, Berk Hess, and Erik Lindahl. "Heterogeneous parallelization and acceleration of molecular dynamics simulations in GROMACS." Journal of Chemical Physics 153, no. 13 (October 7, 2020): 134110. http://dx.doi.org/10.1063/5.0018516.
Full textDien, Hung, Charlotte M. Deane, and Bernhard Knapp. "Gro2mat: A package to efficiently read gromacs output in MATLAB." Journal of Computational Chemistry 35, no. 20 (June 12, 2014): 1528–31. http://dx.doi.org/10.1002/jcc.23650.
Full textLindahl, Erik, Berk Hess, and David van der Spoel. "GROMACS 3.0: a package for molecular simulation and trajectory analysis." Journal of Molecular Modeling 7, no. 8 (August 2001): 306–17. http://dx.doi.org/10.1007/s008940100045.
Full textKohnke, Bartosz, Carsten Kutzner, and Helmut Grubmuller. "A GPU-Accelerated Fast Multipole Method for Gromacs. Performance and Accuracy." Biophysical Journal 120, no. 3 (February 2021): 177a. http://dx.doi.org/10.1016/j.bpj.2020.11.1242.
Full textLukat, Gunther, Jens Krüger, and Björn Sommer. "APL@Voro: A Voronoi-Based Membrane Analysis Tool for GROMACS Trajectories." Journal of Chemical Information and Modeling 53, no. 11 (November 11, 2013): 2908–25. http://dx.doi.org/10.1021/ci400172g.
Full textvan Dijk, Marc, Tsjerk A. Wassenaar, and Alexandre M. J. J. Bonvin. "A Flexible, Grid-Enabled Web Portal for GROMACS Molecular Dynamics Simulations." Journal of Chemical Theory and Computation 8, no. 10 (April 18, 2012): 3463–72. http://dx.doi.org/10.1021/ct300102d.
Full textKohnke, Bartosz, Carsten Kutzner, and Helmut Grubmüller. "A GPU-Accelerated Fast Multipole Method for GROMACS: Performance and Accuracy." Journal of Chemical Theory and Computation 16, no. 11 (October 21, 2020): 6938–49. http://dx.doi.org/10.1021/acs.jctc.0c00744.
Full textKutzner, Carsten, Szilárd Páll, Martin Fechner, Ansgar Esztermann, Bert L. de Groot, and Helmut Grubmüller. "Best bang for your buck: GPU nodes for GROMACS biomolecular simulations." Journal of Computational Chemistry 36, no. 26 (August 4, 2015): 1990–2008. http://dx.doi.org/10.1002/jcc.24030.
Full textKutzner, Carsten, R. Thomas Ullmann, Bert L. de Groot, Ulrich Zachariae, and Helmut Grubmueller. "Ions in Action - Studying Ion Channels by Computational Electrophysiology in GROMACS." Biophysical Journal 112, no. 3 (February 2017): 139a. http://dx.doi.org/10.1016/j.bpj.2016.11.769.
Full textZhang, Yan, Yu-Yue Chen, Ling Lin, and Pi-Bo Ma. "Nanostructure characterization of beta-sheet crystals in silk under various temperatures." Thermal Science 18, no. 5 (2014): 1459–61. http://dx.doi.org/10.2298/tsci1405459z.
Full textReinhardt, Martin, and Helmut Grubmüller. "GROMACS implementation of free energy calculations with non-pairwise Variationally derived Intermediates." Computer Physics Communications 264 (July 2021): 107931. http://dx.doi.org/10.1016/j.cpc.2021.107931.
Full textPeng, Shaoliang, Yingbo Cui, Shunyun Yang, Wenhe Su, Xiaoyu Zhang, Tenglilang Zhang, Weiguo Liu, and Xingming Zhao. "A CPU/MIC Collaborated Parallel Framework for GROMACS on Tianhe-2 Supercomputer." IEEE/ACM Transactions on Computational Biology and Bioinformatics 16, no. 2 (March 1, 2019): 425–33. http://dx.doi.org/10.1109/tcbb.2017.2713362.
Full textKutzner, Carsten, Jacek Czub, and Helmut Grubmüller. "Keep It Flexible: Driving Macromolecular Rotary Motions in Atomistic Simulations with GROMACS." Journal of Chemical Theory and Computation 7, no. 5 (March 31, 2011): 1381–93. http://dx.doi.org/10.1021/ct100666v.
Full textHess, Berk, Carsten Kutzner, David van der Spoel, and Erik Lindahl. "GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation." Journal of Chemical Theory and Computation 4, no. 3 (February 2, 2008): 435–47. http://dx.doi.org/10.1021/ct700301q.
Full textKrüger, J., and G. Fels. "Ion permeation simulations by Gromacs-an example of high performance molecular dynamics." Concurrency and Computation: Practice and Experience 23, no. 3 (November 4, 2010): 279–91. http://dx.doi.org/10.1002/cpe.1666.
Full textKubař, Tomáš, Kai Welke, and Gerrit Groenhof. "New QM/MM implementation of the DFTB3 method in the gromacs package." Journal of Computational Chemistry 36, no. 26 (August 4, 2015): 1978–89. http://dx.doi.org/10.1002/jcc.24029.
Full textKlimovich, Pavel V., and David L. Mobley. "A Python tool to set up relative free energy calculations in GROMACS." Journal of Computer-Aided Molecular Design 29, no. 11 (October 20, 2015): 1007–14. http://dx.doi.org/10.1007/s10822-015-9873-0.
Full textKutzner, Carsten, Jacek Czub, and Helmut Grubmueller. "Keep it Flexible: Driving Macromolecular Rotary Motions in Atomistic Simulations with Gromacs." Biophysical Journal 102, no. 3 (January 2012): 171a. http://dx.doi.org/10.1016/j.bpj.2011.11.927.
Full textKutzner, Carsten, Christian Kniep, Austin Cherian, Ludvig Nordstrom, Helmut Grubmüller, Bert L. de Groot, and Vytautas Gapsys. "GROMACS in the Cloud: A Global Supercomputer to Speed Up Alchemical Drug Design." Journal of Chemical Information and Modeling 62, no. 7 (March 30, 2022): 1691–711. http://dx.doi.org/10.1021/acs.jcim.2c00044.
Full textMacchiagodena, Marina, Maurice Karrenbrock, Marco Pagliai, and Piero Procacci. "Virtual Double-System Single-Box for Absolute Dissociation Free Energy Calculations in GROMACS." Journal of Chemical Information and Modeling 61, no. 11 (November 1, 2021): 5320–26. http://dx.doi.org/10.1021/acs.jcim.1c00909.
Full textCarvalho Martins, Luan, Elio A. Cino, and Rafaela Salgado Ferreira. "PyAutoFEP: An Automated Free Energy Perturbation Workflow for GROMACS Integrating Enhanced Sampling Methods." Journal of Chemical Theory and Computation 17, no. 7 (June 18, 2021): 4262–73. http://dx.doi.org/10.1021/acs.jctc.1c00194.
Full textValdés-Tresanco, Mario S., Mario E. Valdés-Tresanco, Pedro A. Valiente, and Ernesto Moreno. "gmx_MMPBSA: A New Tool to Perform End-State Free Energy Calculations with GROMACS." Journal of Chemical Theory and Computation 17, no. 10 (September 29, 2021): 6281–91. http://dx.doi.org/10.1021/acs.jctc.1c00645.
Full textAbraham, Mark James, Teemu Murtola, Roland Schulz, Szilárd Páll, Jeremy C. Smith, Berk Hess, and Erik Lindahl. "GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers." SoftwareX 1-2 (September 2015): 19–25. http://dx.doi.org/10.1016/j.softx.2015.06.001.
Full textKohnke, Bartosz, R. Thomas Ullmann, Carsten Kutzner, Andreas Beckmann, David Haensel, Ivo Kabadshow, Holger Dachsel, Berk Hess, and Helmut Grubmüller. "A Flexible, GPU - Powered Fast Multipole Method for Realistic Biomolecular Simulations in Gromacs." Biophysical Journal 112, no. 3 (February 2017): 448a. http://dx.doi.org/10.1016/j.bpj.2016.11.2402.
Full textPronk, Sander, Szilárd Páll, Roland Schulz, Per Larsson, Pär Bjelkmar, Rossen Apostolov, Michael R. Shirts, et al. "GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit." Bioinformatics 29, no. 7 (February 13, 2013): 845–54. http://dx.doi.org/10.1093/bioinformatics/btt055.
Full text