Academic literature on the topic 'Ground based interferometric radar, ground based synthetic aperture radar, GB-SAR'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ground based interferometric radar, ground based synthetic aperture radar, GB-SAR.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Ground based interferometric radar, ground based synthetic aperture radar, GB-SAR"

1

Michelini, Alberto, Francesco Coppi, Alberto Bicci, and Giovanni Alli. "SPARX, a MIMO Array for Ground-Based Radar Interferometry." Sensors 19, no. 2 (2019): 252. http://dx.doi.org/10.3390/s19020252.

Full text
Abstract:
Ground-Based SAR Interferometry (GB-InSAR) is nowadays a proven technique widely used for slope monitoring in open pit mines and landslide control. Traditional GB-InSAR techniques involve transmitting and receiving antennas moving on a scanner to achieve the desired synthetic aperture. Mechanical movement limits the acquisition speed of the SAR image. There is a need for faster acquisition time as it plays an important role in correcting rapidly varying atmospheric effects. Also, a fast imaging radar can extend the applications to the measurement of vibrations of large structures. Furthermore,
APA, Harvard, Vancouver, ISO, and other styles
2

Hu, Jiyuan, Jiming Guo, Yi Xu, Lv Zhou, Shuai Zhang, and Kunfei Fan. "Differential Ground-Based Radar Interferometry for Slope and Civil Structures Monitoring: Two Case Studies of Landslide and Bridge." Remote Sensing 11, no. 24 (2019): 2887. http://dx.doi.org/10.3390/rs11242887.

Full text
Abstract:
Ground-based radar interferometry, which can be specifically classified as ground-based synthetic aperture radar (GB-SAR) and ground-based real aperture radar (GB-RAR), was applied to monitor the Liusha Peninsula landslide and Baishazhou Yangtze River Bridge. The GB-SAR technique enabled us to obtain the daily displacement evolution of the landslide, with a maximum cumulative displacement of 20 mm in the 13-day observation period. The virtual reality-based panoramic technology (VRP) was introduced to illustrate the displacement evolutions intuitively and facilitate the following web-based pano
APA, Harvard, Vancouver, ISO, and other styles
3

Miccinesi, Lapo, Tommaso Consumi, Alessandra Beni, and Massimiliano Pieraccini. "W-band MIMO GB-SAR for Bridge Testing/Monitoring." Electronics 10, no. 18 (2021): 2261. http://dx.doi.org/10.3390/electronics10182261.

Full text
Abstract:
Interferometric radars are widely used for static and dynamic monitoring of large structures such as bridges, culverts, wind turbine towers, chimneys, masonry towers, stay cables, buildings, and monuments. Most of these radars operate in Ku-band (17 GHz). Nevertheless, a higher operative frequency could allow the design of smaller, lighter, and faster equipment. In this paper, a fast MIMO-GBSAR (Multiple-Input Multiple-Output Ground-Based Synthetic Aperture Radar) operating in W-band (77 GHz) has been proposed. The radar can complete a scan in less than 8 s. Furthermore, as its overall dimensi
APA, Harvard, Vancouver, ISO, and other styles
4

Zheng, Xiangtian, Xiaolin Yang, Haitao Ma, et al. "Integrated Ground-Based SAR Interferometry, Terrestrial Laser Scanner, and Corner Reflector Deformation Experiments." Sensors 18, no. 12 (2018): 4401. http://dx.doi.org/10.3390/s18124401.

Full text
Abstract:
An integrated sensor system comprised of a terrestrial laser scanner (TLS), corner reflectors (CRs), and high precision linear rail is utilized to validate ground-based synthetic aperture radar (GB-SAR) interferometric micro-displacement measurements. A rail with positioning accuracy of 0.1 mm is deployed to ensure accurate and controllable deformation. The rail is equipped with a CR on a sliding platform for mobility. Three smaller CRs are installed nearby, each with a reflective sticker attached to the CR’s vertex; the CRs present as high-amplitude points both in the GB-SAR images and the TL
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Peng, Cheng Xing, and Xiandong Pan. "Reservoir Dam Surface Deformation Monitoring by Differential GB-InSAR Based on Image Subsets." Sensors 20, no. 2 (2020): 396. http://dx.doi.org/10.3390/s20020396.

Full text
Abstract:
Ground-based synthetic aperture radar interferometry (GB-InSAR) enables the continuous monitoring of areal deformation and can thus provide near-real-time control of the overall deformation state of dam surfaces. In the continuous small-scale deformation monitoring of a reservoir dam structure by GB-InSAR, the ground-based synthetic aperture radar (GB-SAR) image acquisition may be interrupted by multiple interfering factors, such as severe changes in the meteorological conditions of the monitoring area and radar equipment failures. As a result, the observed phases before and after the interrup
APA, Harvard, Vancouver, ISO, and other styles
6

Huang, Zengshu, Jinping Sun, Qing Li, Weixian Tan, Pingping Huang, and Yaolong Qi. "Time- and Space-Varying Atmospheric Phase Correction in Discontinuous Ground-Based Synthetic Aperture Radar Deformation Monitoring." Sensors 18, no. 11 (2018): 3883. http://dx.doi.org/10.3390/s18113883.

Full text
Abstract:
Ground-based synthetic aperture radar (GB-SAR) uses active microwave remote-sensing observation mode to achieve two-dimensional deformation measurement and deformation trend extraction, which shows great prospects in the field of deformation monitoring. However, in the process of GB-SAR deformation monitoring, the disturbances caused by atmospheric effect cannot be neglected, and the atmospheric phases will seriously affect the precision of deformation monitoring. In discontinuous GB-SAR deformation monitoring mode, the atmospheric phases are particularly affected by changes of time and space,
APA, Harvard, Vancouver, ISO, and other styles
7

Crosetto, M., O. Monserrat, G. Luzi, N. Devanthéry, M. Cuevas-González, and A. Barra. "DATA PROCESSING AND ANALYSIS TOOLS BASED ON GROUND-BASED SYNTHETIC APERTURE RADAR IMAGERY." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2/W7 (September 13, 2017): 593–96. http://dx.doi.org/10.5194/isprs-archives-xlii-2-w7-593-2017.

Full text
Abstract:
The Ground-Based SAR (GBSAR) is a terrestrial remote sensing technique used to measure and monitor deformation. In this paper we describe two complementary approaches to derive deformation measurements using GBSAR data. The first approach is based on radar interferometry, while the second one exploits the GBSAR amplitude. In this paper we consider the so-called discontinuous GBSAR acquisition mode. The interferometric process is not always straightforward: it requires appropriate data processing and analysis tools. One of the main critical steps is phase unwrapping, which can critically affect
APA, Harvard, Vancouver, ISO, and other styles
8

Xu, Bing, Zhiwei Li, Yan Zhu, Jiancun Shi, and Guangcai Feng. "SAR Interferometric Baseline Refinement Based on Flat-Earth Phase without a Ground Control Point." Remote Sensing 12, no. 2 (2020): 233. http://dx.doi.org/10.3390/rs12020233.

Full text
Abstract:
Interferometric baseline estimation is a key procedure of interferometric synthetic aperture radar (SAR) data processing. The error of the interferometric baseline affects not only the removal of the flat-earth phase, but also the transformation coefficient between the topographic phase and elevation, which will affect the topographic phase removal for differential interferometric SAR (D-InSAR) and the accuracy of the final generated digital elevation model (DEM) product for interferometric synthetic aperture (InSAR). To obtain a highly accurate interferometric baseline, this paper firstly inv
APA, Harvard, Vancouver, ISO, and other styles
9

Palamà, R., M. Crosetto, O. Monserrat, et al. "ANALYSIS OF MINING-INDUCED TERRAIN DEFORMATION USING MULTITEMPORAL DISTRIBUTED SCATTERER SAR INTERFEROMETRY." International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B3-2022 (May 30, 2022): 321–26. http://dx.doi.org/10.5194/isprs-archives-xliii-b3-2022-321-2022.

Full text
Abstract:
Abstract. This work addresses a methodology based on the Interferometric Synthetic Aperture Radar (InSAR) to analyse and monitor ground motion phenomena induced by underground mining activities, in the Legnica-Glogow Copper District, south-western Poland. Two stacks of ascending and descending Sentinel-1 Synthetic Aperture Radar (SAR) images are processed with a small baseline multitemporal approach. A simple method to select interferograms with high coherence and eliminated images with low redundancy is implemented to optimize the interferogram netwrork. The estimated displacement maps and ti
APA, Harvard, Vancouver, ISO, and other styles
10

Guo, Yanhui, Zhiquan Yang, Yi Yang, Zhijun Kong, Caikun Gao, and Weiming Tian. "Experimental Study on Deformation Monitoring of Large Landslide in Reservoir Area of Hydropower Station Based on GB-InSAR." Advances in Civil Engineering 2021 (July 8, 2021): 1–11. http://dx.doi.org/10.1155/2021/5586340.

Full text
Abstract:
The monitoring and early warning of a landslide in the reservoir area of a hydropower station are of great significance in the dam structure of the hydropower station and in the safety of people’s life and property on the reservoir bank. In this study, a new ground-based interferometric synthetic aperture radar system LKR-05-KU-S100 was used to carry out field monitoring tests on Lagu landslide and Xiaozhaju landslide of Dahuaqiao hydropower station and No. 1 landslide on the left bank of Xiaowan hydropower station on the Lancang river. The results show that, during the monitoring period, Lagu
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Ground based interferometric radar, ground based synthetic aperture radar, GB-SAR"

1

FALABELLA, FRANCESCO. "Spaceborne and Terrestrial Synthetic Aperture Radar (SAR) Systems: Innovative Multi-temporal SAR Interferometric Methods and Applications." Doctoral thesis, Università degli studi della Basilicata, 2023. https://hdl.handle.net/11563/162987.

Full text
Abstract:
Le tecniche Multi-temporali SAR interferometriche (Mt-InSAR) rappresentano oggigiorno strumenti consolidati per mappare l’evoluzione temporale dei fenomeni di deformazione del suolo Terrestre. Queste tecniche utilizzano congiuntamente sets di interferogrammi SAR differenziali al fine di estrarre la componente legata alla deformazione e produrre così serie storiche di deformazione dei bersagli osservati dal sensore. L'affidabilità delle misure prodotte utilizzando algoritmi Mt-InSAR è strettamente legata alla capacità degli stessi algoritmi nell’isolare esclusivamente i segnali legati alla defo
APA, Harvard, Vancouver, ISO, and other styles
2

Rödelsperger, Sabine [Verfasser], Carl [Akademischer Betreuer] Gerstenecker, and Matthias [Akademischer Betreuer] Becker. "Real-time Processing of Ground Based Synthetic Aperture Radar (GB-SAR) Measurements / Sabine Rödelsperger. Betreuer: Carl Gerstenecker ; Matthias Becker." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2011. http://d-nb.info/110610983X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Preston, Stephen Joseph. "Design and Feasibility Testing for a Ground-based, Three-dimensional, Ultra-high-resolution, Synthetic Aperture Radar to Image Snowpacks." BYU ScholarsArchive, 2010. https://scholarsarchive.byu.edu/etd/2709.

Full text
Abstract:
This thesis works through the design of a radar-based system for imaging snowpacks remotely and over large areas to assist in avalanche prediction. The key to such a system is the ability to image volumes of snow at shallow, spatially-varying angles of incidence. To achieve this prerequisite, the design calls for a ground-based Synthetic Aperture Radar (SAR) capable of generating three-dimensional, ultra-high-resolution images of a snowpack. To arrive at design parameters for this SAR, the thesis works through relevant principles in avalanche mechanics, alpine-snowpack geophysics, and electrom
APA, Harvard, Vancouver, ISO, and other styles
4

Penner, Justin Frank. "Development of a Grond-Based High-Resolution 3D-SAR System for Studying the Microwave Scattering Characteristics of Trees." BYU ScholarsArchive, 2011. https://scholarsarchive.byu.edu/etd/2889.

Full text
Abstract:
This thesis presents the development of a high-resolution ground-based 3D-SAR system and investigates its application to microwave-vegetation studies. The development process of the system is detailed including an enumeration of high-level requirements, discussions on key design issues, and detailed descriptions of the system down to a component level. The system operates on a 5.4 GHz (C-band) signal, provides a synthetic aperture area of 1.7 m x 1.7 m, and offers resolution of 0.75 m x 0.3 m x 0.3 m (range x azimuth x elevation). The system is employed on several trees with varying physical c
APA, Harvard, Vancouver, ISO, and other styles
5

miccinesi, lapo. "Advanced Ground-Based Real and Synthetic aperture Radar." Doctoral thesis, 2020. http://hdl.handle.net/2158/1196928.

Full text
Abstract:
Ground-based/terrestrial radar interferometry (GBRI) is a scientific topic of increasing interest in recent years. The GBRI is used in several field as remote sensing technique for monitoring natural environment (landslides, glacier, and mines) or infrastructures (bridges, towers). These sensors provide the displacement of targets by measuring the phase difference between sending and receiving radar signal. If the acquisition rate is enough the GBRI can provide the natural frequency, e.g. by calculating the Fourier transform of displacement. The research activity, presented in this thesis, con
APA, Harvard, Vancouver, ISO, and other styles
6

Rojhani, Neda. "Advanced 2D/3D Imaging Techniques for ISAR and GBSAR." Doctoral thesis, 2019. http://hdl.handle.net/2158/1150612.

Full text
Abstract:
In chapter 1: The concept of the radar system has been introduced based on the radar block diagram. Moreover, there are some discussions about the radar equation, radar classification, and frequency of radar. In chapter 2: The fundamentals of radar cross-section are presented. Afterward, the RCS of two quadcopters is estimated by Electromagnetic Simulation Software (FEKO). In order to confirm the simulation, real measurement results are performed. Inverse synthetic radar (ISAR) processing are provided. In chapter 3: 2D And 3D inverse synthetic aperture radar (ISAR) image processing has
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Ground based interferometric radar, ground based synthetic aperture radar, GB-SAR"

1

Zengshu, Huang, Sun Jinping, Yuan Yunneng, Tan Weixian, Huang Pingping, and Wang Yanping. "Ground-based SAR multistage mountain slope interferometric phase unwrapping." In 2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR). IEEE, 2015. http://dx.doi.org/10.1109/apsar.2015.7306148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tang, Xinxin, Xiaoling Zhang, Xingyue Zhang, Jing Ming, Jun Shi, and Shunjun Wei. "Ground Moving Target Azimuth Velocity Estimation Based on Dual-Beam Along-Track Interferometric SAR." In 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR). IEEE, 2019. http://dx.doi.org/10.1109/apsar46974.2019.9048307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Crosetto, Michele, Lorenzo Solari, and Marek Mróz. "Pan-European deformation monitoring: The European Ground Motion Service." In 5th Joint International Symposium on Deformation Monitoring. Editorial de la Universitat Politècnica de València, 2022. http://dx.doi.org/10.4995/jisdm2022.2022.13876.

Full text
Abstract:
This paper describes the first results of the European Ground Motion Service (EGMS). The EGMS is part of the Copernicus Land Monitoring Service and represents a unique initiative for performing ground deformation monitoring at a European scale. This service makes use of Advanced Differential Interferometric SAR (A-DInSAR) techniques based on satellite Synthetic Aperture Radar (SAR) imagery. In particular, it exploits the Sentinel-1A/B SAR images of the Copernicus Programme, acquired over Europe. The paper briefly summarizes the main characteristics of the EGMS, describing different products of
APA, Harvard, Vancouver, ISO, and other styles
4

O’Neil, Gregg, and Alan Samchek. "Satellite-Based Monitoring of Slope Movements on TransCanada’s Pipeline System." In 2002 4th International Pipeline Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/ipc2002-27356.

Full text
Abstract:
TransCanada owns and operates over 38,000 km of pipeline throughout North America, which cross over 3,300 slopes and 1,200 watercourses. Ground movements on slopes at river crossings are an important pipeline hazard across Canada and especially within the Alberta system. These movements have led to several past pipeline ruptures and the development of a relatively extensive slope monitoring program. Historically, ground movement impacts are an industry-wide problem. The results of a 1998 study by the Gas Research Institute reported that external force damage from natural forces, including grou
APA, Harvard, Vancouver, ISO, and other styles
5

Matas, Gerard, Albert Prades, M. Amparo Núñez-Andrés, Felipe Buill, and Nieves Lantada. "Implementation of a fixed-location time lapse photogrammetric rock slope monitoring system in Castellfollit de la Roca, Spain." In 5th Joint International Symposium on Deformation Monitoring. Editorial de la Universitat Politècnica de València, 2022. http://dx.doi.org/10.4995/jisdm2022.2022.13656.

Full text
Abstract:
When monitoring deformations in natural hazards such as rockfalls and landslides, the use of 3D models has become a standard. Several geomatic techniques allow the generation of these models. However, each one has its pros and cons regarding accuracy, cost, sample frequency, etc. In this contribution a fixed-location time lapse camera system for continuous rockfall monitoring using photogrammetry has been developed as an alternative to Light Detection and Ranging (LiDAR) and ground-based interferometric synthetic-aperture radar (GB-InSAR). The usage of stereo photogrammetry allows the obtentio
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Suyun, Weike Feng, Kazutaka Kikuta, Grigory Chernyak, and Motoyuki Sato. "Ground-Based Bistatic Polarimetric Interferometric Synthetic Aperture Radar System." In IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2019. http://dx.doi.org/10.1109/igarss.2019.8900455.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kim, Jung, Jung T. Park, Woo Y. Song, Soo H. Rho, and Young K. Kwag. "Ground moving target displacement compensation for DPCA based SAR-GMTI system." In 2009 2nd Asian-Pacific Conference on Synthetic Aperture Radar (APSAR). IEEE, 2009. http://dx.doi.org/10.1109/apsar.2009.5374244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yao-long, Qi, Tan Wei-xian, Xia Dong-kun, Wang Yan-ping, and Hong Wen. "Research on the near range imaging of Ground-based SAR system." In 2009 2nd Asian-Pacific Conference on Synthetic Aperture Radar (APSAR). IEEE, 2009. http://dx.doi.org/10.1109/apsar.2009.5374282.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Huang, Zengshu, Jinping Sun, Weixian Tan, Pingping Huang, and Yaolong Qi. "Amplitude and Phase Errors Correction for Ground-based Arc Array SAR." In 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR). IEEE, 2019. http://dx.doi.org/10.1109/apsar46974.2019.9048445.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chet, Koo Voon, Lim Chee Siong, William Hii How Hsin, et al. "Ku-band ground-based SAR experiments for surface deformation monitoring." In 2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR). IEEE, 2015. http://dx.doi.org/10.1109/apsar.2015.7306288.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!