To see the other types of publications on this topic, follow the link: Ground Penetrating Radar (GPR).

Dissertations / Theses on the topic 'Ground Penetrating Radar (GPR)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Ground Penetrating Radar (GPR).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Evans, Robert D. "Optimising ground penetrating radar (GPR) to assess pavements." Thesis, Loughborough University, 2010. https://dspace.lboro.ac.uk/2134/20465.

Full text
Abstract:
Ground penetrating radar (GPR) technology has existed for many decades, but it has only been in the last 20 to 30 years that it has undergone great development for use in near surface ground investigations. The early 1980's saw the first major developments in the application of GPR for pavements (i.e. engineered structures designed to carry traffic loads), and it is now an established investigation technique, with generic information included in several national standard guidance documents. Analysis of GPR data can provide information on layer depths, material condition, moisture, voiding, reinforcement and location of other features. Assessing the condition of pavements, in order to plan subsequent maintenance, is essential to allow the efficient long-term functioning of the structure and GPR has enhanced and improved the range and certainty of information that can be obtained from pavement investigations. Despite the recent establishment of the technique in pavement investigation, the current situation is one in which GPR is used routinely for pavement projects in only a minority of countries, and the specialist nature of the technique and the sometimes variable results that are obtained can mean that there is both a lack of appreciation and a lack of awareness of the potential information that GPR can provide. The fact that GPR is still a developing technique, and that many aspects of its use are specialised in their nature, means that there are also several technical aspects of GPR pavement investigations which have not been fully researched, and knowledge of the response of GPR to some material conditions has not been fully established. The overall aim of this EngD research project was to provide improved pavement investigation capabilities by enhancing the methodologies and procedures used to obtain information from GPR. Several discrete research topics were addressed through various research methods including a literature review, fieldwork investigations, experimental laboratory investigations and a review of previously collected data. The findings of the research allowed conclusions and recommendations to be made regarding improved fieldwork methodologies, enhancing information and determining material condition from previously collected GPR data, assessing the effect of pavement temperature and moisture condition on GPR data and also on managing errors and uncertainty in GPR data. During the EngD project, a number of documents and presentations have been made to publicise the findings both within the EngD sponsoring company (Jacobs) and externally, and an in-house GPR capability has been established within Jacobs as a direct result of the EngD project.
APA, Harvard, Vancouver, ISO, and other styles
2

Chong, Aaron A. "Complementary GPR antennas and watertank testing /." St. Lucia, Qld, 2001. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe16096.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Al-Nuaimy, Waleed. "Automatic feature detection and interpretation in ground-penetrating radar data." Thesis, University of Liverpool, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.343705.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jiang, Wei. "Signal processing strategies for ground-penetrating radar." Thesis, University of Bath, 2011. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.538111.

Full text
Abstract:
Interpretation of ground penetrating radar (GPR) signals can be a key point in the overall operability of a GPR system. In stepped-frequency and Frequency-Modulated Continuous-Wave (FMCW)GPR systems in particular, the target or object of interest is often located by analysis of Fast Fourier Transform (FFT) derived data. Increasing the GPR system bandwidth can improve resolution, but at the cost of reduced penetrating depth. The challenge is to develop high-resolution signal processing strategies for GPR.A number of Fourier based methods are investigated. However, the main response over a target's position can make it difficult to recognise closely spaced targets. The Least-Suare method is found to be the best autoregression-based estimator. However the method requires high Signal-to-Noise ratio to achieve high- resolution. Furthermore a number of subspace-based methods are investigated. Although the MUItiple Signal Classification (MUSIC) method can theoretically offer infinite resolution, they must be seeded with the number of targets actually present. A superimposed MUSIC technique is proposed to suppress false targets. A novel windowed MUSIC (W-MUSIC) algorithm is developed, and it offers high resolution while still able to minimise spurious responses. Since the performance of any FMCW GPR is critically linked to the linearity of the sweep frequency, the non-linearity in the target range estimation is studied. A Novel Short-Time MUSIC method is proposed and higher time and frequency resolution is achieved than the conventional Short-Time Fourier Transform method. In addition a modified Adaptive Sampling method is proposed to solve the non-linear problem by utilising a reference channel in a GPR system.
APA, Harvard, Vancouver, ISO, and other styles
5

SOUZA, MICHELLE MATOS DE. "THE USE OF GROUND PENETRATING RADAR (GPR) IN ENVIRONMENTAL SITE INVESTIGATION." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2005. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=7719@1.

Full text
Abstract:
COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
AGÊNCIA NACIONAL DE PETRÓLEO
PROGRAMA DE APOIO A NÚCLEOS DE EXCELÊNCIA
O presente trabalho tem por objetivo avaliar as potencialidades do método GPR (Ground Penetrating Radar) em investigações de campo que englobam estudos hidrogeológicos, geotécnicos e ambientais. Para o alcance deste objetivo foram realizadas investigações de campo na região sudeste do Brasil procurando verificar a aplicabilidade deste método no conhecimento da subsuperfície. Os estudos englobaram a determinação da estratigrafia do solo identificando suas camadas e respectivas profundidades; a determinação da posição do lençol freático; a localização de estruturas enterradas e a detecção de possíveis anomalias decorrentes de contaminações. As seções obtidas com o GPR permitiram identificar com boa resolução os contrastes bruscos, como a posição do lençol freático e a localização das estruturas enterradas. A identificação dos contatos entre as camadas de solo foi possível quando as propriedades elétricas destes materiais se diferiam bastante. Já no que diz respeito ao mapeamento de regiões contaminadas, ainda se faz necessário à realização de uma maior quantidade de estudos para afirmar a eficiência do GPR para este objetivo. A utilização da técnica da reflectometria no domínio do tempo (TDR) foi muito útil para correlacionar a velocidade de propagação das ondas eletromagnéticas com a profundidade. O seu emprego permitiu aumentar a exatidão da determinação das profundidades dos alvos de interesse.
The present work aims to assess the adequacy of the ground penetrating radar as a screening tool in site in site investigation practice in hydrogeological, geotechnical and environmental studies. An extensive site investigation program was carrid out in Southeast Brazil looking for characterizing the subsurface. Tests were performed to determine the statigraphy of soil profiles, the position of the water level, the detection of buried structures and contamination. The results have shown a great deal of success in identifying water levels and buried structures. Soil surface were only identified when abrupt changes in the dielectric constant of the porous media were observed. Howerer, the results so far do not enable to delineate contamination plumes with the accuracy desired. The accuracy of the target depths were greatly improved by using the result of the dielectric constant measured by the time domain reflectometry (TDR)
APA, Harvard, Vancouver, ISO, and other styles
6

Jazayeri, Sajad. "Full-waveform Inversion of Common-Offset Ground Penetrating Radar (GPR) data." Scholar Commons, 2019. https://scholarcommons.usf.edu/etd/7815.

Full text
Abstract:
Maintenance of aging buried infrastructure and reinforced concrete are critical issues in the United States. Inexpensive non-destructive techniques for mapping and imaging infrastructure and defects are an integral component of maintenance. Ground penetrating radar (GPR) is a widely-used non-destructive tool for locating buried infrastructure and for imaging rebar and other features of interest to civil engineers. Conventional acquisition and interpretation of GPR profiles is based on the arrival times of strong reflected/diffracted returns, and qualitative interpretation of return amplitudes. Features are thereby generally well located, but their material properties are only qualitatively assessed. For example, in the typical imaging of buried pipes, the average radar wave velocity through the overlying soil is estimated, but the properties of the pipe itself are not quantitatively resolved. For pipes on the order of the radar wavelength (<5-35 cm), pipe dimensions and infilling material remain ambiguous. Full waveform inversion (FWI) methods exploit the entire radar return rather than the time and peak amplitude. FWI can generate better quantitative estimates of subsurface properties. In recent decades FWI methods, developed for seismic oil exploration, have been adapted and advanced for GPR with encouraging results. To date, however, FWI methods for GPR data have not been specifically tuned and applied on surface collected common offset GPR data, which are the most common type of GPR data for engineering applications. I present an effective FWI method specifically tailored for common-offset GPR data. This method is composed of three main components, the forward modeling, wavelet estimation and inversion tools. For the forward modeling and iterative data inversion I use two open-source software packages, gprMax and PEST. The source wavelet, which is the most challenging component that guarantees the success of the method, is estimated with a novel Sparse Blind Deconvolution (SBD) algorithm that I have developed. The present dissertation indicates that with FWI, GPR can yield better quantitative estimates, for example, of both the diameters of small pipes and rebar and their electromagnetic properties (permittivity, conductivity). Also better estimates of electrical properties of the surrounding media (i.e. soil or concrete) are achieved with FWI.
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Di. "Measurement of Soil Water Content Using Ground Penetrating Radar." Thesis, KTH, Mark- och vattenteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-99347.

Full text
Abstract:
Ground Penetrating Radar (GPR) is an effective tool to measure the geological properties. A lot of information can be interpreted from the GPR data, such as soil water content. One of the common approaches is to determine the apparent electrical permittivity from the transmission velocity of the impulse electromagnetic wave, and to use empirical relationships to estimate the soil water content. For example, Ferre equation & Topp equation are all expressing the relationship between soil water content and electrical permittivity. However, this method has some limitations; most notably the necessity to determine the velocity from a known depth to a reflecting surface. Therefore, another approach using the frequency dependent attenuation represented by a parameter called Q* was tested and studied in this thesis. The Q* method was evaluated using laboratory measurements, which consists of a series of experiments. A new empirical model was established using experiments where Q* was estimated from measurements on a soil sample with known water contents using two types of antennas (1.6 GHz & 2.3 GHz). Finally, the adaptability of Topp equation and Ferre equation were verified, and a new empirical equation was defined. What’s more, the other method using Q* was proved to be feasible.
APA, Harvard, Vancouver, ISO, and other styles
8

Vorster, Daniel Jacobus. "The use of ground penetrating radar for track substructure characterization." Diss., University of Pretoria, 2012. http://hdl.handle.net/2263/25426.

Full text
Abstract:
Ground penetrating radar (GPR) has been used as a railway substructure investigation tool since the late 1990’s and has seen significant development since then. To use GPR as a more effective tool for substructure investigation, a GPR substructure characterization model was developed. This dissertation provides a detailed description of railway track components, track geometry, soil properties and classification and substructure design. The historical background of GPR is discussed together with GPR principles, basic GPR equations, hardware and accessories as well as GPR data collection, processing and interpretation. Other in situ investigation techniques namely the dynamic cone penetrometer (DCP), light weight deflectometer (LWD) , Pencel pressuremeter, surface wave testing, remote video monitoring (RVM), multi-depth deflectometers (MDD) and continuous track modulus measurement techniques are also discussed. A comparison between the different track investigation techniques was also done, with reference to sample rate, cost, effectiveness and value. Two sites in South Africa were selected for the investigation, one with good substructure conditions used for heavy haul coal export close to Vryheid (KN test section) and the other a general freight line with poor substructure conditions near Rustenburg (NT test section). These two sites were selected to develop a GPR substructure characterization model as they provided conditions ranging from poor to very good. This was supported by the analysis of the in situ soil sampling and testing. The calculation of the track substructure modulus from RVM deflection measurements showed three times higher values for the KN test section compared to the NT test section. The subballast and subgrade thickness, the GPR ballast fouling (GBF) index as well as the GPR moisture condition index was used for the classification ranges used in the model. The subballast and subgrade layer roughness values were calculated and used for the substructure classification. The GBF index and the GPR moisture condition roughness were used for the GPR fouling index classification. The GPR deliverables were divided into four classes (i.e. very good, good, moderate and poor). The evaluation of the characterization model showed that a traditional in situ investigation will cost approximately 3.7 times more than that of a GPR investigation. It would also take two thirds of the time to complete the GPR investigation compared to the traditional in situ investigation. The study showed that GPR can be used to develop a substructure characterization model and that it would be more cost effective and efficient than traditional in situ investigation techniques. GPR surveys provide continuous measurements of the track structure condition and can therefore provide a continuous classification unlike the discreet and fragmented nature of in situ investigations. However, in situ tests can be done at certain intervals within the GPR survey or at point where the GPR classification is not clear. The best solution for railway track characterization can therefore be obtained by using GPR and in situ classification in combination.
Dissertation (MEng)--University of Pretoria, 2012.
Civil Engineering
unrestricted
APA, Harvard, Vancouver, ISO, and other styles
9

Wamweya, Amos. "Application of ground penetrating radar (GPR) for bridge deck condition assessment: using a 1.5 GHz ground-coupled antenna." Diss., Rolla, Mo. : Missouri University of Science and Technology, 2009. http://scholarsmine.mst.edu/thesis/pdf/Wamweya_09007dcc805d2ffd.pdf.

Full text
Abstract:
Thesis (M.S.)--Missouri University of Science and Technology, 2009.
Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed February 18, 2009) Includes bibliographical references (p. 104-107).
APA, Harvard, Vancouver, ISO, and other styles
10

Devaru, Dayakar. "Ground penetrating radar (GPR) based system for nondestructive detection of interior defects in wooden logs." Morgantown, W. Va. : [West Virginia University Libraries], 2006. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=4955.

Full text
Abstract:
Thesis (M.S.)--West Virginia University, 2006.
Title from document title page. Document formatted into pages; contains v, 128 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 106-107).
APA, Harvard, Vancouver, ISO, and other styles
11

Hammarström, Elias. "Non-Destructive testing of concrete with ground penetrating radar." Thesis, Luleå tekniska universitet, Byggkonstruktion och brand, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-72621.

Full text
Abstract:
Concrete structures are susceptible to deterioration over time and it is vital to continually assess concrete structures to maintain the structural integrity and prolong the service life. In recent years there has been an increased interest in non-destructive testing of concrete, i.e. assessing the state of the concrete without causing any damage to the structure in the process. There are many different techniques that falls under the term non-destructive testing and one of these that have gained prominence during the last few years is Georadar or ground penetrating radar, often shortened as GPR. GPR is a technique where microwaves are sent into the surface of the concrete by a device, the waves will reflect back to the device when encountering interfaces of areas with different electric properties. The waves are then received by the same device indicating the internal structure of the concrete. This makes the technique an excellent way to find reinforcement bars as the electric properties of concrete and metal strongly differ. In theory though, the technique should also be able to detect other internal differences in concrete, such as voids and corrosion areas but further research is still needed in these areas. This aim of this report is to evaluate ground penetrating radar as a non-destructive technique for assessment of concrete structures. In order to do this different tests has been conducted to evaluate the general performance and usability with a literature review introducing the science behind and what conclusions other researches has reached and using a testing methodology to reach the results. The tests can in a simple way be divided into two parts, first lab tests on a slab in a controlled setting where the internal structure was known, and then two shorter field trips in order to evaluate the performance properly insitu. The results were, to some extent, ambiguous. Although it was found that GPR is an excellent method for finding and locating near-surface reinforcement it was also concluded that the results could vary significantly depending on the location. In one of the field trips the performance of the GPR technique was compared to the performance of traditional cover meter and in this case the portability of the cover meter outperformed the somewhat clunky handling of the GPR. The concrete cover measurement using post-processing of the radar data gave a rough estimate, but once again evaluation still relied on the insitu conditions and the estimate were sometimes questionable. Finding reinforcement below the first layer yielded differing results and it was concluded that further tests were needed to fully evaluate the capabilities of the technique in this regard. The conclusions of the thesis was that although the tests show some potential for the method the results expected from GPR would strongly depend on suitability of the project and experience of the user. One important limiting factor was the availability of devices. For the current project only one specific device was used, it was theorized that another GPR device could get better results depending on the purpose. Furthermore, the lack of experience was also considered to be a limiting factor that might have had an effect on the results. For future research more tests on lower reinforcement and tests on detection of deterioration were suggested. Comparative studies with other similar non-destructive techniques were also considered to be an area of possible interest.
APA, Harvard, Vancouver, ISO, and other styles
12

Slattery, Kristen Elizabeth. "A GROUND-PENETRATING RADAR IMAGING OF SCHOENBRUNN VILLAGE ARCHAEOLOGICAL SITE, TUSCARAWAS COUNTY, OHIO." Kent State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=kent1321896945.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Holt, Jennifer Jane. "Finite difference time domain modeling of dispersion from heterogeneous ground properties in ground penetrating radar." Columbus, Ohio : Ohio State University, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1080136001.

Full text
Abstract:
Thesis (Ph. D.)--Ohio State University, 2004.
Title from first page of PDF file. Document formatted into pages; contains xxii, 212 p.; also includes graphics. Includes abstract and vita. Advisor: Jeffrey Daniels, Dept. of Geological Sciences. Includes bibliographical references (p. 152-154).
APA, Harvard, Vancouver, ISO, and other styles
14

Blomqvist, Mikael. "Construction and evaluation of a magnetoresistive ground penetrating radar system." Thesis, Uppsala universitet, Ångström Space Technology Centre (ÅSTC), 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-159904.

Full text
Abstract:
This Master Thesis examines the possibility to apply a magnetometer developed by the Ångstöm space technology center to a small magnetic ground penetrating radar system with dimension in the order of one dm³. The magnetometer is broadband (DC-1GHz) and miniaturized. Loop antennas are used to transmit the signal.    A series of experiments have been performed in order to characterize the system, mainly examining the ability to determine distance to a target, using continuous sine wave signals and pulse trains. Standing wave patterns are formed between antenna and target and can be used for determining distance in the continuous case. When using a pulse train, the echo from the target could not be resolved using the current experiment set up, distance could therefore not be determined.
APA, Harvard, Vancouver, ISO, and other styles
15

NUNES, CASSIANE MARIA FERREIRA. "APPLICATIONS OF GPR -GROUND PENETRATING RADAR- IN THE CHARACTERIZATION OF WEATHERING PROFILES OF." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2002. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=2873@1.

Full text
Abstract:
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
O método GPR Ground Penetrating Radar foi empregado nesta pesquisa visando estimar suas potencialidades como uma metodologia viável para os estudos geológicos, geotécnicos e ambientais em condições brasileiras.Para o alcance deste objetivo foram realizados ensaios em campo procurando avaliar a capacidade deste método na detecção das alterações provenientes da ação intempérica na formação do solo residual, ou seja, estimar a profundidade e espessura dos horizontes pedológicos, e o topo rochoso em um perfil geotécnio. Foram também realizados ensaios em laboratório onde fez-se o monitoramento do efeito da contaminação por hidrocarbonetos em blocos indeformados de solo residual, tanto em condições não saturadas, quanto na zona de saturação, procurando avaliar a aplicabilidade do método GPR na detecção deste tipo de contaminante.Os resultados obtidos permitiram imagear com boa resolução os contrastes bruscos, como o topo da rocha sã e blocos inclusos no solo, mas não a detecção nítida dos horizontes no perfil; e pela análise do monitoramento da contaminação, ainda é recente afirmar que o método GPR possa ser empregado com grande eficiência na detecção de contaminantes orgânicos em solo residual.
The GPR method Ground Penetration Radar was used in this work, aiming at estimating its potentialities as a viable methodology to geological, geotechnical and environmental studies of Brazilian soil-rock conditions.In order to reach this objective, in situ tests have been carried out to evaluate the capability of the method in the detection of characteristics of weathering profiles in residual soils. In this case, the aim was to estimate the depth and width of pedological horizons and the bedrock in a geotechnical profile. Laboratory tests were also carried out in blocks of undisturbed residual soil of gnaissic origin. In these blocks, the effects of contamination by petroleum hydrocarbons were monitored. Both the unsaturated and the vadose zones have been monitored. The main objective in relation to the GPR was to evaluate the applicability of the method in the detection of such contaminants.The results obtained allowed to image gross contacts with good resolution such as soil-intact bedrock contacts and blocks inside soils. However, the clear detection of profile horizons were not well imaged. Regarding the contamination monitoring, it is early to affirm that the GPR method might be employed efficiently in the detection of organic contaminants in residual soils.
APA, Harvard, Vancouver, ISO, and other styles
16

Warren, Craig. "Numerical modelling of high-frequency ground-penetrating radar antennas." Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/4074.

Full text
Abstract:
Ground-Penetrating Radar (GPR) is a non-destructive electromagnetic investigative tool used in many applications across the fields of engineering and geophysics. The propagation of electromagnetic waves in lossy materials is complex and over the past 20 years, the computational modelling of GPR has developed to improve our understanding of this phenomenon. This research focuses on the development of accurate numerical models of widely-used, high-frequency commercial GPR antennas. High-frequency, highresolution GPR antennas are mainly used in civil engineering for the evaluation of structural features in concrete i. e., the location of rebars, conduits, voids and cracking. These types of target are typically located close to the surface and their responses can be coupled with the direct wave of the antenna. Most numerical simulations of GPR only include a simple excitation model, such as an infinitesimal dipole, which does not represent the actual antenna. By omitting the real antenna from the model, simulations cannot accurately replicate the amplitudes and waveshapes of real GPR responses. Numerical models of a 1.5 GHz Geophysical Survey Systems, Inc. (GSSI) antenna and a 1.2 GHz MALÅ GeoScience (MALÅ) antenna have been developed. The geometry of antennas is often complex with many fine features that must be captured in the numerical models. To visualise this level of detail in 3d, software was developed to link Paraview—an open source visualisation application which uses the Visualisation Toolkit (VTK)—with GprMax3D—electromagnetic simulation software based on the Finite-Difference Time-Domain (FDTD) method. Certain component values from the real antennas that were required for the models could not be readily determined due to commercial sensitivity. Values for these unknown parameters were found by implementing an optimisation technique known as Taguchi’s method. The metric used to initially assess the accuracy of the antenna models was a cross-corellation of the crosstalk responses from the models with the crosstalk responses measured from the real antennas. A 98 % match between modelled and real crosstalk responses was achieved. Further validation of the antenna models was undertaken using a series of laboratory experiments where oil-in-water (O/W) emulsions were created to simulate the electrical properties of real materials. The emulsions provided homogeneous liquids with controllable permittivity and conductivity and enabled different types of targets, typically encountered with GPR, to be tested. The laboratory setup was replicated in simulations which included the antenna models and an excellent agreement was shown between the measured and modelled data. The models reproduced both the amplitude and waveshape of the real responses whilst B-scans showed that the models were also accurately capturing effects, such as masking, present in the real data. It was shown that to achieve this accuracy, the real permittivity and conductivity profiles of materials must be correctly modelled. The validated antenna models were then used to investigate the radiation dynamics of GPR antennas. It was found that the shape and directivity of theoretically predicted far-field radiation patterns differ significantly from real antenna patterns. Being able to understand and visualise in 3d the antenna patterns of real GPR antennas, over realistic materials containing typical targets, is extremely important for antenna design and also from a practical user perspective.
APA, Harvard, Vancouver, ISO, and other styles
17

Wells, Colleen M. "Investigating coarse-grained glacio-fluvial outwash with ground penetrating radar (GPR), Harpursville, Susquehanna Valley, NY." Diss., Online access via UMI:, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
18

Save, Neelambari R. "Ground penetrating radar technique to locate coal mining related features: case studies in Texas." Texas A&M University, 2004. http://hdl.handle.net/1969.1/3204.

Full text
Abstract:
The goal of this research project is to identify the efficacy of the ground penetrating radar (GPR) technique in locating underground coal mine related subsidence features at Malakoff and Bastrop, Texas. The work at Malakoff has been done in collaboration with the Railroad Commission of Texas (RRC). RRC has been carrying out reclamation of abandoned underground coal mines at Malakoff since the early 1990’s. The history of the specific mining operations (at Malakoff and Bastrop) that took place in the early 1900’s has been difficult to ascertain; therefore, the use of a geophysical techniques like ground penetrating radar to identify hidden voids and potential subsidence features is vital for future reclamation process. Some of the underground mine workings at the field site have collapsed over time affecting the topography by creating sinkholes. GPR data, employing 25 MHz, 50 MHz and 100 MHz frequency antennae, have been collected in common offset patterns and azimuthal pattern. GPR data indicate the mine tunnels possibly connecting existing sinkholes by radargram hyperbolae that correspond with mine openings observed visually or during reclamation. This study also denotes the importance of understanding the variable physical properties of the stratigraphy, which could lead to false alarms by misinterpretation of the radar signals. Natural and man-made above-ground structures cause obstructions in data collection, and hence an optimal design is required for each survey. RRC successfully ground-truthed the data during its reclamation process. In turn, the acquired geophysical data helped to guide the reclamation. At Bastrop, GPR data along with historical documentation led to the conclusion that coal mining did exist in this region but is not a major concern to the immediate stability and safety of the field site. It can be concluded from both the studies that the GPR technique identifies anomalous shafts/tunnels possibly connecting potential failure.
APA, Harvard, Vancouver, ISO, and other styles
19

Jadeja, Jayrajsinh. "A model for increasing yield in sawmills based on detection of subsurface defects in canted logs using ground penetrating radar (GPR) system." Morgantown, W. Va. : [West Virginia University Libraries], 2007. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=5449.

Full text
Abstract:
Thesis (M.S.)--West Virginia University, 2007.
Title from document title page. Document formatted into pages; contains ix, 106 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 75-76).
APA, Harvard, Vancouver, ISO, and other styles
20

Maurer, John A. IV. "Local-scale snow accumulation variability on the Greenland ice sheet from ground-penetrating radar (GPR)." Diss., Connect to online resource, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1433478.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Nguyen, Phong Hai. "HIGHLY-DIGITAL ARCHITECTURES AND INTEGRATED FRONT-ENDS FOR MULTI-ANTENNA GROUND-PENETRATING RADAR (GPR) SYSTEMS." Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1594642732791415.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Lahouar, Samer. "Development of Data Analysis Algorithms for Interpretation of Ground Penetrating Radar Data." Diss., Virginia Tech, 2003. http://hdl.handle.net/10919/11051.

Full text
Abstract:
According to a 1999 Federal Highway Administration statistic, the U.S. has around 8.2 million lane-miles of roadways that need to be maintained and rehabilitated periodically. Therefore, in order to reduce rehabilitation costs, pavement engineers need to optimize the rehabilitation procedure, which is achieved by accurately knowing the existing pavement layer thicknesses and localization of subsurface defects. Currently, the majority of departments of transportation (DOTs) rely on coring as a means to estimate pavement thicknesses, instead of using other nondestructive techniques, such as Ground Penetrating Radar (GPR). The use of GPR as a nondestructive pavement assessment tool is limited mainly due to the difficulty of GPR data interpretation, which requires experienced operators. Therefore, GPR results are usually subjective and inaccurate. Moreover, GPR data interpretation is very time-consuming because of the huge amount of data collected during a survey and the lack of reliable GPR data-interpretation software. This research effort attempts to overcome these problems by developing new GPR data analysis techniques that allow thickness estimation and subsurface defect detection from GPR data without operator intervention. The data analysis techniques are based on an accurate modeling of the propagation of the GPR electromagnetic waves through the pavement dielectric materials while traveling from the GPR transmitter to the receiver. Image-processing techniques are also applied to detect layer boundaries and subsurface defects. The developed data analysis techniques were validated utilizing data collected from an experimental pavement system: the Virginia Smart Road. The layer thickness error achieved by the developed system was around 3%. The conditions needed to achieve reliable and accurate results from GPR testing were also established.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
23

Neumann, William John III. "The use of ground penetrating radar to determine the presence, extent, and spatial variability of fire related hydrophobic soils in fire impacted watersheds in southern California." Diss., University of Iowa, 2016. https://ir.uiowa.edu/etd/2251.

Full text
Abstract:
Ground Penetrating Radar (GPR) methods have been used to evaluate the presence, extent, and spatial variability of hydrophobic soils in Southern California Watersheds. It has been shown that high frequency ground penetrating radar equipment, under certain conditions, has the ability to determine the presence, depth, and persistence of post fire hydrophobic soils. As part of this study an extensive investigation was undertaken to not only evaluate the capability of this approach but also to understand under what conditions the method can be applied successfully and what are the limitations of the approach. The investigation includes use of computer simulations and modeling, laboratory investigations in sand boxes with native soils, and multiple field trials spanning a five year time period. Of particular significance is the finding that using GPR it is possible to: locate the interface between the uppermost burnt soil layer, and soil horizons below; quantify the depth at which the hydrophobic layer forms; and quantify the spatial extent of the layer. As part of this study best practice methods for both field and lab experimentation have also been developed and are presented in the body of the thesis. Based on this study it is concluded that the use of GPR can provide a much more accurate and comprehensive method of evaluating the nature of hydrophobic layers in such environments than the current point specific manual methods. As a result the use of GPR has significantly advanced our capacity to assess the potential for increased erosion and the generation of debris flows in such environments after rainfall events.
APA, Harvard, Vancouver, ISO, and other styles
24

Metwally, Mohamed. "OFDM Coupled Compressive Sensing Algorithm for Stepped Frequency Ground Penetrating Radar." ScholarWorks @ UVM, 2014. http://scholarworks.uvm.edu/graddis/274.

Full text
Abstract:
Dating back to as far as 1940, the US road and bridge infrastructure system has garnered quite the status for strategically connecting together half a continent. As monumental as the infrastructure's status, is its rate of deterioration, with the average bridge age coming at a disconcerting 50 years. Aside from visual inspection, a battery of non-destructive tests were developed to conduct structural fault assessment and detect laminations, in order to preemptively take preventive measures. The mainstream commercially favored test is the impulse time domain ground penetrating radar (GPR). An extremely short, high voltage pulse is used to visualize cross-sections of the bridge decks. While effective and it does not disturb traffic flow, impulse radar suffers from major drawbacks. The drawbacks are namely, its limited dynamic range and high cost of system manufacturing. A less prominent yet highly effective system, stepped frequency continuous wave (SFCW) GPR, was developed to address the aforementioned drawbacks. Mostly developed for research centers and academia, SFCW boasts a high dynamic range and low cost of system manufacturing, while producing comparable if not identical results to the impulse counterpart. However, data procurement speed is an inherent problem in SFCW GPR, which seems to keep impulse radar in the lead for production and development. I am proposing a novel approach to elevate SFCW's data acquisition speed and its scanning efficiency altogether. This approach combines an encoding method called orthogonal frequency division multiplexing (OFDM) and an emerging paradigm called compressive sensing (CS). In OFDM, a digital data stream, the transmit signal, is encoded on multiple carrier frequencies. These frequencies are combined in such a way to achieve orthogonality between the carrier frequencies, while mitigating any interference between said frequencies. In CS, a signal can be potentially reconstructed from a few samples below the standardized Nyquist rate. A novel design of the SFCW GPR architecture coupled with the OFDM-CS algorithm is proposed and evaluated using ideal channels and realistically modelled bridge decks.
APA, Harvard, Vancouver, ISO, and other styles
25

Ono, Sashi, and Hua Lee. "ADVANCED GPR SYSTEM FOR HIGH-PERFORMANCE TOMOGRAPHIC SUBSURFACE IMAGING." International Foundation for Telemetering, 2003. http://hdl.handle.net/10150/607453.

Full text
Abstract:
International Telemetering Conference Proceedings / October 20-23, 2003 / Riviera Hotel and Convention Center, Las Vegas, Nevada
In this paper, the research prototype of a high-performance GPR imaging system is presented. The system is equipped with the capability of synthetic-aperture scan, stepfrequency FMCW illumination, and high-resolution tomographic image reconstruction.
APA, Harvard, Vancouver, ISO, and other styles
26

Hislop, Gregory Francis. "Diffraction Tomographic Imaging of Shallowly Buried Targets using Ground Penetrating Radar." Thesis, Queensland University of Technology, 2005. https://eprints.qut.edu.au/16125/1/Gregory_Hislop_Thesis.pdf.

Full text
Abstract:
The problem of subsurface imaging with Ground Penetrating Radar (GPR) is a challenging one. Due to the low-pass nature of soil sensors must utilise wave-lengths that are of the same order of magnitude as the object being imaged. This makes imaging difficult as straight ray approximations commonly used in higher frequency applications cannot be used. The problem becomes even more challenging when the target is shallowly buried as in this case the ground surface reflection and the near-field parameters of the radar need to be considered. This thesis has investigated the problem of imaging shallowly buried targets with GPR. Two distinct problems exist in this field radar design and the design of inverse scattering techniques. This thesis focuses on the design of inverse scattering techniques capable of taking the electric field measurements from the receiver and providing accurate images of the scatterer in real time. The thesis commences with a brief introduction to GPR theory. It then provides an extensive review of linear inverse scattering techniques applied to raw GPR data. As a result of this review the thesis draws the conclusion that, due to its strong foundations in Maxwell's equations, diffraction tomography is the most appropriate approach for imaging shallowly buried targets with GPR. A three-dimensional diffraction tomographic technique is then developed. This algorithm forms the primary contribution of the thesis. The novel diffraction tomography technique improves on its predecessors by catering for shallowly buried targets, significant antenna heights and evanescent waves. This is also the first diffraction tomography technique to be derived for a range of antenna structures. The advantages of the novel technique are demonstrated first mathematically then on synthetic and finally practical data. The algorithm is shown to be of high practical value by producing accurate images of buried targets in real time.
APA, Harvard, Vancouver, ISO, and other styles
27

Hislop, Gregory Francis. "Diffraction Tomographic Imaging of Shallowly Buried Targets using Ground Penetrating Radar." Queensland University of Technology, 2005. http://eprints.qut.edu.au/16125/.

Full text
Abstract:
The problem of subsurface imaging with Ground Penetrating Radar (GPR) is a challenging one. Due to the low-pass nature of soil sensors must utilise wave-lengths that are of the same order of magnitude as the object being imaged. This makes imaging difficult as straight ray approximations commonly used in higher frequency applications cannot be used. The problem becomes even more challenging when the target is shallowly buried as in this case the ground surface reflection and the near-field parameters of the radar need to be considered. This thesis has investigated the problem of imaging shallowly buried targets with GPR. Two distinct problems exist in this field radar design and the design of inverse scattering techniques. This thesis focuses on the design of inverse scattering techniques capable of taking the electric field measurements from the receiver and providing accurate images of the scatterer in real time. The thesis commences with a brief introduction to GPR theory. It then provides an extensive review of linear inverse scattering techniques applied to raw GPR data. As a result of this review the thesis draws the conclusion that, due to its strong foundations in Maxwell's equations, diffraction tomography is the most appropriate approach for imaging shallowly buried targets with GPR. A three-dimensional diffraction tomographic technique is then developed. This algorithm forms the primary contribution of the thesis. The novel diffraction tomography technique improves on its predecessors by catering for shallowly buried targets, significant antenna heights and evanescent waves. This is also the first diffraction tomography technique to be derived for a range of antenna structures. The advantages of the novel technique are demonstrated first mathematically then on synthetic and finally practical data. The algorithm is shown to be of high practical value by producing accurate images of buried targets in real time.
APA, Harvard, Vancouver, ISO, and other styles
28

Pyakurel, Sandeep. "2D and 3D GPR imaging of wood and fiber reinforced polymer composites." Morgantown, W. Va. : [West Virginia University Libraries], 2009. http://hdl.handle.net/10450/10501.

Full text
Abstract:
Thesis (Ph. D.)--West Virginia University, 2009.
Title from document title page. Document formatted into pages; contains xx, 211 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 208-211).
APA, Harvard, Vancouver, ISO, and other styles
29

Neupane, Garima. "Structural Condition Assessment of a Parking Deck using Ground Penetrating Radar." Youngstown State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1596223007802789.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Fernandes, Iris. "Investigações GPR em apoio à arqueologia pré-histórica na área de influência do aproveitamento hidrelétrico de Dardanelos, MT." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/14/14132/tde-16092018-174553/.

Full text
Abstract:
Nesta pesquisa, o metodo GPR foi empregado para localizar e mapear urnas funerarias enterradas, visando orientar as escavacoes arqueologicas e auxiliar nas medidas de protecao de sitios arqueologicos na regiao de influencia direta do aproveitamento hidreletrico de Dardanelos, proximo a Aripuana, MT. Um estudo arqueologico previo seria necessario para verificar a presenca de sitios arqueologicos, pois a regiao seria submersa, afetando todo e qualquer possivel artefato presente no sitio. Na area de influencia da usina de hidreletrica ja havia um sitio conhecido, o sitio de Dardanelos, sendo este o objeto da presente pesquisa. Dados GPR obtidos com a antena blindada de 200 MHz foram processados e analisados, e os resultados apresentados na forma de perfis 2D e em 3D na forma de depth-slices. Apos a aquisicao e processamento dos dados foram identificadas as anomalias GPR e interpretadas a fim de identificar os alvos de interesse arqueologico e raizes de arvores, evitando assim, que haja ambiguidade na caracterizacao dos alvos de interesse. A analise 3D gerada a partir dos perfis de reflexao 2D permitiu diferenciar com clareza os alvos de interesse das raizes de arvores, uma vez que nela podemos visualizar um padrao mais alongado ao inves de pontual, como e apresentado quando temos um artefato arqueologico. Ainda, atraves da conversao do tempo de percurso da onda eletromagnetica em profundidade, podemos identificar a profundidade dos alvos. Esta conversao tambem ajuda a esclarecer as ambiguidades, uma vez que as raizes sao mais rasas e os artefatos mais profundos.
In this research, GPR method was used to locate and map buried indigenous urns, aiming to guide and assist the archaeological excavations in order to guide protections acts of archaeological sites in the region directly affected by the hydroelectric of Dardanelos, near to Aripuana, MT. A preliminary archaeological study would be necessary to investigate the presence of archaeological sites, because the area would go underwater, affecting any possible artifact present on the site. In the area of influence of the hydroelectric plant there was already a known site, the site of the Dardanelos, which is the subject of this research. The GPR data obtained with shielded antenna 200 MHz were processed and analyzed, and the results presented as 2D and 3D profiles in the form of depth-slices. After processing the GPR data anomalies were identified and interpreted to identify the targets of archeological interest and roots of trees, thus avoiding ambiguity in the characterization of targets of interest. The 3D analysis generated from the 2D reflection profiles allowed to differentiate clearly the targets of interest from the roots of trees, since they can display a more elongated pattern rather than punctual, as shown when we have an archaeological artifact. Further, by converting the travel time of the electromagnetic wave in depth, we can identify the depth of targets. This conversion also helps to clarify the ambiguities, since the roots are shallower and the artifacts are deeper.
APA, Harvard, Vancouver, ISO, and other styles
31

Mitchell, Monique Tashell. "The Usefulness of Ground Penetrating Radar in locating burials in Charity Hospital Cemetery, New Orleans." ScholarWorks@UNO, 2008. http://scholarworks.uno.edu/td/686.

Full text
Abstract:
The Charity Hospital Cemetery in New Orleans, Louisiana, was used as a potter's field for over 150 years. When Charity Hospital considered selling a portion of the property ground penetrating radar (GPR) and thermal infrared (TIR) data were collected in the cemetery to locate unmarked graves. The TIR data could not be used because the expert died before compiling the TIR data. Therefore, the GPR data was the sole source of subsurface information. GPR anomalies were used to excavate 3 areas where bones and hospital supplies were subsequently found, unfortunately very limited analyses were possible on the analog GPR data. The study presented here involved digitizing data and conducting a more thorough analysis of map patterns to determine whether GPR data could be used reliably to locate burials in the cemetery. The study's result indicates that GPR is a reliable source for burial detection and other anomalies in the subsurface.
APA, Harvard, Vancouver, ISO, and other styles
32

Chandler, Clayton K. "Superimposed and Auxiliary Dunes of the Northern Namib Sand Sea: a Ground-Penetrating Radar Study." BYU ScholarsArchive, 2015. https://scholarsarchive.byu.edu/etd/5636.

Full text
Abstract:
Understanding modern features allows for their use as analogues for understanding the environments of the past and even environments on other planetary bodies. This study uses Ground-Penetrating Radar (GPR) to image the near surface sedimentary structures on a large linear dune in the northern Namib Sand Sea and image the sedimentary structure of an auxiliary dune. GPR data was collected using a 200 MHz antenna with a continuous scan method and was processed by removing direct arrival, gain balancing, migration and more which produced the highest resolution imagery from this region to date. Large dune data was analyzed to determine depositional process for different sedimentary patterns observed. Auxiliary dune data was analyzed to determine dune type and migration direction. Our results indicate five sedimentary process zones in the near surface of the large primary dune. These processes include motion of the dune crest as well as different phases of superimposed dune deposition. It is evident from our interpretation that there have been at least two phases of superimposed dune deposition separated by an erosional process boundary. These phases of deposition have produced a reversed succession of strata on opposing sides of the dune with deposits of 3D superimposed dunes beneath 2D superimposed dune deposits on the west and deposits of 2D superimposed dunes beneath 3D superimposed dune deposits on the east. This suggests a reversal of wind environment in the region in the recent past and could provide insight into the building and stability of linear dunes on Earth. Our results also indicate that the auxiliary study dune is oblique in nature with migration to the north-northeast and that it and other similar dunes in the vicinity are formed because of their proximity to Tsondab Vlei. The apparent dependence of these smaller scale features on interruptions in the dunefield like Tsondab Vlei suggest that the normal wind patterns within the dunefield are a combination of the regional wind patterns with significant influence from the large linear dunes themselves.
APA, Harvard, Vancouver, ISO, and other styles
33

Traille, Anya Nadira-Asanti. "Flexible monolithic ultra-portable ground penetrating radar using inkjet printing technology." Thesis, Toulouse, INPT, 2014. http://www.theses.fr/2014INPT0095/document.

Full text
Abstract:
Un géoradar (GPR) effectue une détection non destructive d'objets enfouis, ou l'imagerie du sous-sol par transmission d'ondes électromagnétiques et la détection et l'analyse des réflexions. Le principal défi de GPR est la réduction de la portée de détection en raison de l'atténuation du signal grave causée par la conductivité du sous-sol qui devient plus sévère dans les hautes fréquences. Afin d'augmenter la portée de détection, GPR utilise des fréquences plus basses que les radars non-GPR et nécessite donc de plus grandes antennes qui peuvent limiter la portabilité du système. La plupart des systèmes utilisent des radars GPR à impulsion mais le FMCW (onde continue à fréquence modulée) radar peut présenter certains avantages tels que la versatilité de la fréquence, une maintenance réduite du système et une meilleure résolution de gamme. Les fréquences inférieures à 1 GHz ont d'abord été rares en radars de courte portée FMCW mais trouvent maintenant leur chemin de retour dans des systèmes comme ultra-large bande (UWB) pénétrant dans le sol des radars pour la détection des mines et ainsi que d'autres applications. Lorsque les mesures sont effectuées sur des véhicules, de grands appareils d'antenne ne sont pas un problème. La portabilité, cependant, peut devenir un problème dans les études géophysiques ou des travaux d'urgence dans laquelle on peut avoir besoin de transporter le système par des endroits accidentés, inexplorés et / ou dangereux sans accès aux véhicules. Des environnements inaccessibles peuvent nécessiter la manœuvrabilité à travers d’obstacles (montagnes, grottes, lacs, zones rocheuses). D’ailleurs, l’installation rapide du système est critique dans des conditions difficiles telles que les températures extrêmes, où le temps d'exposition est coûteux et le temps de mesure limité. Une solution pour améliorer la portabilité et la capacité de déploiement d'un système GPR est de réaliser un système complet sur un substrat qui est enroulable afin de permettre une transportation facile. L’électronique sur substrat flexible a déjà été utilisée dans des applications militaires et des sports en plein air. Actuellement, il y a quelques technologies disponibles pour réaliser l'électronique flexible qui ont été un thème majeur en recherche, chacune avec différents niveaux d'intégration. La technologie d'impression à jet d'encre offre une méthode efficace, polyvalente et rentable pour la réalisation de dispositifs flexibles. Dans ce travail, un système radar FMCW classique a été conçu et un travail présenté, pour la première fois, d’application de la technologie d'impression à jet d'encre sur un système de radar. Le système est appelé un système de radar monolithique portable dans lequel tous les agents actifs, passifs et l'antenne sont destinés à partager le même substrat enroulable continu. Ainsi, une intégration hybride est utilisée pour étudier la fiabilité et la performance du système complet enroulé autour d’un rayon serré. Plusieurs défis de conception d'un grand système ont été surmontés qui donneront un aperçu de nouveaux modèles au fur et à mesure que le niveau d'intégration à l'aide de la technologie d'impression à jet d'encre continue d’augmenter
Flexible monolithic ultra-portable ground penetrating radar using inkjet printing technology A Ground Penetrating Radar (GPR) performs nondestructive detection of buried objects, or subsurface imaging by transmitting electromagnetic waves and detecting and analyzing the reflections. The main challenge of GPR is the reduction in detection range due to the severe signal attenuation that is caused by subsurface conductivity that becomes more severe at high frequencies. In order to increase the detection range, GPR uses lower frequencies than non-GPR radars and thus requires larger antennas that may limit system portability. Most GPR systems use impulse radars however the FMCW (frequency modulated continuous wave) radar can provide some advantages such as frequency versatility, reduced system maintenance and improved range resolution. Frequencies below 1 GHz were initially uncommon in short-range FMCW radars but are now finding their way back in systems such as ultra-wideband (UWB) ground penetrating radars for mine detection and as well as other applications. When measurements are performed on vehicles, large antenna fixtures are not a problem. Portability, however, can become an issue in geophysical studies or emergency work in which one may need to transport the system through rugged, unexplored and/or hazardous locations without vehicle access and perform measurements. Inaccessible environments may require climbing up and down, squeezing through, jumping over, crawling under, maneuvering through or swimming through obstacles (mountains, caves, lakes, rocky areas). In addition to transportation, rapid system setup is critical in difficult conditions such as freezing temperatures or extreme heat where exposure time is costly and limits measurement time. One solution to enhance the portability and deployability of a GPR system for wide area rugged measurements is to realize a complete system on a continuous substrate that is rollable around a reasonably small radius and storable in a scroll or poster-like fashion for easy backpack transportation. Electronics that can flex and bend have already used in military applications and for outdoor sporting gear. Currently, there are a few types of technology available to realize flexible electronics that have been a major topic of research, each with different levels of integration. Inkjet printing technology offers a cost effective, versatile and efficient method for realizing flexible devices. In this work a classical FMCW radar system is designed and an effort is made, for the first time, to apply inkjet printing technology to a radar system. The system is referred to as a portable monolithic radar system in which all actives, passives and antenna are meant to share the same continuous rollable substrate. In doing this, a medium level of integration is used to investigate limits of system complexity, resolution and ultra miniaturization for tight rollability. Various design challenges of a large system are overcome that will hopefully give insight to new designs as the integration level using inkjet printing technology increases
APA, Harvard, Vancouver, ISO, and other styles
34

Petrone, Johannes. "Using ground-penetrating Radar to Estimate Sediment Load in and Around TwoBoatLake, Western Greenland." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-196291.

Full text
Abstract:
In a periglacial environment it is important to know the thickness, orientation and structureof sediments when assessing the landscape and its hydrological pathways. Using a groundpenetratingradar (GPR) I have profiled large areas of the subsurface in a catchment area to alake on western Greenland. Post-processing and calculations of the gathered data has revealedthat the sediment thickness is maximum 15 meters in the valleys. Due to the fact that nocorrelation data is available, such as boreholes or pits, this estimation has large error limits butthe profiles gathered reveals the structure in the subsurface to a great extent.
APA, Harvard, Vancouver, ISO, and other styles
35

Korte, David M. "Three Dimensional Analysis of a Proglacial Clastic Dyke Network Using Ground Penetrating Radar, Skeidararsandur, Iceland." Kent State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=kent1381872414.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Kruske, Montana. "Stacking the Odds for Better GPR: An Antenna Comparison." Digital Commons @ East Tennessee State University, 2020. https://dc.etsu.edu/etd/3770.

Full text
Abstract:
Ground penetrating radar (GPR) is limited by depth penetration and signal-to-noise ratio (SNR), impacting the ability to resolve subsurface features. Stacking, a process of averaging multiple scans in the same location, improves SNR. Digital antennas are capable of stacking at much higher rates than analog antennas. Four sites were examined using a GSSI SIR-4000 GPR unit with a 400 MHz analog antenna and a 350 MHz digital “hyperstacking” (350 HS) antenna. Sites represent various soil conditions, with known features. Data were compared qualitatively and quantitatively for differences in antenna outputs. Visual inspection of radargrams indicate a reduction in noise in the 350 HS data compared to the 400 MHz data. Quantitative assessments identified significant differences in standard deviation of radar reflection amplitude occurring at depth with both antennas and a reduction in noise and marginal increases in depth of penetration in low-loss conditions with the 350 MHz HS antenna.
APA, Harvard, Vancouver, ISO, and other styles
37

Böniger, Urs. "Attributes and their potential to analyze and interpret 3D GPR data." Phd thesis, Universität Potsdam, 2010. http://opus.kobv.de/ubp/volltexte/2011/5012/.

Full text
Abstract:
Based on technological advances made within the past decades, ground-penetrating radar (GPR) has become a well-established, non-destructive subsurface imaging technique. Catalyzed by recent demands for high-resolution, near-surface imaging (e.g., the detection of unexploded ordnances and subsurface utilities, or hydrological investigations), the quality of today's GPR-based, near-surface images has significantly matured. At the same time, the analysis of oil and gas related reflection seismic data sets has experienced significant advances. Considering the sensitivity of attribute analysis with respect to data positioning in general, and multi-trace attributes in particular, trace positioning accuracy is of major importance for the success of attribute-based analysis flows. Therefore, to study the feasibility of GPR-based attribute analyses, I first developed and evaluated a real-time GPR surveying setup based on a modern tracking total station (TTS). The combination of current GPR systems capability of fusing global positioning system (GPS) and geophysical data in real-time, the ability of modern TTS systems to generate a GPS-like positional output and wireless data transmission using radio modems results in a flexible and robust surveying setup. To elaborate the feasibility of this setup, I studied the major limitations of such an approach: system cross-talk and data delays known as latencies. Experimental studies have shown that when a minimal distance of ~5 m between the GPR and the TTS system is considered, the signal-to-noise ratio of the acquired GPR data using radio communication equals the one without radio communication. To address the limitations imposed by system latencies, inherent to all real-time data fusion approaches, I developed a novel correction (calibration) strategy to assess the gross system latency and to correct for it. This resulted in the centimeter trace accuracy required by high-frequency and/or three-dimensional (3D) GPR surveys. Having introduced this flexible high-precision surveying setup, I successfully demonstrated the application of attribute-based processing to GPR specific problems, which may differ significantly from the geological ones typically addressed by the oil and gas industry using seismic data. In this thesis, I concentrated on archaeological and subsurface utility problems, as they represent typical near-surface geophysical targets. Enhancing 3D archaeological GPR data sets using a dip-steered filtering approach, followed by calculation of coherency and similarity, allowed me to conduct subsurface interpretations far beyond those obtained by classical time-slice analyses. I could show that the incorporation of additional data sets (magnetic and topographic) and attributes derived from these data sets can further improve the interpretation. In a case study, such an approach revealed the complementary nature of the individual data sets and, for example, allowed conclusions about the source location of magnetic anomalies by concurrently analyzing GPR time/depth slices to be made. In addition to archaeological targets, subsurface utility detection and characterization is a steadily growing field of application for GPR. I developed a novel attribute called depolarization. Incorporation of geometrical and physical feature characteristics into the depolarization attribute allowed me to display the observed polarization phenomena efficiently. Geometrical enhancement makes use of an improved symmetry extraction algorithm based on Laplacian high-boosting, followed by a phase-based symmetry calculation using a two-dimensional (2D) log-Gabor filterbank decomposition of the data volume. To extract the physical information from the dual-component data set, I employed a sliding-window principle component analysis. The combination of the geometrically derived feature angle and the physically derived polarization angle allowed me to enhance the polarization characteristics of subsurface features. Ground-truth information obtained by excavations confirmed this interpretation. In the future, inclusion of cross-polarized antennae configurations into the processing scheme may further improve the quality of the depolarization attribute. In addition to polarization phenomena, the time-dependent frequency evolution of GPR signals might hold further information on the subsurface architecture and/or material properties. High-resolution, sparsity promoting decomposition approaches have recently had a significant impact on the image and signal processing community. In this thesis, I introduced a modified tree-based matching pursuit approach. Based on different synthetic examples, I showed that the modified tree-based pursuit approach clearly outperforms other commonly used time-frequency decomposition approaches with respect to both time and frequency resolutions. Apart from the investigation of tuning effects in GPR data, I also demonstrated the potential of high-resolution sparse decompositions for advanced data processing. Frequency modulation of individual atoms themselves allows to efficiently correct frequency attenuation effects and improve resolution based on shifting the average frequency level. GPR-based attribute analysis is still in its infancy. Considering the growing widespread realization of 3D GPR studies there will certainly be an increasing demand towards improved subsurface interpretations in the future. Similar to the assessment of quantitative reservoir properties through the combination of 3D seismic attribute volumes with sparse well-log information, parameter estimation in a combined manner represents another step in emphasizing the potential of attribute-driven GPR data analyses.
Geophysikalische Erkundungsmethoden haben in den vergangenen Jahrzehnten eine weite Verbreitung bei der zerstörungsfreien beziehungsweise zerstörungsarmen Erkundung des oberflächennahen Untergrundes gefunden. Im Vergleich zur Vielzahl anderer existierender Verfahrenstypen ermöglicht das Georadar (auch als Ground Penetrating Radar bezeichnet) unter günstigen Standortbedingungen Untersuchungen mit der höchsten räumlichen Auflösung. Georadar zählt zu den elektromagnetischen (EM) Verfahren und beruht als Wellenverfahren auf der Ausbreitung von hochfrequenten EM-Wellen, das heisst deren Reflektion, Refraktion und Transmission im Untergrund. Während zweidimensionale Messstrategien bereits weit verbreitet sind, steigt gegenwärtig das Interesse an hochauflösenden, flächenhaften Messstrategien, die es erlauben, Untergrundstrukturen dreidimensional abzubilden. Ein dem Georadar prinzipiell ähnliches Verfahren ist die Reflexionsseismik, deren Hauptanwendung in der Lagerstättenerkundung liegt. Im Laufe des letzten Jahrzehnts führte der zunehmende Bedarf an neuen Öl- und Gaslagerstätten sowie die Notwendigkeit zur optimalen Nutzung existierender Reservoirs zu einer verstärkten Anwendung und Entwicklung sogenannter seismischer Attribute. Attribute repräsentieren ein Datenmaß, welches zu einer verbesserten visuellen Darstellung oder Quantifizierung von Dateneigenschaften führt die von Relevanz für die jeweilige Fragestellung sind. Trotz des Erfolgs von Attributanalysen bei reservoirbezogenen Anwendungen und der grundlegenden Ähnlichkeit von reflexionsseismischen und durch Georadar erhobenen Datensätzen haben attributbasierte Ansätze bisher nur eine geringe Verbreitung in der Georadargemeinschaft gefunden. Das Ziel dieser Arbeit ist es, das Potential von Attributanalysen zur verbesserten Interpretation von Georadardaten zu untersuchen. Dabei liegt der Schwerpunkt auf Anwendungen aus der Archäologie und dem Ingenieurwesen. Der Erfolg von Attributen im Allgemeinen und von solchen mit Berücksichtigung von Nachbarschaftsbeziehungen im Speziellen steht in engem Zusammenhang mit der Genauigkeit, mit welcher die gemessenen Daten räumlich lokalisiert werden können. Vor der eigentlichen Attributuntersuchung wurden deshalb die Möglichkeiten zur kinematischen Positionierung in Echtzeit beim Georadarverfahren untersucht. Ich konnte zeigen, dass die Kombination von modernen selbstverfolgenden Totalstationen mit Georadarinstrumenten unter Verwendung von leistungsfähigen Funkmodems eine zentimetergenaue Positionierung ermöglicht. Experimentelle Studien haben gezeigt, dass die beiden potentiell limitierenden Faktoren - systeminduzierte Signalstöreffekte und Datenverzögerung (sogenannte Latenzzeiten) - vernachlässigt beziehungsweise korrigiert werden können. In der Archäologie ist die Untersuchung oberflächennaher Strukturen und deren räumlicher Gestalt wichtig zur Optimierung geplanter Grabungen. Das Georadar hat sich hierbei zu einem der wohl am meisten genutzten zerstörungsfreien geophysikalischen Verfahren entwickelt. Archäologische Georadardatensätze zeichnen sich jedoch oft durch eine hohe Komplexität aus, was mit der wiederholten anthropogenen Nutzung des oberflächennahen Untergrundes in Verbindung gebracht werden kann. In dieser Arbeit konnte gezeigt werden, dass die Verwendung zweier unterschiedlicher Attribute zur Beschreibung der Variabilität zwischen benachbarten Datenspuren eine deutlich verbesserte Interpretation in Bezug auf die Fragestellung ermöglicht. Des Weiteren konnte ich zeigen, dass eine integrative Auswertung von mehreren Datensätzen (methodisch sowie bearbeitungstechnisch) zu einer fundierteren Interpretation führen kann, zum Beispiel bei komplementären Informationen der Datensätze. Im Ingenieurwesen stellen Beschädigungen oder Zerstörungen von Versorgungsleitungen im Untergrund eine große finanzielle Schadensquelle dar. Polarisationseffekte, das heisst Änderungen der Signalamplitude in Abhängigkeit von Akquisitions- sowie physikalischen Parametern stellen ein bekanntes Phänomen dar, welches in der Anwendung bisher jedoch kaum genutzt wird. In dieser Arbeit wurde gezeigt, wie Polarisationseffekte zu einer verbesserten Interpretation verwendet werden können. Die Überführung von geometrischen und physikalischen Attributen in ein neues, so genanntes Depolarisationsattribut hat gezeigt, wie unterschiedliche Leitungstypen extrahiert und anhand ihrer Polarisationscharakteristika klassifiziert werden können. Weitere wichtige physikalische Charakteristika des Georadarwellenfeldes können mit dem Matching Pursuit-Verfahren untersucht werden. Dieses Verfahren hatte in den letzten Jahren einen großen Einfluss auf moderne Signal- und Bildverarbeitungsansätze. Matching Pursuit wurde in der Geophysik bis jetzt hauptsächlich zur hochauflösenden Zeit-Frequenzanalyse verwendet. Anhand eines modifizierten Tree-based Matching Pursuit Algorithmus habe ich demonstriert, welche weiterführenden Möglichkeiten solche Datenzerlegungen für die Bearbeitung und Interpretation von Georadardaten eröffnen. Insgesamt zeigt diese Arbeit, wie moderne Vermessungstechniken und attributbasierte Analysestrategien genutzt werden können um dreidimensionale Daten effektiv und genau zu akquirieren beziehungsweise die resultierenden Datensätze effizient und verlässlich zu interpretieren.
APA, Harvard, Vancouver, ISO, and other styles
38

Ahmad, Noor Verfasser], and Michael P. [Akademischer Betreuer] [Wistuba. "Crack detection in asphalt pavements by means of Ground Penetrating Radar (GPR) / Noor Ahmad ; Betreuer: Michael P. Wistupa." Braunschweig : Technische Universität Braunschweig, 2017. http://d-nb.info/1175816531/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Sjödin, Rickard. "Interpolation and visualization of sparse GPR data." Thesis, Umeå universitet, Institutionen för fysik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-170946.

Full text
Abstract:
Ground Penetrating Radar is a tool for mapping the subsurface in a noninvasive way. The radar instrument transmits electromagnetic waves and records the resulting scattered field. Unfortunately, the data from a survey can be hard to interpret, and this holds extra true for non-experts in the field. The data are also usually in 2.5D, or pseudo 3D, meaning that the vast majority of the scanned volume is missing data. Interpolation algorithms can, however, approximate the missing data, and the result can be visualized in an application and in this way ease the interpretation. This report has focused on comparing different interpolation algorithms, with extra focus on behaviour when the data get sparse. The compared methods were: Linear, inverse distance weighting, ordinary kriging, thin plate splines and fk domain zone-pass POCS. They were all found to have some strengths and weaknesses in different aspects, although ordinary kriging was found to be the most accurate and created the least artefacts. Inverse distance weighting performed surprisingly well considering its simplicity and low computational cost. A web-based, easy-to-use visualization application was developed in order to view the results from the interpolations. Some of the tools implemented include time slice, crop of a 3D cube, and iso surface.
APA, Harvard, Vancouver, ISO, and other styles
40

Youn, Hyoung-Sun. "Development of unexploded ordnances (UXO) detection and classification system using ultra wide bandwidth fully polarimetric ground penetrating radar (GPR)." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1174510001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Ahmed, Amr. "Design And Optimization Of Uwb Antenna For Air Coupled Gpr Applications." ScholarWorks @ UVM, 2014. http://scholarworks.uvm.edu/graddis/262.

Full text
Abstract:
This thesis presents a novel antenna structure that satisfies the challenging requirements of an air coupled high speed ground penetrating radar (GPR). The desired GPR system is to achieve high spatial resolution and accurate inspection results while scanning at relatively high speed for highway pavement and bridge deck inspection. This work utilizes the Ultra Wide Band (UWB) antenna design to achieve both physical and electrical requirements imposed. The design procedure starts with a short survey to discuss typical UWB antennas used for GPR applications, and various tradeoffs of each type specifically when used for Air Coupled GPR applications. Our structure anatomy is presented, followed by a theory introduction that mainly focuses on achieving good impedance matching throughout the proposed antenna structure. A proof-of-concept MATLAB model is created to evaluate the preliminary physical dimensions that can achieve minimum reflections at antenna's feed point. These dimensions are then used in SolidWorks to create a 3D model that is imported later in HFSS to obtain accurate electromagnetic characteristics. Furthermore, fine tunings are performed to the antenna structure to optimize both gain and impedance matching. The SolidWorks 3-D structural model is finally used for antenna fabrication. The measurements recorded from the field experiments using the prototypes manufactured are compared to the simulation results confirming our initial findings. Both measurements and simulation results demonstrated very small reflection loss across the 700 MHz ~ 6 GHz frequency band with a very high directed gain and radiation efficiency.
APA, Harvard, Vancouver, ISO, and other styles
42

Dara, Rebwar Nasir. "Using Ground Penetrating Radar (GPR) for identifying floodplain and riverbed structural heterogeneity and implications for groundwater-surface water exchange." Thesis, University of Birmingham, 2018. http://etheses.bham.ac.uk//id/eprint/8016/.

Full text
Abstract:
The aim of the study is to investigate the variability in riverbed permeability fields in an unprecedented spatial resolution and quantify the impacts on controlling hyporheic exchange fluxes. Geophysical surveys were conducted deploying GPR on the floodplain and within the channel. At locations identified to be representative for the range of streambed hydrofacies in investigated stream reach, multi-level mini-piezometer networks were installed in the streambed. The results of GPR surveys in both sites provided different radar reflections which indicated a range of different radar facies and helped to delineate the type and extend of high and low conductive materials. The localised high Darcy fluxes inside high conductivity piezometers indicated rapid discharge of groundwater due to the enhanced connectivity to deeper groundwater. Whereas, low flow velocity within and around low conductivity peat and clay lenses indicated that these layers substantially inhibit groundwater upwelling, resulting in enhanced streambed residence and reaction times. The increase in residence time and the related depletion in the volume of DO facilitated the development of conditions necessary for nitrate reduction. In contrast, preferential flow paths and short residence times in highly conductive drift deposits resulted in no significant changes in nitrate concentrations along hyporheic flow paths.
APA, Harvard, Vancouver, ISO, and other styles
43

Bulur, Hatice Gonca. "Determination Of Buried Circular Cylinder With Ground Penetrating Radar Using An Optical Fiber Sensor." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613702/index.pdf.

Full text
Abstract:
The terms &lsquo
ground-probing radar&rsquo
, &lsquo
ground penetrating radar (GPR)&rsquo
, &lsquo
sub-surface radar&rsquo
or &lsquo
surface-penetrating radar (SPR)&rsquo
refer to various techniques for detecting and imaging of subsurface objects. Among those terms GPR is preferred and used more often. In this thesis, the depth and the position of the buried circular cylinder are determined by a GPR system which comprises of an optical fiber sensor (OFS). The system is a combination of OFS, GPR and optical communication link. In order to determine the depth and the position, first of all the electric field distribution at the OFS is obtained by integrating the Green&rsquo
s function over the induced current distribution. Those distributions are observed for different frequency and depth values. The voltages inside the distribution are measured by OFS. By changing the depth of the cylinder and the frequency of the system, various plots showing x axis displacement versus measured voltages are obtained. Those plots are related to interference fringe patterns. The position and the depth of the cylinder are obtained using interference fringe patterns. All of the studies mentioned are performed in MATLAB R2007b program. The noises of the system due to OFS are extracted using OPTIWAVE OPTISYSTEM 7.0 program. By adding those noises to the measured voltage values, the operating frequency of the system is observed.
APA, Harvard, Vancouver, ISO, and other styles
44

Neyrat, Mathieu. "Contribution à l’étude de G. P. R. (Ground Penetrating Radar) multicapteurs : Méthodes directes et inverses en temporel." Limoges, 2009. https://aurore.unilim.fr/theses/nxfile/default/a81b4d3c-f079-405b-88a2-1f087d9726f1/blobholder:0/2009LIMO4003.pdf.

Full text
Abstract:
Les radars à sondage de sol aussi appelés GPR (Ground Penetrating Radar) jouent un rôle important pour la prospection non destructive dans des domaines très variés. Ce travail propose une étude théorique de ce type de radar dans une configuration multicapteur. Dans un première partie, les lois fondamentales de l’électromagnétisme ainsi que le principe de fonctionnement d’un radar GPR sont présentés. Une méthode numérique permettant la modélisation rapide d’une scène réaliste et le calcul de B-scan est décrite. Cette méthode basée sur la FDTD (Finite Difference Time Domain) a permis de tester différentes configurations de radars multicapteurs et d’en montrer leur apport. La dernière partie propose deux méthodes inverses dans le domaine temporel. La méthode de retournement temporel et la méthode de focalisation de phase s'avèrent bien adaptées à la localisation d’objets à partir d’enregistrements provenant de radars multicapteurs
Ground Penetrating Radars (G. P. R. ) contribute in non-destructive survey in various domains. This work deals with a study of GPR in multisensor configuration. In a first part, the fundamental laws of electromagnetism and the radar principle are presented. A numerical method for fast modeling of realistic scenes and B-scan calculation is described. This method based on the FDTD (Finite Difference Time Domain) allowed to test various configurations of multisensor radar and to show their contribution. The final section proposes two inverse methods in time domain. The reverse time method and the phase shift method are well suited to the location of objects from multisensor radar records
APA, Harvard, Vancouver, ISO, and other styles
45

Almeida, Emerson Rodrigo. "Análise da tomografia de micro-ondas em dados GPR sob condições controladas: aplicações em arqueologia e estudos forenses." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/14/14132/tde-04062018-170248/.

Full text
Abstract:
Nesta pesquisa de doutorado foi desenvolvida uma metodologia de análise e interpretação de dados GPR (Ground Penetrating Radar) empregando a tomografia de micro-ondas. Esta ferramenta foi empregada com o objetivo de detectar e estimar a geometria de alvos que simulam artefatos comumente encontrados em sítios arqueológicos brasileiros e de um alvo orgânico que simula um corpo humano em decomposição visando estudos forenses sob condições controladas. Os dados de interesse arqueológico foram adquiridos sobre o Sítio Controlado de Geofísica Rasa (SCGR) do IAG/USP. Os dados de interesse forense foram adquiridos sobre um experimento controlado conduzido no campus da USP em Pirassununga (SP), onde um porco de aproximadamente 80 kg foi enterrado e a sua decomposição foi monitorada com o método GPR ao longo de 18 meses. Os cálculos necessários para a execução da inversão dos dados GPR através da tomografia foram implementados em linguagem Matlab, juntamente com ferramentas de remoção de background que se mostraram úteis para auxiliar a interpretação dos resultados. O programa de imageamento tomográfico foi validado a partir de dados sintéticos gerados no software GprMax a partir de modelos que simulam os alvos de interesse arqueológico instalados no SCGR. A geometria dos alvos do SCGR pôde ser bem estimada, exceto pelo alvo representado pelo muro de tijolos. Feições no solo associadas às escavações para instalação dos alvos puderam ser observadas com clareza nas imagens tomográficas. A geometria do porco, bem como o processo de decomposição foram mapeados através da tomografia mesmo em condições de baixo contraste entre as suas propriedades elétricas e as do solo. Em ambos os casos estudados as imagens tomográficas de dados GPR de 270 MHz, 400 MHz e 900 MHz permitiram extrair mais informações acerca dos alvos do que pelo uso do processamento convencional. Os resultados mostram que a tomografia de micro-ondas possui um grande potencial para aplicação em sítios arqueológicos brasileiros, bem como para aplicações forenses.
In this research a methodology for analysis and interpretation of GPR (Ground Penetrating Radar) data using microwave tomography was developed. This tool was used for detection and geometry evaluation of targets which simulate artifacts usually found at Brazilian archaeological sites and also of one organic target which simulates a decomposing human body for forensic studies under controlled conditions. The data of archaeological interest were acquired on the Geophysical Test Site (SCGR) at IAG/USP. The data of forensic interest were acquired on an experiment developed at the USP campus in Pirassununga (SP) city. In this experiment a pig with about 80 kg was buried and its decomposition was monitored through GPR profiles during 18 months. The calculations required for the GPR data inversion through microwave tomography were implemented in Matlab language, with background removal tools which were helpful for the interpretation of resulting images. The tomographic imaging program was validated using synthetic data generated by the software GprMax. The models simulate targets of archaeological interest buried at the SCGR. The geometry was well estimated for all the targets, except for the brick wall. Ground features associated to excavations done for the installation of the targets were clearly observed in the tomographic images. The pig geometry and its decomposition process were mapped through microwave tomography even under conditions of low contrast between its electric properties and those from the soil. In both studied cases the tomographic images from GPR data of 270 MHz, 400 MHz and 900 MHz allowed to extract more information about the targets than just using the conventional processing. The results show that microwave tomography has a great potential to be applied at Brazilian archaeological sites, as well as for forensic applications.
APA, Harvard, Vancouver, ISO, and other styles
46

Shofstall, Lisa. "Class III / short line system inventory to determine 286,000 lb (129,844 kg) railcar operational status in Kansas and determination of ballast fouling using ground penetrating radar." Thesis, Kansas State University, 2017. http://hdl.handle.net/2097/35477.

Full text
Abstract:
Master of Science
Department of Civil Engineering
Eric J. Fitzsimmons
The rail industry's recent shift towards larger and heavier railcars has influenced Class III / short line railroad operation and track maintenance costs. Class III railroads earn less than $38.1 million in in annual revenue and generally operate first and last leg shipping for their customers. In Kansas, Class III railroads operate approximately 40 percent of the roughly 2,800 miles (4,500 km) of rail; however, due to the current Class III track condition they move lighter railcars at lower speeds than Class I railroads. The State of Kansas statutorily allots $5 million to support rail improvement projects, primarily for Class III railroads. Therefore, the objective of this study was to conduct an inventory of Kansas’s Class III rail network to identify the track segments in need of this support that would be most beneficial to the rail system. Representatives of each railroad were contacted and received a survey requesting information regarding the operational and structural status of their systems. The data collected were organized and processed to determine the sections of track that can accommodate the heavier axle load cars that are currently being utilized by Class I railroads. This study identified that Class III railroads shipped over 155,000 carloads of freight in 2016 and 30 percent of Kansas’s Class III track can currently accommodate heavy axle cars. The increased load from the increased railcar size has also increased the risk of damage to railroad’s track structure. Railroad ballast is the free draining granular material that supports the track structure. As the track ages, small particles can fill the voids of the granular material which is a process known as fouling. Established methods for determining the fouling of a section of ballast are destructive tests that usually require the railroad to restrict or reroute traffic on its network. Ground Penetrating Radar (GPR) is a nondestructive geophysical surveying method that measures the time required for electromagnetic wave impulses to reflect off differing subsurface interfaces. Historically, GPR surveys of track structures primarily determine the depth of ballast and track geometry. The objective of this study was to determine the viability of utilizing the laboratory’s existing GPR equipment to develop a methodology of measuring ballast fouling nondestructively. A 48 x 48 x 48 in (1.2 x 1.2 x 1.2 m) test box was built. The test box was filled with 48 in (1.2 m) of clean and ballast. Tests were run on dry and partially saturated material, wetted using 6 gallons (22.7 L). GPR data were collected hourly for the first 6 hours, then at the multiples of 12 and 24 hour marks for one week. Sand was chosen as an absorbent geologic material for the second stage of testing since no fouled ballast could be acquired at the time of the study. A 27 x18 x 18 in (0.69 x 0.46 x 0.046 m) box was filled with sand and wetted with water in one gallon (7.5 L) increments. GPR scans and samples to determine the water content were collected after the addition of each gallon. The data collected were processed to determine soil properties. Preliminary results from this research indicate that the GPR set up utilized can effectively determine the dielectric constant of geologic materials including ballast, although the dielectric constant is highly dependent on the volumetric moisture content of the material.
APA, Harvard, Vancouver, ISO, and other styles
47

Montane, Juana Maria. "Geophysical Analysis of a Central Florida Karst Terrain using Light Detection and Ranging (LIDAR) and Ground Penetrating Radar (GPR) Derived Surfaces." FIU Digital Commons, 2001. http://digitalcommons.fiu.edu/etd/42.

Full text
Abstract:
Airborne LIDAR (Light Detecting and Ranging) is a relatively new technique that rapidly and accurately measures micro-topographic features. This study compares topography derived from LIDAR with subsurface karst structures mapped in 3-dimensions with ground penetrating radar (GPR). Over 500 km of LIDAR data were collected in 1995 by the NASA ATM instrument. The LIDAR data was processed and analyzed to identify closed depressions. A GPR survey was then conducted at a 200 by 600 m site to determine if the target features are associated with buried karst structures. The GPR survey resolved two major depressions in the top of a clay rich layer at ~10m depth. These features are interpreted as buried dolines and are associated spatially with subtle (< 1m) trough-like depressions in the topography resolved from the LIDAR data. This suggests that airborne LIDAR may be a useful tool for indirectly detecting subsurface features associated with sinkhole hazard.
APA, Harvard, Vancouver, ISO, and other styles
48

McGraw, Timothy Joseph. "Assessment of Ground-Penetrating Radar and Comparison with Resistivity for Detecting Subsurface Cavities within Karst Topography in North-Central Ohio." Bowling Green State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1277148202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Le, Gall Alice. "Sondage des sous-sols planétaires par radar à pénétration de sol : étude et modélisation des performances de l'instrument TAPIR." Paris 6, 2007. http://www.theses.fr/2007PA066460.

Full text
Abstract:
En planétologie, l’utilisation des radars à pénétration de sol (Ground Penetrating Radar) est récente mais connait une sollicitation croissante. Dans le cadre de l'exploration martienne, la technique radar s'impose comme l'unique moyen d'explorer le sous-sol et de détecter les éventuels réservoirs hydriques, reliques d'une activité aqueuse passée, qui seraient enfouis à des profondeurs kilométriques. L'instrument TAPIR conçu dans le cadre de la mission NetLander et aujourd'hui en lice pour la mission européenne ExoMars, est un GPR impulsionnel opérant, depuis une position fixe à la surface, à des fréquences basses dans la gamme HF (2-6MHz). Dotés de nombreux modes de fonctionnement (mesure d'impédance, sondage mono et bistatique, mode passif), il a fait l'objet de plusieurs campagnes de mesures sur différents sites naturels: dune du Pyla, Terre Adélie et désert ouest-égyptien. Nous présentons une étude à la fois théorique et expérimentale des performances de TAPIR. Pour la mener, nous avons fait appel à des outils numériques (code FDTD), développé des modèles analytiques et des algorithmes de traitement de données. Il s'agit de révéler le potentiel de chacun des modes de fonctionnement et de préparer l'interprétation des données. Nous exposons la méthode mise en place pour déterminer les propriétés électriques du proche sous-sol à partir de la mesure de l'impédance d'antenne et nous montrons que le concept nouveau sur lequel repose TAPIR lui confère un certain pouvoir imagerie. En conclusion, une réflexion sur l'hydrologie d'un sous-sol présentant un aquifère est proposée afin de décrire les sites d'amarsissage les plus favorables à la prospection GPR.
APA, Harvard, Vancouver, ISO, and other styles
50

Kohls, Nicholas Everett. "Software Defined Radio Short Range Radar." BYU ScholarsArchive, 2021. https://scholarsarchive.byu.edu/etd/9027.

Full text
Abstract:
High cost is a current problem with modern radar systems. Software-defined radios (SDRs) offer a possible solution for low-cost customizable radar systems. An SDR is a radio communi- cation system where, instead of the traditional radio components implemented in hardware, many of the components are implemented in software on a computer or embedded system. Although SDRs were originally designed for wireless communication systems, the firmware of an SDR can be configured into a radar system. With new companies entering the market, various types of low- cost SDRs have emerged. This thesis explores the use of a LimeSDR-Mini in a short-range radar through open software tools and custom code. The LimeSDR-Mini is successfully shown to detect targets at a short range. However, due to the instability of the LimeSDR-Mini, the consistent detection of a target is not possible. This thesis shows how the LimeSDR is characterized and how timing synchronization and instability issues are mitigated. The LimeSDR-Mini falls short of operating reliable in a radar system and other SDR boards need to be explored as viable options. Test setups using coaxial cables and test setups using antennas in an outdoor environment show the instability of the LimeSDR-Mini. The transmitter and the receiver are asynchronous. The timing difference varies slightly from run to run, which results in issues that are exacerbated in a short-range radar. The bleed-through signal is the signal leakage from the transmitter to the receiver. The bleed-through signal prevents the detection of targets at a short-range. Feed-through nulling is a signal processing technique used to eliminate the bleed-through signal so that short- range targets can be detected. The instability of the LimeSDR-Mini reduces the effectiveness of feed-through nulling techniques.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography