Academic literature on the topic 'Group Klein'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Group Klein.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Group Klein"

1

Torriani, Hugo H. "Profinite completions of the fundamental group of the Klein bottle." Czechoslovak Mathematical Journal 35, no. 4 (1985): 511–14. http://dx.doi.org/10.21136/cmj.1985.102044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

KOHLS, MARTIN, and MÜFİT SEZER. "SEPARATING INVARIANTS FOR THE KLEIN FOUR GROUP AND CYCLIC GROUPS." International Journal of Mathematics 24, no. 06 (June 2013): 1350046. http://dx.doi.org/10.1142/s0129167x13500468.

Full text
Abstract:
We consider indecomposable representations of the Klein four group over a field of characteristic 2 and of a cyclic group of order pm with p, m coprime over a field of characteristic p. For each representation, we explicitly describe a separating set in the corresponding ring of invariants. Our construction is recursive and the separating sets we obtain consist of almost entirely orbit sums and products.
APA, Harvard, Vancouver, ISO, and other styles
3

Kobayashi, Masaki. "Hopfield neural networks using Klein four-group." Neurocomputing 387 (April 2020): 123–28. http://dx.doi.org/10.1016/j.neucom.2019.12.127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Balodi, Mamta, Hua-Lin Huang, and Shiv Datt Kumar. "Finite Majid Algebras Over the Klein Group." Communications in Algebra 42, no. 11 (May 23, 2014): 4962–83. http://dx.doi.org/10.1080/00927872.2013.828739.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

AHMADINEZHAD, HAMID. "ON CONJUGACY CLASSES OF THE KLEIN SIMPLE GROUP IN CREMONA GROUP." Glasgow Mathematical Journal 59, no. 2 (June 10, 2016): 395–400. http://dx.doi.org/10.1017/s0017089516000239.

Full text
Abstract:
AbstractWe consider countably many three-dimensional PSL2($\mathbb{F}$7)-del Pezzo surface fibrations over ℙ1. Conjecturally, they are all irrational except two families, one of which is the product of a del Pezzo surface with ℙ1. We show that the other model is PSL2($\mathbb{F}$7)-equivariantly birational to ℙ2×ℙ1. Based on a result of Prokhorov, we show that they are non-conjugate as subgroups of the Cremona group Cr3(ℂ).
APA, Harvard, Vancouver, ISO, and other styles
6

Goodman, Jim. "The Klein-Gordon Equation." JOURNAL OF ADVANCES IN PHYSICS 13, no. 2 (March 16, 2017): 4648–50. http://dx.doi.org/10.24297/jap.v13i2.5672.

Full text
Abstract:
Two solutions to the Klein-Gordon equation are found. The existence of a maximum relativistic correction of 2 is thus indicated. The normal relativistic correction is given by the usual solution. A certain Hilbert Space is used to find the solutions using a group theory taught at LSU and the Texas Method of Math also taught at LSU. The usefulness of group theoretical manipulations in Hilbert Space is indicated. A lemma is proved using this group theory that predicts a charge of +/-1 is the only values of charge possible. The usefulness of the second solution to the Klein-Gordon equation of a maximum of 2 for the relativistic correction is basic to the mass predictions in [3]. The fact that the energy reaches mc^2 indicates a dipole spinning at velocity c. The dipole is spinning in a magnetic field created by other particles so it creates charge.
APA, Harvard, Vancouver, ISO, and other styles
7

HIDALGO, RUBEN A., and BERNARD MASKIT. "Fixed points of imaginary reflections on hyperbolic handlebodies." Mathematical Proceedings of the Cambridge Philosophical Society 148, no. 1 (September 28, 2009): 135–58. http://dx.doi.org/10.1017/s0305004109990272.

Full text
Abstract:
AbstractA Klein–Schottky group is an extended Kleinian group, containing no reflections and whose orientation-preserving half is a Schottky group. A dihedral-Klein–Schottky group is an extended Kleinian group generated by two different Klein–Schottky groups, both with the same orientation-preserving half. We provide a structural description of the dihedral-Klein–Schottky groups.Let M be a handlebody of genus g, with a Schottky structure. An imaginary reflection τ of M is an orientation-reversing homeomorphism of M, of order two, whose restriction to its interior is an hyperbolic isometry having at most isolated fixed points. It is known that the number of fixed points of τ is at most g + 1; τ is called a maximal imaginary reflection if it has g + 1 fixed points. As a consequence of the structural description of the dihedral-Klein–Schottky groups, we are able to provide upper bounds for the cardinality of the set of fixed points of two or three different imaginary reflections acting on a handlebody with a Schottky structure. In particular, we show that maximal imaginary reflections are unique.
APA, Harvard, Vancouver, ISO, and other styles
8

Saragih, Asido, and Santri Chintia Purba. "Application of Klein-4 Group on Domino Card." International Journal of Applied Sciences and Smart Technologies 02, no. 01 (June 8, 2020): 67–74. http://dx.doi.org/10.24071/ijasst.v2i1.2191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lachaud, G. "The Klein Quartic as a Cyclic Group Generator." Moscow Mathematical Journal 5, no. 4 (2005): 857–68. http://dx.doi.org/10.17323/1609-4514-2005-5-4-857-868.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bujalance, E., A. F. Costa, and J. M. Gamboa. "THE HYPERELLIPTIC MAPPING CLASS GROUP OF KLEIN SURFACES." Proceedings of the Edinburgh Mathematical Society 44, no. 2 (June 2001): 351–63. http://dx.doi.org/10.1017/s0013091599000322.

Full text
Abstract:
AbstractIn this paper we study the algebraic structure of the hyperelliptic mapping class group of Klein surfaces, which is closely related to the mapping class group of punctured discs. This group plays an important role in the study of the moduli space of hyperelliptic real algebraic curves. Our main result provides a presentation by generators and relations for the hyperelliptic mapping class group of surfaces of prescribed topological type.AMS 2000 Mathematics subject classification: Primary 14H10; 20H10; 30F50
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Group Klein"

1

Menegatti, Paolo. "Action du groupe de Klein sur une surface K3." Thesis, Poitiers, 2019. http://www.theses.fr/2019POIT2297.

Full text
Abstract:
L’objet de ce travail est la classification des actions du groupe de Klein G≃(ℤ/2ℤ)² sur une surface K3, X, où G contient une involution non-symplectique qui agit trivialement sur le réseau de Neron-Severi de X, ainsi que la détermination du nombre de points qui en composent le lieu fixe.Cela est accompli avec des méthodes purement algébriques, grâce à la théorie de Smith, qui permet de relier la cohomologie du lieu fixe H*(Xᴳ, F₂) à la G-cohomologie de H*(X, F₂).Nous commençons par déterminer les différentes possibilités pour la cohomologie du G-module H²(X, F₂) (et par conséquent la cohomologie du lieu fixe Xᴳ), en donnant aussi des résultats partiels pour le cas plus général G≃(ℤ/pℤ)ⁿ.Ensuite nous étudions l’extension du réseau de cohomologie H²(X, ℤ) induite par l’action de G et nous donnons une formule reliant le nombre des point fixes qui composent Xᴳ, à certains invariants numériques de l’ex-tension: notamment les dimensions des groupes discriminants des réseaux invariants, mais aussi un nouvel invariant numérique, que nous montrons être indépendant des autres et nécessaire pour le calcul du lieu fixe.Pour conclure, en utilisant le théorème de Torelli, nous déterminons tous les possibilités pour une action de G sur X et nous donnons aussi des exemples géométriques avec les fibrations elliptiques, confirmant les résultats prouvés
The aim of this work is to classify the actions of the Klein group G on a K3 surface X, where G≃(ℤ/2ℤ)² contains a non-symplectic involution which acts trivially on Neron-Severi lattice, as well as computing the number of points composing the fixed locus.This result is achieved through purely algebraic methods, due to Smith’s theory, which relates the cohomology of the fixed locus H*(Xᴳ, F₂) to the group cohomology H*(X, F₂).Firstly, we identify all possibilities for the cohomology of the G-module H²(X, F₂) (and therefore the cohomology of fixed locus Xᴳ), providing some partial results for the general case G≃(ℤ/pℤ)ⁿ.Thereafter, we study the extension of the cohomology lattice H²(X, ℤ) induced by the action of G and we prove a formula giving the number of fixed points composing Xᴳ from some numerical invariants of the extension.Namely the dimensions of discriminant groups of invariant lattices, but also a new numerical invariant, essential for the computation of the fixed locus, which we prove to be unrelated to other ones.Finally, via Torelli theorem, we find all possibilities for G acting on X and we provide some geometric examples -confirming our results- using elliptic fibrations
APA, Harvard, Vancouver, ISO, and other styles
2

Amah, Aditya Umbu Tana [Verfasser], Anja [Akademischer Betreuer] Klein, and Alexander [Akademischer Betreuer] Martin. "Multi-Antenna Multi-Group Multi-Way Relaying / Aditya Umbu Tana Amah. Betreuer: Anja Klein ; Alexander Martin." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2011. http://d-nb.info/1105563308/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Santos, Epifanio Lima. "Fundamentos de teoria de grupos e aplicações ao jogo Resta Um." Universidade Federal de Sergipe, 2015. https://ri.ufs.br/handle/riufs/6477.

Full text
Abstract:
This paper aims to present an methodology of teaching of algebra associated to the geometry, based on the theory of symmetry groups D4 with emphasis on the Klein group, as perceive that the game structure "peg solitare"has the same principles governing the Klein theory associated with symmetry group D4; so we explored the teaching resources offered by this popular game to introduce basics of groups and the relationship between their algebraic and geometric aspects, making them accessible to high school students.
Este trabalho tem como objetivo apresentar uma metodologia de ensino da algebra associada a geometria, fundamentada na teoria de grupos de simetria D4 com ^enfase no grupo de Klein, pois percebe-se que a estrutura do jogo resta um tem os mesmosprinc pios que regem a teoria de Klein associado ao grupo de simetria D4; por isso, exploramos os recursos did aticos oferecidos por este jogo popular para apresentar no c~oes b asicas de grupos e a rela c~ao entre seus aspectos alg ebricos e geom etricos, tornando-os acess veis a alunos do ensino m edio.
APA, Harvard, Vancouver, ISO, and other styles
4

Klein, Marina [Verfasser], Michael [Akademischer Betreuer] Roggendorf, Elke [Akademischer Betreuer] Cario, and Daniel [Akademischer Betreuer] Hoffmann. "Evolution of the envelope proteins E1 and E2 and of specific humoral immune response to these proteins in a group of patients infected by HCV in a single-source outbreak / Marina Klein. Gutachter: Elke Cario ; Daniel Hoffmann. Betreuer: Michael Roggendorf." Duisburg, 2011. http://d-nb.info/1015361803/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Melbéus, Henrik. "Particle Phenomenology of Compact Extra Dimensions." Doctoral thesis, KTH, Teoretisk partikelfysik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-93749.

Full text
Abstract:
This thesis is an investigation of the subject of extra dimensions in particle physics. In recent years, there has been a large interest in this subject. In particular, a number of models have been suggested that provide solutions to some of the problem with the current Standard Model of particle physics. These models typically give rise to experimental signatures around the TeV energy scale, which means that they could be tested in the next generation of high-energy experiments, such as the LHC. Among the most important of these models are the universal extra dimensions model, the large extra dimensions model by Arkani-Hamed, Dimopolous, and Dvali, and models where right-handed neutrinos propagate in the extra dimensions. In the thesis, we study phenomenological aspects of these models, or simple modifications of them. In particular, we focus on Kaluza–Klein dark matter in universal extra dimensions models, different aspects of neutrino physics in higher dimensions, and collider phenomenology of extra dimensions. In addition, we consider consequences of the enhanced renormalization group running of physical parameters in higher-dimensional models.
QC 20120427
APA, Harvard, Vancouver, ISO, and other styles
6

Cook, Joseph. "Properties of eigenvalues on Riemann surfaces with large symmetry groups." Thesis, Loughborough University, 2018. https://dspace.lboro.ac.uk/2134/36294.

Full text
Abstract:
On compact Riemann surfaces, the Laplacian $\Delta$ has a discrete, non-negative spectrum of eigenvalues $\{\lambda_{i}\}$ of finite multiplicity. The spectrum is intrinsically linked to the geometry of the surface. In this work, we consider surfaces of constant negative curvature with a large symmetry group. It is not possible to explicitly calculate the eigenvalues for surfaces in this class, so we combine group theoretic and analytical methods to derive results about the spectrum. In particular, we focus on the Bolza surface and the Klein quartic. These have the highest order symmetry groups among compact Riemann surfaces of genera 2 and 3 respectively. The full automorphism group of the Bolza surface is isomorphic to $\mathrm{GL}_{2}(\mathbb{Z}_{3})\rtimes\mathbb{Z}_{2}. We analyze the irreducible representations of this group and prove that the multiplicity of $\lambda_{1}$ is 3, building on the work of Jenni, and identify the irreducible representation that corresponds to this eigenspace. This proof relies on a certain conjecture, for which we give substantial numerical evidence and a hopeful method for proving. We go on to show that $\lambda_{2}$ has multiplicity 4.
APA, Harvard, Vancouver, ISO, and other styles
7

Zhao, Sheng-Yuan. "Groupes kleiniens birationnels en dimension deux." Thesis, Rennes 1, 2020. http://www.theses.fr/2020REN1S012.

Full text
Abstract:
Dans ce mémoire de thèse je considère une généralisation des groupes kleiniens en géométrie algébrique complexe. Le problème peut aussi être vu comme l'uniformisation des variétés projectives complexes sous une hypothèse algébrico-géométrique sur l'action du groupe de revêtement. Je donne une classification des groupes kleiniens birationnels en dimension deux. Il s'agit d'une interaction entre les transformations birationnelles des surfaces, les groupes de Kähler, les feuilletages holomorphes sur des surfaces complexes, et les espaces de Teichmüller
In this thesis I study a generalisation of Kleinian groups in the setting of complex algebraic geometry. The problem can also be seen as uniformization of projective varieties under an algebro-geometric hypothesis on the group of deck transformations. I give a classification of birational Kleinian groups in dimension two. It implements an interaction between birational transformations of surfaces,Kähler, groups, holomorphic foliations on complex surfaces, and Teichmüller spaces
APA, Harvard, Vancouver, ISO, and other styles
8

Qu, Yujiao. "Analysis of targets and functions of the chloroplast intron maturase MatK." Doctoral thesis, Humboldt-Universität zu Berlin, Lebenswissenschaftliche Fakultät, 2015. http://dx.doi.org/10.18452/17256.

Full text
Abstract:
In Chloroplasten durchlaufen primäre Transkripte eine großen Anzahl von bzw. Reifungsprozesse. Diese Ereignisse spielen eine wichtige Rolle bei der Regulation der Genexpression und sind im Wesentlichen durch Proteinfaktoren, insbesondere RNA-Bindeproteine, reguliert. Der plastidäre Spleißfaktor MatK zählt zu den prokaryotischen Gruppe-II-Intron. MatK aus Nicotiana tabacum interagiert mit seinem Heimatintron trnK und sechs weiteren Gruppe IIA Introns. In dieser Untersuchung, MatK-Bindestellen konnten unterschiedlichen Regionen der Gruppe-II-Introns zugewiesen werden mit RIP-seq in Nicotiana tabacum. Die vorliegenden Ergebnisse zeigen, dass MatK im Vergleich zu seinen bakteriellen Vorfahren an Vielseitigkeit in der RNA-Erkennung gewonnen hat. MatK zeigt somit beispielhaft, wie eine Maturase die Fähigkeit erworben haben könnte, in trans auf mehrere Introns zu wirken. Quantitative Untersuchung und mathematische Modellierung der Expression von MatK und dessen Zielen offenbart ein komplexes Muster möglicher regulatorischer Feedback-Mechanismen. In dieser Studie konnte ein möglicher Feedback- Mechanismus durch Analyse von polysomal gebundenen Transkripten ausgeschlossen werden. Stabile Bindung von Proteinen an spezifische RNA-Bindestellen und anschließender Abbau der ungeschützten RNA kann zu Akkumulation von kleinen RNAs (sRNAs) führen. Solche Footprints von RNA-Bindeproteinen wurden durch die Untersuchung von Datensätzen kleiner RNAs in Chlamydomonas reinhardtii identifiziert. Zwei der sRNAs entsprechen den 5'' Enden der reifen psbB und psbH mRNAs. Beide sRNAs sind abhängig von Mbb1, einem TPR (Tetratrico-peptide repeat) Protein. Die beiden sRNAs besitzen eine hohe Ähnlichkeit in ihrer Primärsequenz und fehlen in der mbb1 Mutante. Dies legt nahe, dass auch andere der hier identifizierten sRNAs an 5'' Enden plastidärer mRNAs Protein-Bindestellen repräsentieren, die für die korrekte RNA-Prozessierung und RNA-Stabilisierung in Chlamydomonas Chloroplasten erforderlich sind.
In chloroplasts, primary transcripts are subjected to a number of processing events. These events play important roles in the regulation of gene expression and are extensively controlled by protein factors, especially by RNA-binding proteins. Chloroplast splicing factor MatK is related to prokaryotic group II intron maturases. Nicotiana tabacum MatK interacts with its home intron trnK and six additional group IIA introns. In this study, binding sites of MatK were narrowed down to varying regions of its group II targets by RIP-seq in Nicotiana tabacum. The results obtained demonstrate that MatK has gained versatility in RNA recognition relative to its bacterial ancestors. MatK thus exemplifies how a maturase could have gained the ability to act in trans on multiple introns during the dispersion of the group II introns through the eukaryotic genome early in the eukaryote evolution. Quantitative investigation and mathematical modeling of the expression of MatK and its targets revealed a complex pattern of possible feedback regulatory interactions. In this study, one possible feedback regulation mechanism was ruled out by the analysis of polysome associated transcripts. Stable binding of proteins to specific RNA sites and subsequent degradation of the unprotected RNA regions can result in small RNA, footprint of the RNA binding protein. Such footprints were identified by examining small RNA datasets of Chlamydomonas reinhardtii. Two of the sRNAs correspond to the 5’ ends of mature psbB and psbH mRNAs. Both sRNAs are dependent on Mbb1, a nuclear-encoded TPR (Tetratrico-peptide repeat) protein. The two sRNAs have high similarity in primary sequence, and both are absent in the mbb1 mutant. This suggests that sRNAs at the 5’ ends of chloroplast mRNAs identified here generally represent the binding sites of proteins, which function in RNA processing and RNA stabilization in Chlamydomonas chloroplast.
APA, Harvard, Vancouver, ISO, and other styles
9

Boulanger, Adrien. "Exemples de systèmes dynamiques : comptage en mesure infinie, enlacement sur le tore et échanges d'intervalles affines." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS250.

Full text
Abstract:
On étudie dans cette thèse plusieurs systèmes dynamiques de nature géométrique. Le premier chapitre est consacré à l’étude de la fonction orbitale associée à certains groupes kleiniens de co-volumes infinis. Le deuxième chapitre est de nature plus topologique et discute les liens entre nombres d’enlacement et systèmes dynamiques. Le dernier chapitre concerne l’étude d’un exemple d’échanges d’intervalles affines, généralisation naturelle des échanges d’intervalles
We study in this thesis some geometric flavoured dynamical systems. The first chapter is dedicated to the asymptotic study of the orbital function associated to Kleinian groups of infinite co-volume. The second one is more topologic and deals with the notion of linking number and its dynamical related aspects. The last chapter is about the study of affine interval exchanges through a particular example
APA, Harvard, Vancouver, ISO, and other styles
10

Ülkü, Tolga. "Empirical analyses of airport efficiency and costs." Doctoral thesis, Humboldt-Universität zu Berlin, Wirtschaftswissenschaftliche Fakultät, 2015. http://dx.doi.org/10.18452/17117.

Full text
Abstract:
Kleine regionale Flughäfen leiden oft unter begrenzter Nachfrage sodass sie ihre Kosten nicht decken können. Die Frage ist wie solche Flughäfen effizient strukturiert, bewirtschaftet und möglicherweise finanziell unterstützt werden können. Viele solcher Flughäfen werden einzeln betrieben und erhalten direkte lokale oder nationale Subventionen, während andere von den Quersubventionen leben. Die Dissertation befasst sich zuerst mit der Abschätzung der Effizienz von 85 regionalen europäischen Flughäfen (2002-2009) durch Anwendung der „Data Envelopment Analysis“. Die Schätzungen zeigen, dass die potenziellen Einsparungen 50 Prozent und gesteigerten Einnahmemöglichkeiten 25 Prozent betragen. Die Zugehörigkeit zu einem Flughafensystem reduziert die Effizienz um 5 Prozent. Das durchschnittliche Break-Even Passagieraufkommen hat sich im letzten Jahrzehnt mit 464.000 Passagiere mehr als verdoppelt. Die Flughäfen hätten ihre Kosten mit allein 166.000 Passagiere decken können, wären sie effizient betrieben worden. Der zweite Teil beschäftigt sich mit einem Vergleich der Flughäfen von AENA und DHMI (2009-2011). Eine „Russell measure“ der DEA zeigt, dass die Mehrheit der Flughäfen unter zunehmenden Skalenerträge arbeitet. Die Ergebnisse zeigen höhere durchschnittliche Effizienz der spanischen Flughäfen. Aber ein verstärkte privates Engagement steigert die Effizienz in den türkischen Flughäfen. Wir schlagen verschiedene wirtschaftspolitische Optionen vor um die Effizienz zu verbessern, wie zum Beispiel die Dezentralisierung von Flughafen-Management und die Verbesserung des Flughafennetzes durch die Schließung ineffizienter Flughäfen. Im letzten Teil wird eine räumliche Regressionsmethode verwendet um verschiedene Hypothesen zu testen. Die Ergebnisse von subventionierten französischen und norwegischen Flughäfen zeigen eine negative Auswirkung von Subventionen auf Kosteneffizienz der Flughäfen. Darüber hinaus wird die Bedeutung von Skaleneffekten veranschaulicht.
Small and regional airports often have insufficient revenues to cover their costs. The question is how such airports could be efficiently structured, managed and financially supported. Some airports are operated individually and receive direct subsidies from the local and federal governments. Others survive through cross-subsidizations. This dissertation first deals with the efficiency of 85 small regional European airports for the years 2002-2009 by applying a data envelopment analysis. Estimates show the potential savings and revenue opportunities to be 50 percent and 25 percent respectively. Belonging to an airport system reduces efficiency by about 5 percent. The average break-even passenger throughput over the last decade more than doubled to 464 thousand passengers. However airports behaving efficiently could have covered their operational costs with a mere 166 thousand passengers annually. The second part addresses the comparison of airports belonging to AENA and DHMI for the years between 2009 and 2011. The majority of airports operate under increasing returns to scale. A Russell measure of data envelopment analysis is implemented. Results indicate higher average efficiency levels at Spanish airports, but private involvement enhances efficiency at Turkish ones. Certain policy options including a greater decentralization of airport management and the restructuring of the airport network (by closing some inefficient airports) should be considered to increase the airport systems’ efficiency. In the final part of the dissertation, we have studied how the airport specific characteristics drive the unit costs. In order to capture the spatial interdependence of airport costs, a spatial regression methodology is applied. Two separate datasets of subsidized French and Norwegian airports are used to test various hypotheses. The results show a negative effect of subsidies on airport cost efficiency. Furthermore, the significance of scale economies is illustrated.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Group Klein"

1

Malan, J. A. Lithostratigraphy of the Klein Brak Formation (Bredasdorp Group). Pretoria: Dept. of Mineral and Energy Affairs, Geological Survey, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rodríguez, Rubí E., 1953- editor of compilation, ed. Riemann and Klein surfaces, automorphisms, symmetries and moduli spaces: Conference in honor of Emilio Bujalance on Riemann and Klein surfaces, symmetries and moduli spaces, June 24-28, 2013, Linköping University, Linköping, Sweden. Providence, Rhode Island: American Mathematical Society, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kleinian groups. Berlin: Springer-Verlag, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bujalance, Emilio, José Javier Etayo, José Manuel Gamboa, and Grzegorz Gromadzki. Automorphism Groups of Compact Bordered Klein Surfaces. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/bfb0084977.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

The human group. New Brunswick, U.S.A: Transaction Publishers, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gromadzki, Grzegorz. Groups of automorphisms of compact Riemann and Klein surfaces. Bydgoszcz: Wydawnictwo Uczelniane WSP w Bydgoszczy, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dekker, Rijkje. Wiskunde leren in kleine heterogene groepen. De Lier: Academisch Boeken Centrum, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

J, Sanna Lawrence, ed. Group performance and interaction. Boulder, Colo: Westview Press, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Steenhaut, Bart. Bono 50: "altijd opletten voor kleine mannetjes met grote ideeën". [Gent]: Borgerhoff & Lamberigts, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Oosterhoff, Tonnus. Wij zagen ons in een kleine groep mensen veranderen: Gedichten. Amsterdam: De Bezige Bij, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Group Klein"

1

Schaffhauser, Florent. "Lectures on Klein Surfaces and Their Fundamental Group." In Advanced Courses in Mathematics - CRM Barcelona, 67–108. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-33578-0_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Alekseevskij, D. V., V. V. Lychagin, and A. M. Vinogradov. "The Group Approach of Lie and Klein. The Geometry of Transformation Groups." In Geometry I, 92–113. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-662-02712-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bujalance, Emilio, José Javier Etayo, José Manuel Gamboa, and Grzegorz Gromadzki. "The automorphism group of hyperelliptic compact Klein surfaces with boundary." In Automorphism Groups of Compact Bordered Klein Surfaces, 153–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/bfb0084984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

De Bievre, Stephan, and Jacques Renaud. "The Conformal Invariance of the Klein-Gordon Equation in 1+1 Dimension." In Modern Group Theoretical Methods in Physics, 75–86. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8543-9_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bujalance, Emilio, José Javier Etayo, José Manuel Gamboa, and Grzegorz Gromadzki. "The automorphism group of compact Klein surfaces with one boundary component." In Automorphism Groups of Compact Bordered Klein Surfaces, 138–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/bfb0084983.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tobies, Renate. "Formative Groups." In Felix Klein, 17–122. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75785-4_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hirzebruch, Friedrich. "Hilbert’s modular group of the field $$\mathbb (\sqrt{5})$$ and the cubic diagonal surface of Clebsch and Klein." In Gesammelte Abhandlungen/Collected Papers, 394–408. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-61711-9_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Borel, Armand. "Compact Groups, Klein Forms of Symmetric Spaces." In Texts and Readings in Mathematics, 92–106. Gurgaon: Hindustan Book Agency, 1998. http://dx.doi.org/10.1007/978-93-80250-92-2_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Woit, Peter. "The Klein–Gordon Equation and Scalar Quantum Fields." In Quantum Theory, Groups and Representations, 541–59. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64612-1_43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Barza, Ilie, and Dorin Ghisa. "Lie Groups Actions on Non Orientable Klein Surfaces." In Springer Proceedings in Mathematics & Statistics, 421–28. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7775-8_33.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Group Klein"

1

Wang, Xiaoli. "Auto-Bäcklund transformations for a group of nonlinear Klein-Gordon equations." In 2013 25th Chinese Control and Decision Conference (CCDC). IEEE, 2013. http://dx.doi.org/10.1109/ccdc.2013.6561622.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Valderrama-Rodríguez, Juan Ignacio, José M. Rico, J. Jesús Cervantes-Sánchez, and Fernando Tomás Pérez-Zamudio. "A New Look to the Three Axes Theorem." In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-97443.

Full text
Abstract:
Abstract This paper analyzes the well known three axes theorem under the light of the Lie algebra se(3) of the Euclidean group, SE(3) and the symmetric bilinear forms that can be defined in this algebra. After a brief historical review of the Aronhold-Kennedy theorem and its spatial generalization, the main hypothesis is that the general version of the Aronhold-Kennedy theorem is basically the application of the Killing and Klein forms to the equation that relates the velocity states of three bodies regardless if they are free to move in the space, independent of each other, or they form part of a kinematic chain. Two representative examples are employed to illustrate the hypothesis, one where the rigid bodies are free to move in the space without any connections among them and other concerning a RCCC spatial mechanism.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography