Contents
Academic literature on the topic 'Groupe associé à une surface'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Groupe associé à une surface.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Groupe associé à une surface"
LIÉNARD, G., D. BÉBIN, M. LHERM, and P. VEYSSET. "Modes de récolte des fourrages et systèmes d’élevage. L’exemple des exploitations de la zone Charolaise." INRAE Productions Animales 11, no. 5 (July 6, 2020): 387–95. http://dx.doi.org/10.20870/productions-animales.1998.11.5.3967.
Full textPuignau, Nicolas. "Première classe de Stiefel–Whitney des espaces d'applications stables réelles en genre zéro vers une surface convexe." Journal of the Institute of Mathematics of Jussieu 8, no. 2 (December 15, 2008): 383–414. http://dx.doi.org/10.1017/s1474748008000339.
Full textAmad, A. "Pour une diffusion libre et collaborative de l’enseignement psychiatrique." European Psychiatry 30, S2 (November 2015): S77. http://dx.doi.org/10.1016/j.eurpsy.2015.09.351.
Full textFROUGNY, CHRISTIANE, and JACQUES SAKAROVITCH. "TWO GROUPS ASSOCIATED WITH QUADRATIC PISOT UNITS." International Journal of Algebra and Computation 12, no. 06 (December 2002): 825–47. http://dx.doi.org/10.1142/s0218196702001188.
Full textBarthélemy, Louise. "Invariance d'un convexe fermé par un semi-groupe associé à une forme non-linéaire." Abstract and Applied Analysis 1, no. 3 (1996): 237–62. http://dx.doi.org/10.1155/s1085337596000127.
Full textROBLIN, THOMAS. "Sur l'ergodicité rationnelle et les propriétés ergodiques du flot géodésique dans les variétés hyperboliques." Ergodic Theory and Dynamical Systems 20, no. 6 (December 2000): 1785–819. http://dx.doi.org/10.1017/s0143385700000997.
Full textLe Blanc, Marc, and Anne-Élyse Deguire. "Le taxage : une forme inédite de vol ?" Criminologie 35, no. 2 (July 19, 2004): 159–78. http://dx.doi.org/10.7202/008296ar.
Full textLangevin, Jacques, and Micheline Fleury. "Intention de lecture et naissance d’un schéma de récit." Revue des sciences de l'éducation 14, no. 2 (November 26, 2009): 245–65. http://dx.doi.org/10.7202/900597ar.
Full textHunsicker, M., N. Dumet, R. Minjard, M. Jourdan, and E. Bismuth. "Des maux du corps à la corporalité des mots : étude des effets d’un groupe danse pour patients douloureux." Douleur et Analgésie 32, no. 4 (December 2019): 189–95. http://dx.doi.org/10.3166/dea-2020-0086.
Full textTisseau, Violaine. "Madagascar : une île métisse sans métis ?" Anthropologie et Sociétés 38, no. 2 (July 21, 2014): 27–44. http://dx.doi.org/10.7202/1026163ar.
Full textDissertations / Theses on the topic "Groupe associé à une surface"
Lareau-Dussault, Rosemonde. "Les surfaces croches de l'univers d'Einstein." Mémoire, Université de Sherbrooke, 2012. http://hdl.handle.net/11143/5763.
Full textKoufany, Khalid. "Semi-groupe de Lie associé à une algèbre de Jordan euclidienne." Nancy 1, 1993. http://docnum.univ-lorraine.fr/public/SCD_T_1993_0172_KOUFANY.pdf.
Full textMenegatti, Paolo. "Action du groupe de Klein sur une surface K3." Thesis, Poitiers, 2019. http://www.theses.fr/2019POIT2297.
Full textThe aim of this work is to classify the actions of the Klein group G on a K3 surface X, where G≃(ℤ/2ℤ)² contains a non-symplectic involution which acts trivially on Neron-Severi lattice, as well as computing the number of points composing the fixed locus.This result is achieved through purely algebraic methods, due to Smith’s theory, which relates the cohomology of the fixed locus H*(Xᴳ, F₂) to the group cohomology H*(X, F₂).Firstly, we identify all possibilities for the cohomology of the G-module H²(X, F₂) (and therefore the cohomology of fixed locus Xᴳ), providing some partial results for the general case G≃(ℤ/pℤ)ⁿ.Thereafter, we study the extension of the cohomology lattice H²(X, ℤ) induced by the action of G and we prove a formula giving the number of fixed points composing Xᴳ from some numerical invariants of the extension.Namely the dimensions of discriminant groups of invariant lattices, but also a new numerical invariant, essential for the computation of the fixed locus, which we prove to be unrelated to other ones.Finally, via Torelli theorem, we find all possibilities for G acting on X and we provide some geometric examples -confirming our results- using elliptic fibrations
Jourdan, Sylvie. "Equirépartition des orbites du groupe affine sur une surface de Veech." Thesis, Aix-Marseille 3, 2011. http://www.theses.fr/2011AIX30041.
Full textIn this thesis, we study translation surfaces. These are compact surfaces equipped with a flat metric and conical singularities. A vertical direction is fixed. Translation surfaces are in one to one correspondence with holomorphic 1-forms on Riemann surfaces. Important examples of translation surfaces arise from unfolding billiards in rational polygons.Two translation surfaces are identified if they are obtained one from the other by an isometry preserving the orientation and the vertical direction. The equivalence class of a surface is still a translation surface called the reduced surface. Affine diffeomorphisms on a translation surface are diffeomorphisms whose differential is constant. They form a group called the affine group. The group SL(2,R) acts linearly on the set of translation surfaces. The stabilizer of the reduced surface is the Veech group of the translation surface. The elements of the Veech group are in fact the derivative of the affine diffeomorphisms. This group is of great importance in the study of translation surfaces and our work illustrate this phenomenon. If the Veech group is a lattice in SL(2,R), the surface is called a Veech surface. The goal of this thesis is to prove that dense orbit of the affine group on a Veech surface are equidistributed in the surface. One has to explain precisely what equidistribution means in this context. It is important to notice that non dense orbits are finite and that the number of these orbits is at most countable. The result is first of all established for reduced surfaces and we deduce a general result for all surfaces
Flötotto, Julia. "Un système de coordonnées associé à un échantillon de points d'une variété: définition, propriétés et applications." Phd thesis, Université de Nice Sophia-Antipolis, 2003. http://tel.archives-ouvertes.fr/tel-00832487.
Full textLoustau, Brice. "La géométrie symplectique de l'espace des structures projectives complexes sur une surface." Toulouse 3, 2011. http://thesesups.ups-tlse.fr/2071/.
Full textThis thesis investigates the complex symplectic geometry of the deformation space of complex projective structures on a surface. The author attempts to give a global and unifying picture of this symplectic geometry by exploring the connections between different possible approaches. The cotangent symplectic structure given by the Schwarzian parametrization is studied in detail and compared to the canonical symplectic structure on the character variety, clarifying and generalizing a theorem of S. Kawai. Generalizations of results of C. McMullen are derived, notably quasifuchsian reciprocity. The cotangent symplectic structure is also addressed through the notion of minimal surfaces in hyperbolic 3-manifolds. Finally, the symplectic geometry is described in a Hamiltonian setting with the complex Fenchel-Nielsen coordinates on the quasifuchsian space, recovering results of I. Platis
Cilpa, Géraldine. "Modélisation des interactions de couches successives de H2 avec une surface métallique des éléments de groupe IB, Cu, Ag et Au." Marne-la-Vallée, 2007. http://www.theses.fr/2007MARN0351.
Full text