Academic literature on the topic 'Groupes de symétrie d'espace'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Groupes de symétrie d'espace.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Groupes de symétrie d'espace"
Sivardière, J. "Groupes d'espace à quatre et six couleurs." Acta Crystallographica Section A Foundations of Crystallography 44, no. 5 (September 1, 1988): 735–40. http://dx.doi.org/10.1107/s0108767388005549.
Full textRassat, A., D. Seroussi, and C. Coulombeau. "Représentation des groupes de symétrie par des sphéroalcanes." Journal de Chimie Physique 91 (1994): 1683–710. http://dx.doi.org/10.1051/jcp/1994911683.
Full textBuekenhout, Francis. "La symétrie, les groupes de transformation et la géométrie." Bulletin de la Classe des sciences 12, no. 7 (2001): 301–10. http://dx.doi.org/10.3406/barb.2001.28233.
Full textPoizat, Bruno. "Milieu et symétrie, une étude de la convexité dans les groupes sans involutions." Journal of Algebra 497 (March 2018): 143–63. http://dx.doi.org/10.1016/j.jalgebra.2017.10.007.
Full textBiarez, Sylvie. "Sphère locale et espace public." Lien social et Politiques, no. 39 (October 2, 2002): 127–38. http://dx.doi.org/10.7202/005059ar.
Full textPoizat, Bruno. "Groups of small Cantor rank." Journal of Symbolic Logic 75, no. 1 (March 2010): 346–54. http://dx.doi.org/10.2178/jsl/1264433925.
Full textMorgan, Debra G., and Norma J. Stewart. "High versus Low Density Special Care Units: Impact on the Behaviour of Elderly Residents with Dementia." Canadian Journal on Aging / La Revue canadienne du vieillissement 17, no. 2 (1998): 143–65. http://dx.doi.org/10.1017/s0714980800009235.
Full textRosa, Marco, Patrizia Lucchi, Simona Ferrari, Bjørn U. Zachrisson, and Alberto Caprioglio. "Agénésie congénitale des incisives latérales maxillaires : évaluation parodontale et fonctionnelle à long terme après fermeture orthodontique de l'espace avec ingression de la première prémolaire et égression de la canine." L'Orthodontie Française 88, no. 4 (December 2017): 319–32. http://dx.doi.org/10.1051/orthodfr/2017022.
Full textRekik, M., and Y. Billiet. "Le coloriage des familles de positions équivalentes générales et spéciales dans les groupes d'espace bidimensionnels quadricolorés." Acta Crystallographica Section A Foundations of Crystallography 49, no. 1 (January 1, 1993): 154–59. http://dx.doi.org/10.1107/s0108767392005890.
Full textGoldberg, Sylvie Anne. "De la Bible et des Notions D'espace et de Temps Essai sur l'usage des catégories dans le monde achkénaze du Moyen Age à l'époque moderne." Annales. Histoire, Sciences Sociales 52, no. 5 (October 1997): 987–1015. http://dx.doi.org/10.3406/ahess.1997.279615.
Full textDissertations / Theses on the topic "Groupes de symétrie d'espace"
El, Kharrat Daniel. "Etude et applications des beta-réseaux aux structures apériodiques : des beta-réseaux aux cristaux apériodiques." Paris 7, 2004. http://www.theses.fr/2004PA077061.
Full textHavard, François. "Moyennes ergodiques sur des domaines à symétrie sphérique." Thesis, Tours, 2008. http://www.theses.fr/2008TOUR4005/document.
Full textWe study in this thesis the convergence of ergodic means associated to Zd or Rd group actions. In a first part, we consider an Rd measure preserving action and we study ergodic means over annulus of the Euclidean space. The central point is the description of the domain of validity of maximal inequalities. The classical case of balls and the singular case of spheres are well known. In our intermediate situation we obtain a dichotomy theorem : either the means on annulus obey the same law as the means on balls, or they obey the same law as the means on spheres. In the second part, we consider a Zd action and we describe the behavior of ergodic means taken on the integral points of euclidean spheres. We propose a detailed presentation of a theorem due to Magyar
Koenig, Muriel. "Une Exploration des espaces d'orbites des groupes de Lie compacts et de leurs applications à l'étude des bifurcations avec symétrie." Nice, 1995. http://www.theses.fr/1995NICE4902.
Full textSquellari, Romain. "Generalized dressing cosets and renormalizability of Poisson-Lie ó-models." Paris 7, 2012. http://www.theses.fr/2012PA077027.
Full textThis thesis is divided in two main part. The first part deals with the classical aspect of the Poisson-Lie T-duality whereas the second part is focused on the quantum properties of these models. The Poisson-Lie T-duality establishes a dynamical equivalence of certain non-linear sigma-models, the target manifolds of which are a Poisson-Lie group G and its dual Poisson-Lie group \hat{G}, respectively. These models admit a generalization for which the targets of the mutually dual sigma-models are respectively the spaces of the dressing orbits F\G and F\ \hat{G} where F is certain (isotropic) subgroup of the common Drinfeld double D of G and \hat{G}. In this thesis, we furnish a more algebraic derivation of the second-order action of the dressing cosets than the one used by Klimcik & Severa based on symplectic geometry. Furthermore, we show how our new algebraic derivation leads to a generalization of the dressing cosets construction and we identify explicitly the actions of the generalized dressing cosets. Concerning the quantum aspect, we give the proof of the one-loop renormalizability of Poisson-Lie sigma models and its quantum equivalence. Moreover, with the help of these results, we probe the quantum structure of the Dressing cosets
Laoues, Mourad. "Représentations de masse nulle en dimension arbitraire d'espace-temps de de Sitter et de Minkowski." Dijon, 1998. http://www.theses.fr/1998DIJOS017.
Full textMagnenet, Vincent. "Formulation thermodynamique de lois de comportement hors-équilibre : groupes de symétrie continue issus d'une approche lagrangienne réversible." Vandoeuvre-les-Nancy, INPL, 2004. http://docnum.univ-lorraine.fr/public/INPL_T_2004_MAGNENET_V.pdf.
Full textStrategies for the elaboration of Lagrangian formulations of the constitutive laws of continuous me- dia subjected to local dissipation are developed. The computation of the resulting variational and local continuous symmetries constitutes the backbone of this work. The theoretical framework chosen is based on a thermodY. Famics of relaxations, which allows the consideration of microstructural variables evolution, accounting for the kinetiœ law describing the evolution of the microstructure. It is demonstrated that the self-adjointness condition, which is the neœssary and sufficient condition for the existence of a lagrangian associated to a system of partial difl'erential equations, is fulfilled by the chosen constitutive laws, provided the fundamental Euler relation is being generalized for situations outside equilibrium. This postulate is one of the cornerstone of a thermodynamics of relaxation called DNLR (alias Distribution of Nonlinear Relaxations). The kinetiœ equations governing the evolution of the microstructural variables has been further incorporated into the Lagrangian by means of mul- tipliers. The second aspect exploted in this work concerns the analysis of the Lie symmetries of the constitutive behaviour, following two difl'erent routes, The first one consists in computing the varia- tional symmetries, associated to given constitutive equations. A particular symmetry is highlighted in the case of a simplified DNLR model, that is related to the time-temperature equivalence principle. Enlarging the point of view, a methodology for setting up the constitutive behaviour of the material itself is proposed. It relies on the construction of experimental master curves that are given a Lie group structure, further leading to a forma! structure of the constitutive equations. This method has been applied for a stick submitted to an impact loading under large strain
Monnoye, Olivier. "Etude de la structure des noyaux exotiques semi-magiques en séniorité généralisée." Caen, 2001. http://www.theses.fr/2001CAEN2042.
Full textJoung, Euihun. "Déformations de la symétrie de Poincaré et ses conséquences sur la théorie quantique de champs scalaires." Paris 7, 2009. http://www.theses.fr/2009PA077148.
Full textThree cases of deforming the Poincare symmetry and its consequences on quantum field theory are studied with an algebraic approach. De Sitter (dS) group: Using the scalar unitary irreducible representation of dS group, the Fock space and the creation and annihilation operators (CAO) were constructed. Then, a quantum scalar field was defined as a linear combination of CAO subject to covariant transformations under the dS group. It was shown that when the mass squared of field is positive, such fields satisfy canonical commutation relations with an arbitrariness in their definition; when the mass squared is not positive, there exist no canonical scalar field operator. The massless limit of the massive field was considered also. Twisted Poincaré symmetry: The Fock space and the CAO compatible with the deformation by Drinfeld's twist were constructed. Then, it was shown that a covariant field linear in these CAO does not exist, but that without the linearity condition a covariant field related to the usual undeformed field by a unitary transformation can be determined. Quantum double (QD) of SU(2): The construction of classical fields in Euclidean space via the quotient of its isommetry group was generalized to the case of QD. The algebra of complex square matrices of all sizes appears as the deformation of the algebra of fields in Euclidean space. When relating this algebra to the fields in Euclidean space, a noncommutative algebra of fields and a local action for these fields were obtained
El, Hami Abdelkhalak. "Utilisation de la théorie des groupes finis et de la sous structuration en mécanique des structures répétitives." Besançon, 1992. http://www.theses.fr/1992BESA2004.
Full textEvanno, Laurent. "Vers la synthèse totale asymétrique du norditerpène (+)-hainanolide : méthodologies et stratégies." Paris 6, 2007. http://www.theses.fr/2007PA066330.
Full textHainanolide or harringtonolide is a cytotoxic norditerpene from Cephalotaxus. It presents a polycyclic cage-shaped structure whose absolute stereochemistry had been determined by an X-ray crystallographic analysis of a brominated derivative. This original structure contains four fused carbocycles, especially a tropone, and two lactone and ether transannular bridges. Our synthetic strategy contains four key steps. The tropone cycle will be obtained lately from a dienyne, whose dienic part will be formed by an enyne metathesis. A biomimetically inspired cascade would allow forming the lactone and ether bridges from an epoxyde intermediate. A pivotal asymmetric cyclohexene ring will be generated by a stereoselective intramolecular Diels-Alder precursor (IMDA) reaction. The Diels-Alder precursor will be constructed from D-erythose acetal which is derived from the chiral pool (D-glucose). In order to study the formation of tropone ring by an original [4+2+1] cyclization, the synthesis and use of a model compound was done. The model compound contains a diene part installed by PtCl2-catalyzed enyne reorganization, and a terminal alkyne introduced by the Corey-Fuchs methodology. Our first strategy to form the tropone cycle consisted in a [4+2+1] cyclization reaction. This key step being planned at the end of the synthesis, a methodological study was essential. The model compound can be considered as a simplification of a late synthetic intermediate of the total synthesis. It conserves a five-membered cycle, a dienic system and an aliphatic chain with a terminal alkyne necessary for the cyclization. Four methodologies have been explored based on Wender, Montgomery, Fischer or Heck conditions
Books on the topic "Groupes de symétrie d'espace"
Symmetry and the monster: One of the greatest quests of mathematics. Oxford: Oxford University Press, 2006.
Find full textSymmetry and structure: Readable group theory for chemists. 2nd ed. Chichester: Wiley, 1995.
Find full textSymmetry and structure: Readable group theory for chemists. 3rd ed. Hoboken, N.J: John Wiley, 2007.
Find full textCotton, F. Albert. Chemical applications of group theory. 3rd ed. New York: Wiley, 1990.
Find full textRonan, Mark. Symmetry and the Monster: The Story of One of the Greatest Quests of Mathematics. Oxford University Press, USA, 2007.
Find full textRonan, Mark. Symmetry and the Monster: The Story of One of the Greatest Quests of Mathematics. Oxford University Press, USA, 2006.
Find full textBook chapters on the topic "Groupes de symétrie d'espace"
"Chapitre 5 Groupes ponctuels." In Symétrie et propriétés physiques des cristaux, 79–106. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0927-1-010.
Full text"Chapitre 7 Groupes d’espace." In Symétrie et propriétés physiques des cristaux, 125–54. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0927-1-013.
Full text"Chapitre 7 Groupes d’espace." In Symétrie et propriétés physiques des cristaux, 125–54. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0927-1.c013.
Full text"Chapitre 5 Groupes ponctuels." In Symétrie et propriétés physiques des cristaux, 79–106. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0927-1.c010.
Full text"Chapitre 4 Relation entre les groupes d’espace et les groupes ponctuels." In Symétrie et propriétés physiques des cristaux, 65–74. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0927-1-008.
Full text"Chapitre 4 Relation entre les groupes d’espace et les groupes ponctuels." In Symétrie et propriétés physiques des cristaux, 65–74. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0927-1.c008.
Full text"Annexe A4 Généralités sur les groupes." In Symétrie et propriétés physiques des cristaux, 75–78. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0927-1-009.
Full text"Annexe A4 Généralités sur les groupes." In Symétrie et propriétés physiques des cristaux, 75–78. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0927-1.c009.
Full text