To see the other types of publications on this topic, follow the link: Grover’s algorithm.

Dissertations / Theses on the topic 'Grover’s algorithm'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 18 dissertations / theses for your research on the topic 'Grover’s algorithm.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Nyman, Peter. "On relations between classical and quantum theories of information and probability." Doctoral thesis, Linnéuniversitetet, Institutionen för datavetenskap, fysik och matematik, DFM, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-13830.

Full text
Abstract:
In this thesis we study quantum-like representation and simulation of quantum algorithms by using classical computers.The quantum--like representation algorithm (QLRA) was  introduced by A. Khrennikov (1997) to solve the ``inverse Born's rule problem'', i.e. to construct a representation of probabilistic data-- measured in any context of science-- and represent this data by a complex or more general probability amplitude which matches a generalization of Born's rule.The outcome from QLRA matches the formula of total probability with an additional trigonometric, hyperbolic or hyper-trigonometric interference term and this is in fact a generalization of the familiar formula of interference of probabilities. We study representation of statistical data (of any origin) by a probability amplitude in a complex algebra and a Clifford algebra (algebra of hyperbolic numbers). The statistical data is collected from measurements of two dichotomous and trichotomous observables respectively. We see that only special statistical data (satisfying a number of nonlinear constraints) have a quantum--like representation. We also study simulations of quantum computers on classical computers.Although it can not be denied that great progress have been made in quantum technologies, it is clear that there is still a huge gap between the creation of experimental quantum computers and realization of a quantum computer that can be used in applications. Therefore the simulation of quantum computations on classical computers became an important part in the attempt to cover this gap between the theoretical mathematical formulation of quantum mechanics and the realization of quantum computers. Of course, it can not be expected that quantum algorithms would help to solve NP problems for polynomial time on classical computers. However, this is not at all the aim of classical simulation.  The second part of this thesis is devoted to adaptation of the Mathematica symbolic language to known quantum algorithms and corresponding simulations on classical computers. Concretely we represent Simon's algorithm, Deutsch-Josza algorithm, Shor's algorithm, Grover's algorithm and quantum error-correcting codes in the Mathematica symbolic language. We see that the same framework can be used for all these algorithms. This framework will contain the characteristic property of the symbolic language representation of quantum computing and it will be a straightforward matter to include future algorithms in this framework.
APA, Harvard, Vancouver, ISO, and other styles
2

Nyman, Peter. "Representation of Quantum Algorithms with Symbolic Language and Simulation on Classical Computer." Licentiate thesis, Växjö University, School of Mathematics and Systems Engineering, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:vxu:diva-2329.

Full text
Abstract:
<p>Utvecklandet av kvantdatorn är ett ytterst lovande projekt som kombinerar teoretisk och experimental kvantfysik, matematik, teori om kvantinformation och datalogi. Under första steget i utvecklandet av kvantdatorn låg huvudintresset på att skapa några algoritmer med framtida tillämpningar, klargöra grundläggande frågor och utveckla en experimentell teknologi för en leksakskvantdator som verkar på några kvantbitar. Då dominerade förväntningarna om snabba framsteg bland kvantforskare. Men det verkar som om dessa stora förväntningar inte har besannats helt. Många grundläggande och tekniska problem som dekoherens hos kvantbitarna och instabilitet i kvantstrukturen skapar redan vid ett litet antal register tvivel om en snabb utveckling av kvantdatorer som verkligen fungerar. Trots detta kan man inte förneka att stora framsteg gjorts inom kvantteknologin. Det råder givetvis ett stort gap mellan skapandet av en leksakskvantdator med 10-15 kvantregister och att t.ex. tillgodose de tekniska förutsättningarna för det projekt på 100 kvantregister som aviserades för några år sen i USA. Det är också uppenbart att svårigheterna ökar ickelinjärt med ökningen av antalet register. Därför är simulering av kvantdatorer i klassiska datorer en viktig del av kvantdatorprojektet. Självklart kan man inte förvänta sig att en kvantalgoritm skall lösa ett NP-problem i polynomisk tid i en klassisk dator. Detta är heller inte syftet med klassisk simulering. Den klassiska simuleringen av kvantdatorer kommer att täcka en del av gapet mellan den teoretiskt matematiska formuleringen av kvantmekaniken och ett förverkligande av en kvantdator. Ett av de viktigaste problemen i vetenskapen om kvantdatorn är att utveckla ett nytt symboliskt språk för kvantdatorerna och att anpassa redan existerande symboliska språk för klassiska datorer till kvantalgoritmer. Denna avhandling ägnas åt en anpassning av det symboliska språket Mathematica till kända kvantalgoritmer och motsvarande simulering i klassiska datorer. Konkret kommer vi att representera Simons algoritm, Deutsch-Joszas algoritm, Grovers algoritm, Shors algoritm och kvantfelrättande koder i det symboliska språket Mathematica. Vi använder samma stomme i alla dessa algoritmer. Denna stomme representerar de karaktäristiska egenskaperna i det symboliska språkets framställning av kvantdatorn och det är enkelt att inkludera denna stomme i framtida algoritmer.</p><br><p>Quantum computing is an extremely promising project combining theoretical and experimental quantum physics, mathematics, quantum information theory and computer science. At the first stage of development of quantum computing the main attention was paid to creating a few algorithms which might have applications in the future, clarifying fundamental questions and developing experimental technologies for toy quantum computers operating with a few quantum bits. At that time expectations of quick progress in the quantum computing project dominated in the quantum community. However, it seems that such high expectations were not totally justified. Numerous fundamental and technological problems such as the decoherence of quantum bits and the instability of quantum structures even with a small number of registers led to doubts about a quick development of really working quantum computers. Although it can not be denied that great progress had been made in quantum technologies, it is clear that there is still a huge gap between the creation of toy quantum computers with 10-15 quantum registers and, e.g., satisfying the technical conditions of the project of 100 quantum registers announced a few years ago in the USA. It is also evident that difficulties increase nonlinearly with an increasing number of registers. Therefore the simulation of quantum computations on classical computers became an important part of the quantum computing project. Of course, it can not be expected that quantum algorithms would help to solve NP problems for polynomial time on classical computers. However, this is not at all the aim of classical simulation. Classical simulation of quantum computations will cover part of the gap between the theoretical mathematical formulation of quantum mechanics and the realization of quantum computers. One of the most important problems in "quantum computer science" is the development of new symbolic languages for quantum computing and the adaptation of existing symbolic languages for classical computing to quantum algorithms. The present thesis is devoted to the adaptation of the Mathematica symbolic language to known quantum algorithms and corresponding simulation on the classical computer. Concretely we shall represent in the Mathematica symbolic language Simon's algorithm, the Deutsch-Josza algorithm, Grover's algorithm, Shor's algorithm and quantum error-correcting codes. We shall see that the same framework can be used for all these algorithms. This framework will contain the characteristic property of the symbolic language representation of quantum computing and it will be a straightforward matter to include this framework in future algorithms.</p>
APA, Harvard, Vancouver, ISO, and other styles
3

Wladis, Simon. "Simulating Grover's Algorithm." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297556.

Full text
Abstract:
The purpose of this paper is to implement and simulate Grover's algorithm on one and several qubits on a classical computer. The theory behind the algorithm and its components are described in detail. This paper provides a proof of concept for one of the most remarkable results in the theory of quantum computation. I have constructed a library in Python to simulate the gates used in the algorithm that can be used up to an arbitrary number of qubits. The results of the simulations are supposed to demonstrate the characteristics of the algorithm and advantages compared to classical search.
APA, Harvard, Vancouver, ISO, and other styles
4

Strömberg, Philip, and Karlsson Vera Blomkvist. "4-qubit Grover's algorithm implemented for the ibmqx5 architecture." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229797.

Full text
Abstract:
Quantum computing is a quickly growing field of research thanks to recent hardware advances. The quantum mechanical properties of quantum computers allow them to solve certain families of problems faster than classical computers. A quantum algorithm solving such a problem is Grover's algorithm, which finds an element in an unordered set faster than any classical search algorithm. In this paper an implementation of a 4-qubit Grover's algorithm for the IBM Q computer ibmqx5 is presented. Executing the implementation on an ibmqx5 simulator yield results in line with the theoretically optimal results. The accuracy of the ibmqx5 simulation results compared to the ibmqx5 execution results suggests that current hardware is not yet suitable,due to required complexity of the circuits for a 4-qubit Grover implementation.<br>Kvantteknik är ett snabbt växande forskningsområde tack vare att nödvändig hårdvara förbättrats i rask takt. De kvantmekaniska egenskaperna hos kvantdatorer tillåter vissa familjer av problem att lösas snabbare på dessa än på klassiska datorer. En algoritm för kvantdatorer som löser ett sådant problem är Grover's algoritm, vilken hittar ett element i en oordnad mängd snabbare än vad någon sökalgoritm för klassiska datorer gör. I denna rapport presenteras en implementation av en 4-qubit Grover's algoritm för IBM Q-datorn ibmqx5. Vid exekvering av implementationen på en ibmqx5-simulator erhålls resultat som är i linje med teoretiskt optimala resultat. En jämförelse av korrektheten hos resultaten från ibmqx5-simulatorn och resultaten från ibmqx5-datorn tyder på att nuvarande hårdvara inte är lämplig för kretsar av komplexiteten nödvändig för en 4-qubit Grover implementation.
APA, Harvard, Vancouver, ISO, and other styles
5

Sjöborg, Martin, and Hanna Linn. "Simulating a Quantum Computer : Grover's Search Algorithm with Error Correction." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-231739.

Full text
Abstract:
Classical simulations of quantum computers give us an insight into various things such as what quantum algorithms can achieve, whether it is possible to verify that they function as postulated, the difficulties that have to be overcome before quantum computers can be realized, as well as how we can handle these difficulties. We build a Python library to simulate a quantum computer that can perform all quantum algorithms by defining an universal gate set, from which all quantum gates – and thereby all circuits – can be constructed. We implement two algorithms that both highlight two important aspects of quantum computing: Grover’s quantum search algorithm, which demonstrates the efficiency of quantum algorithms and their superiority over their classical counterparts by searching an unsorted list quadratically faster; and an error correcting code, the Shor code, which highlights the cost of correcting the possible errors in a quantum computer.We test the rigidity of Grover’s algorithm by introducing errors without correction, and find that the algorithm shows resilience to smaller 1-qubit Pauli errors, but looses its efficiency under larger errors and thus the need for Pauli error correction arise.<br>Klassiska simuleringar av kvantdatorer ger oss en inblick i vad kvantalgoritmer kan åstadkomma, hur vi kan verifiera att algoritmerna fungerar, vilka problem vi måste lösa innan kvantdator- erna blir en verklighet, samt hur vi kanske kan hantera problemen. Vi bygger ett bibliotek i Python för att simulera en kvantdator som kan utföra alla kvantalgoritmer genom att definiera en grinduniversalmängd, ur vilken alla kvantgrindar – och därmed alla kretsar – kan konstrueras. Vi implementar två algoritmer som båda belyser två viktiga aspekter hos kvantberäkning: Grover’s kvantsökning, som demonstrerar effektiviteten hos kvantalgoritmer över deras klassiska analoger, samt en felhanteringsalgoritm, Shorkoden, som kan jämka Paulifel och är betydelsefull för att förstå vikten hos felkorrigering.Vi prövar motståndskraften hos Grovers algoritm genom att utsätta den för slumpmässiga ro- tationer hos en qubit, och finner att algoritmen är resistent mot mindre Paulifel, men snabbt slutar producera meningsfulla resultat vid större Paulifel.
APA, Harvard, Vancouver, ISO, and other styles
6

Alves, Rafael Santos de Oliveira 1982. "Algebra geometrica e o algoritmo de Grover." [s.n.], 2008. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306805.

Full text
Abstract:
Orientador: Carlile Campos Lavor<br>Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica<br>Made available in DSpace on 2018-08-11T07:27:34Z (GMT). No. of bitstreams: 1 Alves_RafaelSantosdeOliveira_M.pdf: 2108746 bytes, checksum: 26f9217f1127ef34f9a7ae1692c995b8 (MD5) Previous issue date: 2008<br>Resumo: O Algoritmo de Grover é um algoritmo quântico de busca em um conjunto desordenado. Com o uso de propriedades da mecânica quântica, ele apresenta um ganho quadrático em relação a um algoritmo clássico. Neste trabalho, apresentamos uma outra visão deste algoritmo, através da Álgebra Geométrica, motivados pela interpretação geométrica dos operadores, e verificamos que é possível escrevê-lo com uma nova linguagem, e ainda apresentar uma expressão mais simples para o operador de Grover (G) além de expressões gerais para estados resultantes de aplicações sucessivas deste operador<br>Abstract: Grover¿s algorithm is a quantum algorithm for searching in unstructured databases. Due to the properties of quantum mechanics, it provides a quadratic speedup over their classical counterparts. Using the Geometric Algebra, we present a new way to understand and simplify the operators of Grover¿s algorithm<br>Mestrado<br>Computação Quantica<br>Mestre em Matemática Aplicada
APA, Harvard, Vancouver, ISO, and other styles
7

Robles, Granda Pablo Dario. "A NEW IMAGE CLASSIFICATION ALGORITHM BASED ON ADDITIVE GROVES." OpenSIUC, 2011. https://opensiuc.lib.siu.edu/theses/563.

Full text
Abstract:
Image analysis and classification have become a very active research topic in recent decades. The practical applications where classification of images is of importance range from technology to geographical, civil, military, and biological sciences. This article proposes an efficient image classification algorithm based on a recently developed regression method. Groves of regression trees are used with image feature sampling to learn patterns from images that are later used to define a probabilistic framework for classification purposes. This new method can generalize well with small number of training subwindows. By comparing several publicly available datasets, this paper shows how the new method outperforms several state of the art techniques.
APA, Harvard, Vancouver, ISO, and other styles
8

Katabira, Joseph. "Groverův algoritmus v kvantovém počítání a jeho aplikace." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-445458.

Full text
Abstract:
Kvantová výpočetní technika je rychle rostoucí obor informatiky, který přenáší principy kvantových jevu do našeho každodenního života. Díky své kvantové podstatě získávají kvantové počítače převahu nad klasickými počítači. V této práci jsme se zaměřili na vysvětlení základů kvantového počítání a jeho implementaci na kvantovém počítači. Zejména se zaměřujeme na popis fungování, konstrukci a implementaci Groverova algoritmu jako jednoho ze základních kvantových algoritmů. Demonstrovali jsme sílu tohoto kvantového algoritmu při prohledávání databáze a porovnávali ho s klasickými nekvantovými algoritmy pomocí implementace prostřednictvím simulačního prostředí QISKit. Pro simulaci jsme použili QASM Simulator a State vector Simulator Aer backends a ukázali, že získané výsledky korelují s dříve diskutovanými teoretickými poznatky. Toto ukazuje, že Groverův algoritmus umožňuje kvadratické zrychlení oproti klasickému nekvantovému vyhledávacímu algoritmu, Použitelnost algoritmu stejně jako ostatních kvantových algoritmů je ale stále omezena několika faktory, mezi které patří vysoké úrovně dekoherence a chyby hradla.
APA, Harvard, Vancouver, ISO, and other styles
9

Furrow, Bartholomew. "A panoply of quantum algorithms." Thesis, University of British Columbia, 2006. http://hdl.handle.net/2429/75.

Full text
Abstract:
This thesis’ aim is to explore improvements to, and applications of, a fundamental quantum algorithm invented by Grover. Grover’s algorithm is a basic tool that can be applied to a large number of problems in computer science, creating quantum algorithms that are polynomially faster than fastest known and fastest possible classical algorithms that solve the same problems. Our goal in this thesis is to make these techniques readily accessible to those without a strong background in quantum physics: we achieve this by providing a set of tools, each of which makes use of Grover’s algorithm or similar techniques, that can be used as subroutines in many quantum algorithms. The tools we provide are carefully constructed: they are easy to use, and they are asymptotically faster than the best tools previously available. The tools that we supersede include algorithms by Boyer, Brassard, Hoyer and Tapp, Buhrman, Cleve, de Witt and Zalka and Durr and Hoyer. After creating our tools, we create several new quantum algorithms, each of which is faster than the fastest known classical algorithm that accomplishes the same aim, and some of which are faster than the fastest possible classical algorithm. These algorithms come from graph theory, computational geometry and dynamic programming. We discuss a breadth-first search that is faster than (edges) (the classical limit) in a dense graph, maximum-points-on-a-line in (N3/2 lgN) (faster than the fastest classical algorithm known), as well as several other algorithms that are similarly illustrative of solutions in some class of problem. Through these new algorithms we illustrate the use of our tools, working to encourage their use and the study of quantum algorithms in general.
APA, Harvard, Vancouver, ISO, and other styles
10

Lutze, David. "Solving Chromatic Number with Quantum Search and Quantum Counting." DigitalCommons@CalPoly, 2021. https://digitalcommons.calpoly.edu/theses/2342.

Full text
Abstract:
This thesis presents a novel quantum algorithm that solves the Chromatic Number problem. Complexity analysis of this algorithm revealed a run time of O(2n/2n2(log2n)2). This is an improvement over the best known algorithm, with a run time of 2nnO(1) [1]. This algorithm uses the Quantum Search algorithm (often called Grover's Algorithm), and the Quantum Counting algorithm. Chromatic Number is an example of an NP-Hard problem, which suggests that other NP-Hard problems can also benefit from a speed-up provided by quantum technology. This has wide implications as many real world problems can be framed as NP-Hard problems, so any speed-up in the solution of these problems is highly sought after. A bulk of this thesis consists of a review of the underlying principles of quantum mechanics and quantum computing, building to the Quantum Search and Quantum Counting algorithms. The review is written with the assumption that the reader has no prior knowledge on quantum computing. This culminates with a presentation of algorithms for generating the quantum circuits required to solve K-Coloring and Chromatic Number.
APA, Harvard, Vancouver, ISO, and other styles
11

Ferhat, Karim. "Fluctuations quantiques dans des systèmes de spins et de charges en interaction." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAY087/document.

Full text
Abstract:
Cette thèse s'intéresse à deux types de systèmes de différents degrés de liberté en interaction, et soumis à des fluctuations quantiques.Dans le premier projet abordé dans le manuscrit, on établit un diagramme de phase d'électrons en interactions dans un cristal bidimensionnel à géométrie kagome. Ce diagramme de phase est dressé en fonction de deux paramètres étant les interactions coulombiennes entre électrons sur un même atome pour le premier, et sur des atomes plus proches voisins pour le second. Les énergies caractéristiques de ces deux interactions sont quantifiées par rapport à une énergie de référence étant celle des fluctuations quantiques. On met alors en évidence quatre phases dont deux sont nouvelles, alors que les deux autres font le lien avec la littérature déjà existante, et sont en accord avec cette dernière. Ces deux nouvelles phases émergent lorsque l'énergie de répulsion coulombienne entre électrons sur un même atome domine devant l’énergie caractéristique des fluctuations quantiques. En présence d’une forte répulsion coulombienne entre électrons sur des atomes plus proches voisins, les charges électroniques ne peuvent se délocaliser pour former des ondes de Bloch et sont soumis à ce que l’on appelle une contrainte locale de charge. Apparaissent alors sous la compétition de ces deux interactions coulombiennes, des modes unidimensionnels collectifs le long des chaines d’atomes antiferromagnétiquement ordonnées. Ces modes ont la particularité d’être stabilisés à la fois par les fluctuations des degrés de liberté de spin, et de charge des électrons. La seconde de ces nouvelles phases émerge lorsque la répulsion coulombienne entre électrons sur des atomes voisins devient faible devant les fluctuations quantiques. La contrainte locale est alors relâchée et les électrons forment des ondes de Bloch le long de ce qui s’apparente à des bulles quantiques unidimensionnelles et polarisées en spin. Ces bulles sont alors piégées dans un cristal d’électrons inversement polarisés, avec lesquels elles sont en interaction antiferromagnétique.Le second projet porte sur l’étude d’un aimant moléculaire de Terbium Double-Decker. Cette molécule peut être modélisée par trois degrés de liberté interagissant en cascade les uns avec les autres. Le premier d’entre eux est un degré de liberté de spin nucléaire porté par le noyau de l’ion terbium de la molécule. Ce spin nucléaire est en interaction d’échange avec un degré de liberté de spin électronique porté par les électrons de l’ion terbium. Enfin, en première approximation, ce spin électronique génère un champ dipolaire auquel sont soumis les deux ligands de l’aimant moléculaire. Ces deux ligands sont couplés à deux électrodes de source et de drain, assurant le transport d’électrons uniques à travers ces deniers. Le tout forme donc un transistor à électron unique dans lequel les ligands servent de boîte quantique. Par mesure de magnéto-conductance, il est donc possible par une lecture en cascade, de remonter à l’état du spin électronique et du spin nucléaire. La première étape du projet a donc consisté à établir un modèle décrivant l’aimant moléculaire couplé à ces deux électrodes, afin de prédire les mesures de conductance réalisées au travers du transistor lors des thèses de Stefen Thiele et Clément Godfrin. Les résultats théoriques et expérimentaux obtenus sont en accord quantitatifs.D’autres part, à l’aide de champs électriques radio-fréquences, il est possible de manipuler expérimentalement et de façon cohérente le spin nucléaire. Cette manipulation cohérente du spin nucléaire se fait par l’intermédiaire du nuage électronique de l’ion, et permet ainsi d’être en mesure de réaliser un algorithme quantique sur le spin nucléaire de l’ion terbium. La réalisation d’un programme de simulation a permis de guider la réalisation expérimentale de l’algorithme de Grover, lequel a été implémenté avec succès au cours de la thèse de Clément Godfrin<br>This thesis focuses on two different spin and charge systems, interacting under the effect of quantum fluctuations.The first project highlights the phase diagram of interacting electrons on a kagome lattice. This diagram is driven by two Coulomb repulsions. The first is a on site repulsion, and the second a nearest neighbor one. These two repulsions are in competition with quantum fluctuations of electronic charges. Four phases are depicted, two are unknown and the two other are in agreement with the literature. The two new phases are stabilized in the strong on site repulsion regime. When nearest neighbor repulsions are strong enough to induce a charge local constraint, the system enters in a so called Heisenberg-Loop Phase. These loops are antiferromagnetically arranged and can be described by a Heisenberg-like model in which both charge and spin play surprisingly a role in the exchange interaction. The second new phase is stabilized in the regime where nearest neighbor interactions are too weak to maintain the local constraint. Then, half of the electrons are delocalized in unidimensional Bloch states similar to quantum polarized electronic bubbles. These bubbles are trapped in an inversely polarized electronic cristal formed by the other electrons. This peculiar phase is favored by both quantum charge fluctuations in the bubbles, and antiferromagnetic exchanges between their electrons and the cristal ones.The second project deals with a Terbium Double-Decker molecular magnet. This molecule is modeled by three interacting degrees of freedom. The first is a nuclear spin of the Terbium ion, and the second is the electronic spin of this same ion. The two spins interact via a magnetic exchange.In a first approximation, the effect of the electronic spin is to induce a dipolar field. Finally, the last degree of freedom is carried by two ligands under the influence of the dipolar field. The ligands play the role of a read-out quantum dot, and by conductance measurements through this last one, we can probe the electronic spin and then, the nuclear spin. The first step of this project highlights the modeling of the global system. Then numerical computations are depicted and are in a quantitative agreement with the experimental measurements realized during the thesis of Stefan Thiele and Clément Godfrin.On the other hand, by applying electrical Radio Frequency Fields, we can drive quantum fluctuations on the nuclear spin. This quantum manipulation of the spin is realized by the dynamic deformation of the electron cloud under the effect of the Radio Frequency Field. As a result, we are able to implement a Grover Quantum Algorithm on the nuclear field. This thesis focuses on the realization of a simulation program that was a tool used by Clément Godfrin to successfully implement the Grover Algorithm
APA, Harvard, Vancouver, ISO, and other styles
12

ELIZALDE, SALAS JOSE BENITO 712682, and SALAS JOSE BENITO ELIZALDE. "Simulacion de los tiempos de ejecucion del algoritmo de grover dentro del enfoque de onda." Tesis de maestría, UNIVERSIDAD AUTONOMA DEL ESTADO DE MEXICO, 2017. http://hdl.handle.net/20.500.11799/68047.

Full text
Abstract:
la versión de onda semiclásica del algoritmo cuántico de búsqueda basada en un sistema de osciladores armónicos simples, no especifica un atributo importante que está presente en el algoritmo de Grover, como lo es el entrelazamiento. Al tomar en cuenta el entrelazamiento en la versión de onda, se halla que, el período de oscilación no concuerda con el tiempo de ejecución del algoritmo de Grover, de dicha observación se proponen dos argumentos, uno cualitativo y el otro cuantitativo, para que el tiempo y el tiempo coincidan. Para el argumento cualitativo se emplea la naturaleza probabilística del algoritmo cuántico. Dentro del argumento cuantitativo se identifica un parámetro en la versión de onda que está relacionado con el entrelazamiento. La diferencia con el tiempo de ejecución se resuelve eligiendo valores apropiados de tal parámetro que incorpora entrelazamiento. La utilidad de los argumentos actuales es evidente si la versión de onda del algoritmo cuántico de búsqueda se implementa experimentalmente a través de un sistema de N puntos cuánticos con un potencial de oscilación armónico de conexión para cada uno de los N puntos que deben estar acoplados a un único punto cuántico adicional que se entrelaza con todos ellos. Con el fin de obtener resultados óptimos, las constantes de acoplamiento deben ejecutarse de la manera descrita en el presente trabajo.<br>CONACyT UAEMEX
APA, Harvard, Vancouver, ISO, and other styles
13

Rivera, Alejo José Enrique. "Análisis comparativo entre el algoritmo cuántico de Grover y un algoritmo Grasp, aplicados a la búsqueda de individuos óptimos en la población inicial de un algoritmo genético." Bachelor's thesis, Pontificia Universidad Católica del Perú, 2010. http://tesis.pucp.edu.pe/repositorio/handle/123456789/556.

Full text
Abstract:
Este trabajo trata sobre la aplicación de dos algoritmos de búsqueda a la selección de individuos óptimos en la población inicial de un algoritmo genético, y la consiguiente comparación entre ambos. El primero de ellos es el algoritmo meta-heurístico GRASP, y el segundo es el algoritmo cuántico de Grover. El algoritmo cuántico de Grover forma parte de una nueva generación en las ciencias de la computación: la computación cuántica. Y por tanto hace uso de conceptos matemáticos y físicos completamente distintos a los usados en la programación clásica. En esta tesis se presenta un análisis general de ambos algoritmos, siendo de especial mención el análisis del algoritmo cuántico de Grover, ya que incluye un modelo matemático del funcionamiento del mismo. Este modelo será de suma importancia para simular la ejecución del algoritmo de Grover en una computadora clásica, dada la carencia de una computadora cuántica sobre la cual realizar esto. Luego, se preparan dos procesos experimentales, los cuales se usarán para realizar la comparación de eficacia y eficiencia entre las ejecuciones de los dos algoritmos. Posteriormente, se presenta el diseño e implementación de los algoritmos, ambos aplicados a la selección de individuos de un algoritmo genético genérico. Una vez ambos algoritmos se encuentren correctamente implementados y funcionales, se ejecutarán las pruebas experimentales que permitan realizar la comparación entre ellos. Finalmente se realizan las conclusiones y observaciones del caso en base a los resultados numéricos obtenidos en la fase experimental.<br>Tesis
APA, Harvard, Vancouver, ISO, and other styles
14

葉清河. "Quantum optical circuit design for grover's algorithm for multiobject search." Thesis, 2002. http://ndltd.ncl.edu.tw/handle/86569735126250421817.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Tulsi, Tathagat Avatar. "Generalizations Of The Quantum Search Algorithm." Thesis, 2009. http://hdl.handle.net/2005/951.

Full text
Abstract:
Quantum computation has attracted a great deal of attention from the scientific community in recent years. By using the quantum mechanical phenomena of superposition and entanglement, a quantum computer can solve certain problems much faster than classical computers. Several quantum algorithms have been developed to demonstrate this quantum speedup. Two important examples are Shor’s algorithm for the factorization problem, and Grover’s algorithm for the search problem. Significant efforts are on to build a large scale quantum computer for implementing these quantum algorithms. This thesis deals with Grover’s search algorithm, and presents its several generalizations that perform better in specific contexts. While writing the thesis, we have assumed the familiarity of readers with the basics of quantum mechanics and computer science. For a general introduction to the subject of quantum computation, see [1]. In Chapter 1, we formally define the search problem as well as present Grover’s search algorithm [2]. This algorithm, or more generally the quantum amplitude amplification algorithm [3, 4], drives a quantum system from a prepared initial state (s) to a desired target state (t). It uses O(α-1 = | (t−|s)| -1) iterations of the operator g = IsIt on |s), where { IsIt} are selective phase inversions selective phase inversions of the corresponding states. That is a quadratic speedup over the simple scheme of O(α−2) preparations of |s) and subsequent projective measurements. Several generalizations of Grover’s algorithm exist. In Chapter 2, we study further generalizations of Grover’s algorithm. We analyse the iteration of the search operator S = DsI t on |s) where Ds is a more general transformation than Is, and I t is a selective phase rotation of |t) by angle . We find sufficient conditions for S to produce a successful quantum search algorithm. In Chapter 3, we demonstrate that our general framework encapsulates several previous generalizations of Grover’s algorithm. For example, the phase-matching condition for the search operator requires the angles and and to be almost equal for a successful quantum search. In Kato’s algorithm, the search operator is where Ks consists of only single-qubit gates, which are easier to implement physically than multi-qubit gates. The spatial search algorithms consider the search operator where is a spatially local operator and provides implementation advantages over Is. The analysis of Chapter 2 provides a simpler understanding of all these special cases. In Chapter 4, we present schemes to improve our general quantum search algorithm, by controlling the operators through an ancilla qubit. For the case of two dimensional spatial search problem, these schemes yield an algorithm with time complexity . Earlier algorithms solved this problem in time steps, and it was an open question to design a faster algorithm. The schemes can also be used to find, for a given unitary operator, an eigenstate corresponding to a specified eigenvalue. In Chapter 5, we extend the analysis of Chapter 2 to general adiabatic quantum search. It starts with the ground state |s) of an initial Hamiltonian Hs and evolves adiabatically to the target state |t) that is the ground state of the final Hamiltonian The evolution uses a time dependent Hamiltonian HT that varies linearly with time . We show that the minimum excitation gap of HT is proportional to α. Also, the ground state of HT changes significantly only within a very narrow interval of width around the transition point, where the excitation gap has its minimum. This feature can be used to reach the target state (t) using adiabatic evolution for time In Chapter 6, we present a robust quantum search algorithm that iterates the operator on |s) to successfully reach |t), whereas Grover’s algorithm fails if as per the phase-matching condition. The robust algorithm also works when is generalized to multiple target states. Moreover, the algorithm provides a new search Hamiltonian that is robust against certain systematic perturbations. In Chapter 7, we look beyond the widely studied scenario of iterative quantum search algorithms, and present a recursive quantum search algorithm that succeeds with transformations {Vs,Vt} sufficiently close to {Is,It.} Grover’s algorithm generally fails if while the recursive algorithm is nearly optimal as long as , improving the error tolerance of the transformations. The algorithms of Chapters 6-7 have applications in quantum error-correction, when systematic errors affect the transformations The algorithms are robust as long as the errors are small, reproducible and reversible. This type of errors arise often from imperfections in apparatus setup, and so the algorithms increase the flexibility in physical implementation of quantum search. In Chapter 8, we present a fixed-point quantum search algorithm. Its state evolution monotonically converges towards |t), unlike Grover’s algorithm where the evolution passes through |t) under iterations of the operator . In q steps, our algorithm monotonically reduces the failure probability, i.e. the probability of not getting |t), from . That is asymptotically optimal for monotonic convergence. Though the fixed-point algorithm is of not much use for , it is useful when and each oracle query is highly expensive. In Chapter 9, we conclude the thesis and present an overall outlook.
APA, Harvard, Vancouver, ISO, and other styles
16

王文楷. "Tight bounds on grover-based quantum search algorithms." Thesis, 2003. http://ndltd.ncl.edu.tw/handle/22884432750805203157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Bassa, Humairah. "Implementing Grover's search algorithm using the one-way quantum computing model and photonic orbital angular momentum." Thesis, 2011. http://hdl.handle.net/10413/9704.

Full text
Abstract:
Standard quantum computation proceeds via the unitary evolution of physical qubits (two-level systems) that carry the information. A remarkably different model is one-way quantum computing where a quantum algorithm is implemented by a set of irreversible measurements on a large array of entangled qubits,, known as the cluster state. The order and sequence of these measurements allow for different algorithms to be implemented. With a large enough cluster state and a method in which to perform single-qubit measurements the desired computation can be realised. We propose a potential implementation of one-way quantum computing using qubits encoded in the orbital angular momentum degree of freedom of single photons. Photons are good carriers of quantum information because of their weak interaction with the environment and the orbital angular momentum of single photons offers access to an infinite-dimensional Hilbert space for encoding information. Spontaneous parametric down-conversion is combined with a series of optical elements to generate a four-photon orbital angular momentum entangled cluster state and single-qubit measurements are carried out by means of digital holography. The proposed set-up, which is based on an experiment that utilised polarised photons, can be used to realise Grover’s search algorithm which performs a search through an unstructured database of four elements. Our application is restricted to a two-dimensional subspace of a multi-dimensional system, but this research facilitates the use of orbital angular momentum qubits for quantum information processing and points towards the usage of photonic qudits (multi-level systems). We also review the application of Dirac notation to paraxial light beams on a classical and quantum level. This formalism is generally employed in quantum mechanics but the analogy with paraxial optics allows us to represent the classical states of light by means of Dirac kets. An analysis of the analogy between the classical and quantum states of light using this formalism, is presented.<br>Thesis (M.Sc.)-University of KwaZulu-Natal, Durban, 2011.
APA, Harvard, Vancouver, ISO, and other styles
18

Rahaman, Md Aminoor. "Search On A Hypercubic Lattice Using Quantum Random Walk." Thesis, 2009. http://hdl.handle.net/2005/972.

Full text
Abstract:
Random walks describe diffusion processes, where movement at every time step is restricted only to neighbouring locations. Classical random walks are constructed using the non-relativistic Laplacian evolution operator and a coin toss instruction. In quantum theory, an alternative is to use the relativistic Dirac operator. That necessarily introduces an internal degree of freedom (chirality), which may be identified with the coin. The resultant walk spreads quadratically faster than the classical one, and can be applied to a variety of graph theoretical problems. We study in detail the problem of spatial search, i.e. finding a marked site on a hypercubic lattice in d-dimensions. For d=1, the scaling behaviour of classical and quantum spatial search is the same due to the restriction on movement. On the other hand, the restriction on movement hardly matters for d ≥ 3, and scaling behaviour close to Grover’s optimal algorithm(which has no restriction on movement) can be achieved. d=2 is the borderline critical dimension, where infrared divergence in propagation leads to logarithmic slow down that can be minimised using clever chirality flips. In support of these analytic expectations, we present numerical simulation results for d=2 to d=9, using a lattice implementation of the Dirac operator inspired by staggered fermions. We optimise the parameters of the algorithm, and the simulation results demonstrate that the number of binary oracle calls required for d= 2 and d ≥ 3 spatial search problems are O(√NlogN) and O(√N) respectively. Moreover, with increasing d, the results approach the optimal behaviour of Grover’s algorithm(corresponding to mean field theory or d → ∞ limit). In particular, the d = 3 scaling behaviour is only about 25% higher than the optimal value.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!