Academic literature on the topic 'Gyroid'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Gyroid.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Gyroid"
Keattitorn, Saranchana, Maria Carrillo-Munoz, and Bhisham Sharma. "Anomalous polarization in asymmetric gyroid structures." Journal of the Acoustical Society of America 151, no. 4 (April 2022): A97. http://dx.doi.org/10.1121/10.0010773.
Full textWinter, Benjamin, Benjamin Butz, Christel Dieker, Gerd E. Schröder-Turk, Klaus Mecke, and Erdmann Spiecker. "Coexistence of both gyroid chiralities in individual butterfly wing scales of Callophrys rubi." Proceedings of the National Academy of Sciences 112, no. 42 (October 5, 2015): 12911–16. http://dx.doi.org/10.1073/pnas.1511354112.
Full textDai, Rui, Dawei Li, Wenhe Liao, Haofan Sun, Yunlong Tang, and Qiong Nian. "Molecular dynamics simulations to understand the mechanical behavior of functional gradient nano-gyroid structures." Journal of Applied Physics 132, no. 13 (October 7, 2022): 135109. http://dx.doi.org/10.1063/5.0102297.
Full textLi, Dawei, Wenhe Liao, Ning Dai, and Yi Min Xie. "Comparison of Mechanical Properties and Energy Absorption of Sheet-Based and Strut-Based Gyroid Cellular Structures with Graded Densities." Materials 12, no. 13 (July 7, 2019): 2183. http://dx.doi.org/10.3390/ma12132183.
Full textRammohan, Abhishek Vishwanath, Taeyong Lee, and V. B. C. Tan. "A Novel Morphological Model of Trabecular Bone Based on the Gyroid." International Journal of Applied Mechanics 07, no. 03 (June 2015): 1550048. http://dx.doi.org/10.1142/s1758825115500489.
Full textGrosse-Brauckmann, Karsten. "On Gyroid Interfaces." Journal of Colloid and Interface Science 187, no. 2 (March 1997): 418–28. http://dx.doi.org/10.1006/jcis.1996.4720.
Full textNaghavi, Seyed Ataollah, Haoyu Wang, Swastina Nath Varma, Maryam Tamaddon, Arsalan Marghoub, Rex Galbraith, Jane Galbraith, et al. "On the Morphological Deviation in Additive Manufacturing of Porous Ti6Al4V Scaffold: A Design Consideration." Materials 15, no. 14 (July 6, 2022): 4729. http://dx.doi.org/10.3390/ma15144729.
Full textAshraf, Juveiriah M., Jing Fu, Kin Liao, Vincent Chan, and Rashid K. Abu Al-Rub. "Scalable synthesis, characterization and testing of 3D architected gyroid graphene lattices from additively manufactured templates." Journal of Micromechanics and Molecular Physics 06, no. 03 (September 2021): 13–24. http://dx.doi.org/10.1142/s2424913021430025.
Full textSalvatore, Stefano, Silvia Vignolini, Julian Philpott, Morgan Stefik, Ulrich Wiesner, Jeremy J. Baumberg, and Ullrich Steiner. "A high transmission wave-guide wire network made by self-assembly." Nanoscale 7, no. 3 (2015): 1032–36. http://dx.doi.org/10.1039/c4nr04485a.
Full textSchick, M. "Avatars of the gyroid." Physica A: Statistical Mechanics and its Applications 251, no. 1-2 (March 1998): 1–11. http://dx.doi.org/10.1016/s0378-4371(97)00590-6.
Full textDissertations / Theses on the topic "Gyroid"
Asghar, Kaleem Abbas. "2D hexagonal and 3D gyroid structured platinum materials." Thesis, University of Reading, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.669697.
Full textHussmo, Jonatan, and Roman Schröder. "Experiments, analysis and an application of 3D-printed gyroid structures." Thesis, Örebro universitet, Institutionen för naturvetenskap och teknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-85935.
Full textTesen undersöker de mekaniska egenskaperna av gyroidstrukturer genom olika experiment och simuleringar. Gyroidstrukturer består av ett komplext nätverk av ytor och kan variera i densitet och cellstorlek. Dess hållfasthetsegenskaper är givetvis beroende på densiteten. Konvergensen mellan densitet och den resulterande mekaniska styvheten av nätverksstrukturen skulle kunna tillämpas på ett brett spektrum av industriella komponenter. Det är möjligt att reducera vikt eller öka styvhet medan att kunna bibehålla hållfastheten. För att testa hållfasthetsegenskaperna av gyroidstrukturer 3D-printade kuber komprimeras i en tryckmaskin där styvhet mäts för ett antal kuber med olika densitet. Testen bekräftas genom en analys med finita elementmetoden (FEM) och all data utvärderas noggrant därefter. En linjär ökning i densitet leder till en ickelinjär ökning i styvhet där området mellan 30% och 60% densitet ger ett särskilt bra förhållande mellan styvhet och vikt. När resultatet från experimenten och analysen utvärderats, implementeras gyroidstruktur på en av ABB’s komponenter i en strömbrytare för att ytterligare visa dess fördelar. Fyra olika koncept presenteras där det mest lovande konceptet kunde viktoptimeras med 30 procent endast genom att tillägga gyroidstrukturer. Inga andra designändringar har gjorts på komponenten. Resultatet demonstrerar en stor potential när det gäller att viktreducera komponenten utan att tappa nödvändig styvhet. Resultaten av tesen kan användas på många olika sätt för att ta fram nya metoder för optimering av industriella komponenter med additiv tillverkning då gyroiden inte behöver några stödstrukturer. Det är möjligt att blanda gyroidstrukturer med andra optimeringsverktyg såsom topologioptimering eller gradering för att åstadkomma ännu större viktminskningar.
Scherer, Maik. "Synthesis and applications of double-gyroid-structured functional materials." Thesis, University of Cambridge, 2014. https://www.repository.cam.ac.uk/handle/1810/245302.
Full textZhang, Botao. "Design of Variable-Density Structures for Additive Manufacturing Using Gyroid Lattices." University of Cincinnati / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1535374427634743.
Full textKang, Min Jeong M. Eng Massachusetts Institute of Technology. "High performance curtain wall mullion section design with various densities of gyroid." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/107061.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 87-91).
The thermal bridge problem in building fagades has become a topic of interest as the energy performance of building enclosure design required improvements with a global lead in sustainable building design. Curtain wall fagade systems are widely used for recent high-rise buildings, and the thermal bridge issue occurs mainly within the aluminum frame of the curtain wall system. In addition to the thermal bridging effects, the conventional curtain wall fagade designs have limitations in increasing the stiffness of the mullion. As to address the lack of an innovative solution to solve both issues, this thesis proposes utilizing a cellular structure in mullion design. In particular, this thesis has selected a single-gyroid structure, which is an open cell foam structure that has the minimum surface area necessary to span a region of space. The thesis explores various aspects of the application that extend from a rapid modeling method of gyroid structure, experiments, and simulations along with theoretical values for mechanical and thermal properties of gyroid, to topology optimization of the various densities of gyroid in the composite structure. The results are expected to improve the curtain wall designs with future experimental verifications.
by Min Jeong Kang.
M. Eng.
Dair, Benita Jean 1973. "Characterization, orientation, and deformation behavior of the double gyroid phase in elastomeric triblock copolymers." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/85251.
Full textDeng, Guodong. "Self-Assembly of Poly(Ethylene Oxide)-Block-Poly(Ethyl Acrylate)-Block-Polystyrene with Phenolic Resins." University of Akron / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=akron1399044329.
Full textMille, Christian. "Templating and self-assembly of biomimetic materials." Doctoral thesis, Stockholms universitet, Institutionen för material- och miljökemi (MMK), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-80459.
Full textAt the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 3: Submitted. Paper 4: Submitted. Paper 5: Submitted.
Darbyshire, Alice. "Twin control moment gyros for small satellites." Thesis, University of Surrey, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.502639.
Full textGhalib, Sara, Daniel Holmberg, Mattias Lundén, Karin Rudström, and Jana Zachrisson. "Nya lysande detektionstekniker : Undersökning hur Gyros känsliga instrument kan bli ännu känsligare." Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-155988.
Full textBooks on the topic "Gyroid"
Dolan, James A. Gyroid Optical Metamaterials. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03011-7.
Full textScherer, Maik Rudolf Johann. Double-Gyroid-Structured Functional Materials. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00354-2.
Full textScherer, Maik Rudolf Johann. Double-Gyroid-Structured Functional Materials: Synthesis and Applications. Heidelberg: Springer International Publishing, 2013.
Find full textPapathanasopoulos, Thanasēs. Gyrō ston Kazantzakē: Meletēmata. Athēna: [s.n.], 1989.
Find full textMyridakēs, Michaēl I. Hoi 4 gyroi tou KKE: Ho EDES kai hoi Angloi. Athēnai: To Oikonomiko, 1988.
Find full textSociety, Royal Aeronautical, ed. Laser gyros and fibre optic gyros: Wednesday 25th February 1987, one day symposium. London: Royal Aeronautical Society, 1987.
Find full textBook chapters on the topic "Gyroid"
Scherer, Maik Rudolf Johann. "Gyroid and Gyroid-Like Surfaces." In Double-Gyroid-Structured Functional Materials, 7–19. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00354-2_2.
Full textSalvatore, Stefano. "Hollow Gyroid." In Springer Theses, 53–61. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05332-5_6.
Full textSalvatore, Stefano. "Gyroid Metamaterial Fabrication." In Springer Theses, 19–29. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05332-5_3.
Full textSalvatore, Stefano. "Gyroid Metamaterial Characterization." In Springer Theses, 31–44. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05332-5_4.
Full textScherer, Maik Rudolf Johann. "Voided Double-Gyroid Thin Film Templates." In Double-Gyroid-Structured Functional Materials, 49–83. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00354-2_4.
Full textSalvatore, Stefano. "Flexible and Stretchable Gyroid Metamaterials." In Springer Theses, 63–69. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05332-5_7.
Full textDolan, James A. "Multi-Domain Gyroid Optical Metamaterials." In Springer Theses, 87–104. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03011-7_6.
Full textDolan, James A. "Single-Domain Gyroid Optical Metamaterials." In Springer Theses, 105–24. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03011-7_7.
Full textReitebuch, Ulrich, Henriette-Sophie Lipschütz, and Konrad Polthier. "Filling Space with Gyroid Symmetry." In Trends in Mathematics, 69–76. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99116-6_5.
Full textScherer, Maik Rudolf Johann. "Introduction." In Double-Gyroid-Structured Functional Materials, 1–6. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00354-2_1.
Full textConference papers on the topic "Gyroid"
Krejčí, T., L. Řehounek, A. Jíra, M. Šejnoha, J. Kruis, and T. Koudelka. "Numerical homogenization of gyroid structures." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2020. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0081432.
Full textNakazato, Ken’ichiro, Kazuhiro Oyamatsu, Shoichi Yamada, Hajime Susa, Marcel Arnould, Sydney Gales, Tohru Motobayashi, Christoph Scheidenberger, and Hiroaki Utsunomiya. "Pasta Phase with Gyroid Morphology at Subnuclear Densities." In TOURS SYMPOSIUM ON NUCLEAR PHYSICS AND ASTROPHYSICS—VII. AIP, 2010. http://dx.doi.org/10.1063/1.3455933.
Full textGuariento, Lorenzo, Francesco Buonamici, Antonio Marzola, Yary Volpe, and Lapo Governi. "Graded Gyroid Structures for Load Bearing Orthopedic Implants." In 2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP). IEEE, 2020. http://dx.doi.org/10.1109/nap51477.2020.9309692.
Full textPais, Ana, Jorge Lino Alves, and Jorge Belinha. "Elastic and Plastic Properties of Gyroid Sheet Foams." In MATERIAIS. Basel Switzerland: MDPI, 2022. http://dx.doi.org/10.3390/materproc2022008090.
Full textKilchoer, C., J. A. Dolan, M. Saba, N. Abdollahi, K. Korzeb, U. Wiesner, U. Steiner, I. Gunkel, and B. D. Wilts. "Linear and Circular Dichroism in Gyroid Optical Metamaterials." In 2018 12th International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials). IEEE, 2018. http://dx.doi.org/10.1109/metamaterials.2018.8534182.
Full textNakazato, Ken'ichiro, and Kazuhiro Oyamatsu. "Pasta Phase with Gyroid Morphology at Subnuclear Densities." In 11th Symposium on Nuclei in the Cosmos. Trieste, Italy: Sissa Medialab, 2011. http://dx.doi.org/10.22323/1.100.0172.
Full textMcMichael, Ian, Paul Beckwith, and Pochi Yeh. "Phase-Conjugate Multimode Fiber Gyro." In Photorefractive Materials. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/prm.1987.fa4.
Full textValentine, Max, Arjun Radhakrishnan, Vincent Maes, Elise Pegg, Maria Valero, James Kratz, and Vimal Dhokia. "A Feasibility Study of Additively Manufactured Composite Tooling." In 2022 International Additive Manufacturing Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/iam2022-93952.
Full textJheng, Pei-Lun, and Yu-Chueh Hung. "Analysis of dispersion relation in three-dimensional single gyroid." In SPIE OPTO, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2016. http://dx.doi.org/10.1117/12.2212188.
Full textZhang, Botao, Kunal Mhapsekar, and Sam Anand. "Design of Variable-Density Structures for Additive Manufacturing Using Gyroid Lattices." In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-68047.
Full textReports on the topic "Gyroid"
Covino, Josephine, and Jean M. Bennett. Laser-Gyro Materials Studies. Fort Belvoir, VA: Defense Technical Information Center, March 1986. http://dx.doi.org/10.21236/ada169595.
Full textWare, Colin. TrackPlot Enhancements: Support for Multiple Animal Tracks and Gyros. Fort Belvoir, VA: Defense Technical Information Center, September 2014. http://dx.doi.org/10.21236/ada617644.
Full textLuhmann, N. C., and Jr. Stable High-Power Harmonic Gyro-Amplifiers. Fort Belvoir, VA: Defense Technical Information Center, September 1994. http://dx.doi.org/10.21236/ada293697.
Full textLuhmann, N. C., and Jr. Stable High Power Harmonic Gyro-Amplifier. Fort Belvoir, VA: Defense Technical Information Center, October 1995. http://dx.doi.org/10.21236/ada303449.
Full textRoss, Steven M., Matthew D. Menza, Jr Waddell, Mainstone Elwood T., Velez Aaron P., and Juanluis. Demonstration of a Control Algorithm for Autonomous Aerial Refueling (Project No Gyro")". Fort Belvoir, VA: Defense Technical Information Center, December 2005. http://dx.doi.org/10.21236/ada444948.
Full textR.V. Budny, J. Candy, and R.E. Waltz. GYRO Simulations of Core Momentum Transport in DIII-D and JET Plasmas. Office of Scientific and Technical Information (OSTI), June 2005. http://dx.doi.org/10.2172/841241.
Full textPirkle, D. R., C. W. Alford, M. H. Anderson, R. F. Garcia, J. R. Legarra, and A. L. Nordquist. Pierce-Wiggler electron beam system for 250 GHz GYRO-BWO: Final report. Office of Scientific and Technical Information (OSTI), January 1989. http://dx.doi.org/10.2172/6250174.
Full textRoquemore, A. L., and S. S. Medley. Gyro-electron ghost images due to microchannel plate operation in transverse magnetic fields. Office of Scientific and Technical Information (OSTI), June 1986. http://dx.doi.org/10.2172/5517931.
Full textNg, L. C. On the application of Allan variance method for Ring Laser Gyro performance characterization. Office of Scientific and Technical Information (OSTI), October 1993. http://dx.doi.org/10.2172/10196087.
Full textSmith, D. R., W. Lee, E. Mazzucato, H. K. Park, R. E. Bell, C. W. Domier, B. P. LeBlanc, F. M. Levinton, N. C. Luhmann, and J. E. Menard. Electron Gyro-scale Fluctuation Measurements in National Spherical Torus Experiment H-mode Plasmas. Office of Scientific and Technical Information (OSTI), August 2009. http://dx.doi.org/10.2172/962142.
Full text