Journal articles on the topic 'H9C2 myoblasts'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'H9C2 myoblasts.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Apostolova, Margarita D., Iordanka A. Ivanova, and M. George Cherian. "Signal transduction pathways, and nuclear translocation of zinc and metallothionein during differentiation of myoblasts." Biochemistry and Cell Biology 78, no. 1 (2000): 27–37. http://dx.doi.org/10.1139/o99-070.
Full textKhodade, Vinayak S., Sahil C. Aggarwal, Blaze M. Pharoah, Nazareno Paolocci, and John P. Toscano. "Alkylsulfenyl thiocarbonates: precursors to hydropersulfides potently attenuate oxidative stress." Chemical Science 12, no. 23 (2021): 8252–59. http://dx.doi.org/10.1039/d1sc01550h.
Full textKaminska, Iwona, Malgorzata Kotulska, Anna Stecka, et al. "Electroporation-induced changes in normal immature rat myoblasts (H9C2)." General physiology and biophysics 31, no. 01 (2012): 19–25. http://dx.doi.org/10.4149/gpb_2012_003.
Full textHsu, Ron-Bin, Cheng-Hsin Lin, Wen-Shiann Wu, Wen-Ping Liu, Mao-Tsun Lin, and Ching-Ping Chang. "Attenuating Ischemia-Induced H9c2 Myoblasts Apoptosis by Therapeutic Hypothermia." American Journal of the Medical Sciences 339, no. 3 (2010): 258–65. http://dx.doi.org/10.1097/maj.0b013e3181ce507f.
Full textvan der Putten, HH, BJ Joosten, PH Klaren, and ME Everts. "Uptake of tri-iodothyronine and thyroxine in myoblasts and myotubes of the embryonic heart cell line H9c2(2-1)." Journal of Endocrinology 175, no. 3 (2002): 587–96. http://dx.doi.org/10.1677/joe.0.1750587.
Full textKulbacka, Julita, Julita Bar, Agnieszka Chwilkowska, et al. "Oxidative modulation of marcaine and lekoptin in H9C2 rat myoblasts." Acta Pharmacologica Sinica 30, no. 2 (2009): 184–92. http://dx.doi.org/10.1038/aps.2008.27.
Full textLoiselle, Julie J., Sarah J. Tessier, and Leslie C. Sutherland. "Post-transcriptional regulation of Rbm5 expression in undifferentiated H9c2 myoblasts." In Vitro Cellular & Developmental Biology - Animal 52, no. 3 (2015): 327–36. http://dx.doi.org/10.1007/s11626-015-9976-x.
Full textGovoni, Marco, Francesca Bonavita, Lisa M. Shantz, Carlo Guarnieri, and Emanuele Giordano. "Overexpression of ornithine decarboxylase increases myogenic potential of H9c2 rat myoblasts." Amino Acids 38, no. 2 (2009): 541–47. http://dx.doi.org/10.1007/s00726-009-0415-8.
Full textAdams, J. C., and J. Lawler. "Cell-type specific adhesive interactions of skeletal myoblasts with thrombospondin-1." Molecular Biology of the Cell 5, no. 4 (1994): 423–37. http://dx.doi.org/10.1091/mbc.5.4.423.
Full textWang, Wei, Makino Watanabe, Takeshi Nakamura, Yoshihisa Kudo, and Rikuo Ochi. "Properties and expression of Ca2+-activated K+ channels in H9c2 cells derived from rat ventricle." American Journal of Physiology-Heart and Circulatory Physiology 276, no. 5 (1999): H1559—H1566. http://dx.doi.org/10.1152/ajpheart.1999.276.5.h1559.
Full textvan den Eijnde, Stefan M., Maurice J. B. van den Hoff, Chris P. M. Reutelingsperger, et al. "Transient expression of phosphatidylserine at cell-cell contact areas is required for myotube formation." Journal of Cell Science 114, no. 20 (2001): 3631–42. http://dx.doi.org/10.1242/jcs.114.20.3631.
Full textHatch, Grant M., and Grant McClarty. "Regulation of Cardiolipin Biosynthesis in H9c2 Cardiac Myoblasts by Cytidine 5′-Triphosphate." Journal of Biological Chemistry 271, no. 42 (1996): 25810–16. http://dx.doi.org/10.1074/jbc.271.42.25810.
Full textPollard, Celina, Victoria Desimine, Shelby Wertz та ін. "Deletion of Osteopontin Enhances β2-Adrenergic Receptor-Dependent Anti-Fibrotic Signaling in Cardiomyocytes". International Journal of Molecular Sciences 20, № 6 (2019): 1396. http://dx.doi.org/10.3390/ijms20061396.
Full textAnju, Vijayalekshmi, Sulochana Priya, Sabulal Baby, and Koranappallil Bahuleyan Rameshkumar. "Chemical Constituents and Cytotoxicity of Euphorbia vajravelui." Letters in Organic Chemistry 16, no. 8 (2019): 643–46. http://dx.doi.org/10.2174/1570178616666181129130127.
Full textWang, Wei, Naoki Hino, Hiroshi Yamasaki, Takashi Aoki, and Rikuo Ochi. "KV2.1 K+ Channels Underlie Major Voltage-Gated K+ Outward Current in H9c2 Myoblasts." Japanese Journal of Physiology 52, no. 6 (2002): 507–14. http://dx.doi.org/10.2170/jjphysiol.52.507.
Full textSon, Euncheol, Dongju Lee, Chul-Woong Woo, and Young-Hoon Kim. "The optimal model of reperfusion injury in vitro using H9c2 transformed cardiac myoblasts." Korean Journal of Physiology & Pharmacology 24, no. 2 (2020): 173. http://dx.doi.org/10.4196/kjpp.2020.24.2.173.
Full textReyes, Leila, Clare L. Hawkins, and Benjamin S. Rayner. "Characterization of the cellular effects of myeloperoxidase-derived oxidants on H9c2 cardiac myoblasts." Archives of Biochemistry and Biophysics 665 (April 2019): 132–42. http://dx.doi.org/10.1016/j.abb.2019.03.004.
Full textSardão, Vilma A., Paulo J. Oliveira, Jon Holy, Catarina R. Oliveira, and Kendall B. Wallace. "Morphological alterations induced by doxorubicin on H9c2 myoblasts: nuclear, mitochondrial, and cytoskeletal targets." Cell Biology and Toxicology 25, no. 3 (2008): 227–43. http://dx.doi.org/10.1007/s10565-008-9070-1.
Full textStathopoulou, Konstantina, Isidoros Beis, and Catherine Gaitanaki. "MAPK signaling pathways are needed for survival of H9c2 cardiac myoblasts under extracellular alkalosis." American Journal of Physiology-Heart and Circulatory Physiology 295, no. 3 (2008): H1319—H1329. http://dx.doi.org/10.1152/ajpheart.01362.2007.
Full textChoi, Hyun Ju, Mi Ra Seon, Soon Sung Lim, Jong-Sang Kim, Hyang Sook Chun, and Jung Han Yoon Park. "Hexane/Ethanol Extract ofGlycyrrhiza uralensisLicorice Suppresses Doxorubicin-Induced Apoptosis in H9c2 Rat Cardiac Myoblasts." Experimental Biology and Medicine 233, no. 12 (2008): 1554–60. http://dx.doi.org/10.3181/0807-rm-221.
Full textMei, Chieh, Chih‐Wei Chao, Che‐Wei Lin, et al. "Three‐dimensional spherical gelatin bubble‐based scaffold improves the myotube formation of H9c2 myoblasts." Biotechnology and Bioengineering 116, no. 5 (2019): 1190–200. http://dx.doi.org/10.1002/bit.26917.
Full textGirard, Béatrice, L'Houcine Ouafik та Françoise Boudouresque. "Characterization and regulation of peptidylglycine α-amidating monooxygenase (PAM) expression in H9c2 cardiac myoblasts". Cell and Tissue Research 298, № 3 (1999): 489–97. http://dx.doi.org/10.1007/s004410050071.
Full textGirard, Béatrice, L'Houcine Ouafik та Françoise Boudouresque. "Characterization and regulation of peptidylglycine α-amidating monooxygenase (PAM) expression in H9c2 cardiac myoblasts". Cell and Tissue Research 298, № 3 (1999): 489–97. http://dx.doi.org/10.1007/s004419900111.
Full textO-Uchi, Jin, Bong Sook Jhun, Stephen Hurst, et al. "Overexpression of ryanodine receptor type 1 enhances mitochondrial fragmentation and Ca2+-induced ATP production in cardiac H9c2 myoblasts." American Journal of Physiology-Heart and Circulatory Physiology 305, no. 12 (2013): H1736—H1751. http://dx.doi.org/10.1152/ajpheart.00094.2013.
Full textChua, Chu Chang, Xuwan Liu, Jinping Gao, Ronald C. Hamdy та Balvin H. L. Chua. "Multiple actions of pifithrin-α on doxorubicin-induced apoptosis in rat myoblastic H9c2 cells". American Journal of Physiology-Heart and Circulatory Physiology 290, № 6 (2006): H2606—H2613. http://dx.doi.org/10.1152/ajpheart.01138.2005.
Full textLiu, Ling, Ping Wang, Xinwei Liu, Dongwei He, Canxin Liang, and Ying Yu. "Exogenous NAD+supplementation protects H9c2 cardiac myoblasts against hypoxia/reoxygenation injury via Sirt1-p53 pathway." Fundamental & Clinical Pharmacology 28, no. 2 (2013): 180–89. http://dx.doi.org/10.1111/fcp.12016.
Full textSoler, Fernando, Antonio Lax, M. Carmen Asensio, Domingo Pascual-Figal, and Francisco Fernández-Belda. "Passive Ca2+ overload in H9c2 cardiac myoblasts: Assessment of cellular damage and cytosolic Ca2+ transients." Archives of Biochemistry and Biophysics 512, no. 2 (2011): 175–82. http://dx.doi.org/10.1016/j.abb.2011.05.019.
Full textHuo, Shengqi, Wei Shi, Haiyan Ma, et al. "Alleviation of Inflammation and Oxidative Stress in Pressure Overload-Induced Cardiac Remodeling and Heart Failure via IL-6/STAT3 Inhibition by Raloxifene." Oxidative Medicine and Cellular Longevity 2021 (March 20, 2021): 1–15. http://dx.doi.org/10.1155/2021/6699054.
Full textFong, Chi Chun, Fan Wei, Yao Chen, et al. "Danshen–Gegen decoction exerts proliferative effect on rat cardiac myoblasts H9c2 via MAPK and insulin pathways." Journal of Ethnopharmacology 138, no. 1 (2011): 60–66. http://dx.doi.org/10.1016/j.jep.2011.08.027.
Full textVineetha, V. P., A. Prathapan, R. S. Soumya, and K. G. Raghu. "Arsenic Trioxide Toxicity in H9c2 Myoblasts—Damage to Cell Organelles and Possible Amelioration with Boerhavia diffusa." Cardiovascular Toxicology 13, no. 2 (2012): 123–37. http://dx.doi.org/10.1007/s12012-012-9191-x.
Full textBryantsev, Anton L., Svetlana A. Loktionova, Olga P. Ilyinskaya, Eduard M. Tararak, Harm H. Kampinga, and Alexander E. Kabakov. "Distribution, phosphorylation, and activities of Hsp25 in heat-stressed H9c2 myoblasts: a functional link to cytoprotection." Cell Stress & Chaperones 7, no. 2 (2002): 146. http://dx.doi.org/10.1379/1466-1268(2002)007<0146:dpaaoh>2.0.co;2.
Full textKim, S. S., J. Kim, S. Kwon, et al. "PI3-kinase activates p38 MAPK independently of PKB/Akt during myogenic differentiation of H9c2 cardiac myoblasts." Biochemical Society Transactions 28, no. 5 (2000): A292. http://dx.doi.org/10.1042/bst028a292b.
Full textSu, Ching-Yuan, Kowit-Yu Chong, JianXiong Chen, Stefan Ryter, Romesh Khardori, and Chen-Ching Lai. "A Physiologically Relevant Hyperthermia Selectively Activates Constitutive hsp70 in H9c2 Cardiac Myoblasts and Confers Oxidative Protection." Journal of Molecular and Cellular Cardiology 31, no. 4 (1999): 845–55. http://dx.doi.org/10.1006/jmcc.1998.0923.
Full textHu, Yue-huai, Jie Liu, Jing Lu, et al. "sFRP1 protects H9c2 cardiac myoblasts from doxorubicin-induced apoptosis by inhibiting the Wnt/PCP-JNK pathway." Acta Pharmacologica Sinica 41, no. 9 (2020): 1150–57. http://dx.doi.org/10.1038/s41401-020-0364-z.
Full textAlam, Md Jahangir, Richa Gupta, Nitish R. Mahapatra, and Shyamal K. Goswami. "Catestatin reverses the hypertrophic effects of norepinephrine in H9c2 cardiac myoblasts by modulating the adrenergic signaling." Molecular and Cellular Biochemistry 464, no. 1-2 (2019): 205–19. http://dx.doi.org/10.1007/s11010-019-03661-1.
Full textBotha, Christo J., Y. Zethu Mathe, Gezina C. H. Ferreira, and E. Annette Venter. "Cytotoxicity of the Sesquiterpene Lactones, Ivalin and Parthenolide in Murine Muscle Cell Lines and Their Effect on Desmin, a Cytoskeletal Intermediate Filament." Toxins 12, no. 7 (2020): 459. http://dx.doi.org/10.3390/toxins12070459.
Full textLee, Insu, Jin Woo, Min Lee, Tae-Joon Jeon, and Sun Kim. "Hypoxic Physiological Environments in a Gas-Regulated Microfluidic Device." Micromachines 10, no. 1 (2018): 16. http://dx.doi.org/10.3390/mi10010016.
Full textSugarman, Eliot, Ada Koo, Eigo Suyama, et al. "Identification of Inhibitors of Triacylglyceride Accumulation in Muscle Cells." Journal of Biomolecular Screening 19, no. 1 (2013): 77–87. http://dx.doi.org/10.1177/1087057113501198.
Full textLee, Christopher T., John R. Ussher, Askar Mohammad, Anna Lam, and Gary D. Lopaschuk. "5′-AMP-activated protein kinase increases glucose uptake independent of GLUT4 translocation in cardiac myocytes." Canadian Journal of Physiology and Pharmacology 92, no. 4 (2014): 307–14. http://dx.doi.org/10.1139/cjpp-2013-0107.
Full textGopal, Keshav, Bruno Saleme, Rami Al Batran, et al. "FoxO1 regulates myocardial glucose oxidation rates via transcriptional control of pyruvate dehydrogenase kinase 4 expression." American Journal of Physiology-Heart and Circulatory Physiology 313, no. 3 (2017): H479—H490. http://dx.doi.org/10.1152/ajpheart.00191.2017.
Full textAgnetti, Giulio, Tullia Maraldi, Diana Fiorentini, et al. "Activation of glucose transport during simulated ischemia in H9c2 cardiac myoblasts is mediated by protein kinase C isoforms." Life Sciences 78, no. 3 (2005): 264–70. http://dx.doi.org/10.1016/j.lfs.2005.04.039.
Full textHong, Feng, Keun-ai Moon, Sam Soo Kim та ін. "Role of Phospholipase C-γ1 in Insulin-like Growth Factor I-Induced Muscle Differentiation of H9c2 Cardiac Myoblasts". Biochemical and Biophysical Research Communications 282, № 3 (2001): 816–22. http://dx.doi.org/10.1006/bbrc.2001.4644.
Full textZikaki, Kyriaki, Ioanna-Katerina Aggeli, Catherine Gaitanaki, and Isidoros Beis. "Curcumin induces the apoptotic intrinsic pathway via upregulation of reactive oxygen species and JNKs in H9c2 cardiac myoblasts." Apoptosis 19, no. 6 (2014): 958–74. http://dx.doi.org/10.1007/s10495-014-0979-y.
Full textBonavita, Francesca, Claudio Stefanelli, Emanuele Giordano, et al. "H9c2 cardiac myoblasts undergo apoptosis in a model of ischemia consisting of serum deprivation and hypoxia: inhibition by PMA." FEBS Letters 536, no. 1-3 (2003): 85–91. http://dx.doi.org/10.1016/s0014-5793(03)00029-2.
Full textSaleem, Nikhat, and Shyamal K. Goswami. "Activation of adrenergic receptor in H9c2 cardiac myoblasts co-stimulates Nox2 and the derived ROS mediate the downstream responses." Molecular and Cellular Biochemistry 436, no. 1-2 (2017): 167–78. http://dx.doi.org/10.1007/s11010-017-3088-8.
Full textMarathe, P., M. Thao, and I. Benjamin. "ID: 11: REDOX PROFILING OF CARVEDILOL AND PROPRANOLOL IN A HEART MODEL." Journal of Investigative Medicine 64, no. 4 (2016): 923.1–923. http://dx.doi.org/10.1136/jim-2016-000120.25.
Full textGupta, M. K., V. Neelakantan, S. Mishra, et al. "A6. An assessment of the role of reactive oxygen species in norepinephrine-induced apoptosis and hypertrophy of H9c2 cardiac myoblasts." Journal of Molecular and Cellular Cardiology 40, no. 6 (2006): 875. http://dx.doi.org/10.1016/j.yjmcc.2006.03.316.
Full textYancy, S. L. "Sodium Arsenite Exposure Alters Cell Migration, Focal Adhesion Localization and Decreases Tyrosine Phosphorylation of Focal Adhesion Kinase in H9C2 Myoblasts." Toxicological Sciences 84, no. 2 (2005): 278–86. http://dx.doi.org/10.1093/toxsci/kfi032.
Full textThakur, Anita, Md Jahangir Alam, MR Ajayakumar, Saroj Ghaskadbi, Manish Sharma, and Shyamal K. Goswami. "Norepinephrine-induced apoptotic and hypertrophic responses in H9c2 cardiac myoblasts are characterized by different repertoire of reactive oxygen species generation." Redox Biology 5 (August 2015): 243–52. http://dx.doi.org/10.1016/j.redox.2015.05.005.
Full textShete, Varsha, Ning Liu, Yuzhi Jia, Navin Viswakarma, Janardan Reddy та Bayar Thimmapaya. "Mouse Cardiac Pde1C Is a Direct Transcriptional Target of Pparα". International Journal of Molecular Sciences 19, № 12 (2018): 3704. http://dx.doi.org/10.3390/ijms19123704.
Full text