To see the other types of publications on this topic, follow the link: Hagfish slime.

Journal articles on the topic 'Hagfish slime'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Hagfish slime.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Boggett, Sarah, Jean-Luc Stiles, Adam P. Summers, and Douglas S. Fudge. "Flaccid skin protects hagfishes from shark bites." Journal of The Royal Society Interface 14, no. 137 (December 2017): 20170765. http://dx.doi.org/10.1098/rsif.2017.0765.

Full text
Abstract:
Hagfishes defend themselves from fish predators by releasing large volumes of gill-clogging slime when they are attacked. Slime release is not anticipatory, but is only released after an attack has been initiated, raising the question of how hagfishes survive the initial attack, especially from biting predators such as sharks. We tested two hypotheses that could explain how hagfishes avoid damage from shark bites: puncture-resistant skin, and a loose and flaccid body design that makes it difficult for teeth to penetrate body musculature and viscera. Based on data from skin puncture tests from 22 fish species, we found that hagfish skin is not remarkably puncture resistant. Simulated shark bites on hagfish and their closest living relatives, lamprey, as well as whole animal inflation tests, revealed that the loose attachment of hagfish skin to the rest of the body and the substantial ‘slack volume' in the subcutaneous sinus protect hagfish musculature and viscera from penetrating teeth. While recent work has found evidence that the capacious subcutaneous sinus in hagfishes is important for behaviours such as knot-tying and burrowing, our work demonstrates that it also plays a role in predator defence.
APA, Harvard, Vancouver, ISO, and other styles
2

Chaudhary, Gaurav, Randy H. Ewoldt, and Jean-Luc Thiffeault. "Unravelling hagfish slime." Journal of The Royal Society Interface 16, no. 150 (January 2019): 20180710. http://dx.doi.org/10.1098/rsif.2018.0710.

Full text
Abstract:
Hagfish slime is a unique predator defence material containing a network of long fibrous threads each ∼10 cm in length. Hagfish release the threads in a condensed coiled state known as skeins (∼100 µm), which must unravel within a fraction of a second to thwart a predator attack. Here we consider the hypothesis that viscous hydrodynamics can be responsible for this rapid unravelling, as opposed to chemical reaction kinetics alone. Our main conclusion is that, under reasonable physiological conditions, unravelling due to viscous drag can occur within a few hundred milliseconds, and is accelerated if the skein is pinned at a surface such as the mouth of a predator. We model a single skein unspooling as the fibre peels away due to viscous drag. We capture essential features by considering simplified cases of physiologically relevant flows and one-dimensional scenarios where the fibre is aligned with streamlines in either uniform or uniaxial extensional flow. The peeling resistance is modelled with a power-law dependence on peeling velocity. A dimensionless ratio of viscous drag to peeling resistance appears in the dynamical equations and determines the unraveling time scale. Our modelling approach is general and can be refined with future experimental measurements of peel strength for skein unravelling. It provides key insights into the unravelling process, offers potential answers to lingering questions about slime formation from threads and mucous vesicles, and will aid the growing interest in engineering similar bioinspired material systems.
APA, Harvard, Vancouver, ISO, and other styles
3

Knight, K. "RECIPE FOR HAGFISH SLIME DISCOVERED." Journal of Experimental Biology 213, no. 7 (March 12, 2010): ii. http://dx.doi.org/10.1242/jeb.043919.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ewoldt, Randy H., Timothy M. Winegard, and Douglas S. Fudge. "Non-linear viscoelasticity of hagfish slime." International Journal of Non-Linear Mechanics 46, no. 4 (May 2011): 627–36. http://dx.doi.org/10.1016/j.ijnonlinmec.2010.10.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rementzi, Katerina, Lukas J. Böni, Jozef Adamcik, Peter Fischer, and Dimitris Vlassopoulos. "Structure and dynamics of hagfish mucin in different saline environments." Soft Matter 15, no. 42 (2019): 8627–37. http://dx.doi.org/10.1039/c9sm00971j.

Full text
Abstract:
The defense mechanism of hagfish against predators is based on its ability to form slime within a few milliseconds. Slime formation is a well-orchestrated interplay of mucin, protein threads, and ions present in seawater.
APA, Harvard, Vancouver, ISO, and other styles
6

Knight, Kathryn. "Methylamines keep hagfish slime thread skeins together." Journal of Experimental Biology 222, no. 22 (November 15, 2019): jeb218107. http://dx.doi.org/10.1242/jeb.218107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fudge, D. S. "Composition, morphology and mechanics of hagfish slime." Journal of Experimental Biology 208, no. 24 (December 15, 2005): 4613–25. http://dx.doi.org/10.1242/jeb.01963.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fudge, Douglas S., Sarah Schorno, and Shannon Ferraro. "Physiology, Biomechanics, and Biomimetics of Hagfish Slime." Annual Review of Biochemistry 84, no. 1 (June 2, 2015): 947–67. http://dx.doi.org/10.1146/annurev-biochem-060614-034048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fu, Jing, Paul A. Guerette, Andrea Pavesi, Nils Horbelt, Chwee Teck Lim, Matthew J. Harrington, and Ali Miserez. "Artificial hagfish protein fibers with ultra-high and tunable stiffness." Nanoscale 9, no. 35 (2017): 12908–15. http://dx.doi.org/10.1039/c7nr02527k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Song, Young Sun, and Jin-Koo Kim. "A new species of hagfish, Eptatretus wandoensis sp. nov. (Agnatha, Myxinidae), from the southwestern Sea of Korea." ZooKeys 926 (April 13, 2020): 81–94. http://dx.doi.org/10.3897/zookeys.926.48745.

Full text
Abstract:
Four specimens of the five-gilled white mid-dorsal line hagfish, Eptatretus wandoensissp. nov. were recently collected from the southwestern Sea of Korea (Wando). This new species has five pairs of gill apertures, 14–18 prebranchial slime pores, 4 branchial slime pores, a dark brown back with a white mid-dorsal line and a white belly. These hagfish are similar to Eptatretus burgeri and Eptatretus minor in having a white mid-dorsal line, but can be readily distinguished by the numbers of gill apertures (5 vs. 6–7), gill pouches (5 vs. 6), and prebranchial slime pores (14–18 vs. > 18), as well as the body color (dark brown back vs. gray or brown pale). In terms of genetic differences, Eptatretus wandoensis could be clearly distinguished from E. burgeri (0.9% in 16S rRNA and 8.5% in cytochrome c oxidase subunit I sequences) and E. minor (4.5% and 13.9%).
APA, Harvard, Vancouver, ISO, and other styles
11

Böni, L. J., R. Zurflüh, M. Widmer, P. Fischer, E. J. Windhab, P. A. Rühs, and S. Kuster. "Hagfish slime exudate stabilization and its effect on slime formation and functionality." Biology Open 6, no. 7 (June 15, 2017): 1115–22. http://dx.doi.org/10.1242/bio.025528.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Lim, J. "Hagfish slime ecomechanics: testing the gill-clogging hypothesis." Journal of Experimental Biology 209, no. 4 (February 15, 2006): 702–10. http://dx.doi.org/10.1242/jeb.02067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Herr, J. E., T. M. Winegard, M. J. O'Donnell, P. H. Yancey, and D. S. Fudge. "Stabilization and swelling of hagfish slime mucin vesicles." Journal of Experimental Biology 213, no. 7 (March 12, 2010): 1092–99. http://dx.doi.org/10.1242/jeb.038992.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Chaudhary, Gaurav, Douglas S. Fudge, Braulio Macias-Rodriguez, and Randy H. Ewoldt. "Concentration-independent mechanics and structure of hagfish slime." Acta Biomaterialia 79 (October 2018): 123–34. http://dx.doi.org/10.1016/j.actbio.2018.08.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Miyashita, Tetsuto, Michael I. Coates, Robert Farrar, Peter Larson, Phillip L. Manning, Roy A. Wogelius, Nicholas P. Edwards, et al. "Hagfish from the Cretaceous Tethys Sea and a reconciliation of the morphological–molecular conflict in early vertebrate phylogeny." Proceedings of the National Academy of Sciences 116, no. 6 (January 22, 2019): 2146–51. http://dx.doi.org/10.1073/pnas.1814794116.

Full text
Abstract:
Hagfish depart so much from other fishes anatomically that they were sometimes considered not fully vertebrate. They may represent: (i) an anatomically primitive outgroup of vertebrates (the morphology-based craniate hypothesis); or (ii) an anatomically degenerate vertebrate lineage sister to lampreys (the molecular-based cyclostome hypothesis). This systematic conundrum has become a prominent case of conflict between morphology- and molecular-based phylogenies. To date, the fossil record has offered few insights to this long-branch problem or the evolutionary history of hagfish in general, because unequivocal fossil members of the group are unknown. Here, we report an unequivocal fossil hagfish from the early Late Cretaceous of Lebanon. The soft tissue anatomy includes key attributes of living hagfish: cartilages of barbels, postcranial position of branchial apparatus, and chemical traces of slime glands. This indicates that the suite of characters unique to living hagfish appeared well before Cretaceous times. This new hagfish prompted a reevaluation of morphological characters for interrelationships among jawless vertebrates. By addressing nonindependence of characters, our phylogenetic analyses recovered hagfish and lampreys in a clade of cyclostomes (congruent with the cyclostome hypothesis) using only morphological data. This new phylogeny places the fossil taxon within the hagfish crown group, and resolved other putative fossil cyclostomes to the stem of either hagfish or lamprey crown groups. These results potentially resolve the morphological–molecular conflict at the base of the Vertebrata. Thus, assessment of character nonindependence may help reconcile morphological and molecular inferences for other major discords in animal phylogeny.
APA, Harvard, Vancouver, ISO, and other styles
16

McKenna, Phil. "Hagfish slime could slink to the height of fashion." New Scientist 216, no. 2894 (December 2012): 10. http://dx.doi.org/10.1016/s0262-4079(12)63105-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Bernards, Mark A., Sarah Schorno, Evan McKenzie, Timothy M. Winegard, Isdin Oke, David Plachetzki, and Douglas S. Fudge. "Unraveling inter-species differences in hagfish slime skein deployment." Journal of Experimental Biology 221, no. 24 (December 12, 2018): jeb176925. http://dx.doi.org/10.1242/jeb.176925.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Bressman, Noah, and Douglas Fudge. "From reductionism to synthesis: The case of hagfish slime." Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 255 (August 2021): 110610. http://dx.doi.org/10.1016/j.cbpb.2021.110610.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Fudge, Douglas S., Shannon N. Ferraro, Sara A. Siwiecki, André Hupé, and Gaurav Jain. "A New Model of Hagfish Slime Mucous Vesicle Stabilization and Deployment." Langmuir 36, no. 24 (May 29, 2020): 6681–89. http://dx.doi.org/10.1021/acs.langmuir.0c00639.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Gadbois, D. M., W. L. Salo, D. K. Ann, S. W. Downing, and D. M. Carlson. "The Preparation of Poly(A)±mRNA from the Hagfish Slime Gland." Preparative Biochemistry 18, no. 1 (March 1988): 67–76. http://dx.doi.org/10.1080/00327488808062513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Böcker, Lukas, Patrick A. Rühs, Lukas Böni, Peter Fischer, and Simon Kuster. "Fiber-Enforced Hydrogels: Hagfish Slime Stabilized with Biopolymers including κ-Carrageenan." ACS Biomaterials Science & Engineering 2, no. 1 (November 25, 2015): 90–95. http://dx.doi.org/10.1021/acsbiomaterials.5b00404.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Schorno, Sarah, Todd E. Gillis, and Douglas S. Fudge. "Cellular mechanisms of slime gland refilling in Pacific hagfish (Eptatretus stoutii)." Journal of Experimental Biology 221, no. 16 (June 25, 2018): jeb183806. http://dx.doi.org/10.1242/jeb.183806.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Hearle, J. W. S. "An alternative model for the structural mechanics of hagfish slime threads." International Journal of Biological Macromolecules 42, no. 5 (June 2008): 420–28. http://dx.doi.org/10.1016/j.ijbiomac.2008.02.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Fudge, Douglas S., Kenn H. Gardner, V. Trevor Forsyth, Christian Riekel, and John M. Gosline. "The Mechanical Properties of Hydrated Intermediate Filaments: Insights from Hagfish Slime Threads." Biophysical Journal 85, no. 3 (September 2003): 2015–27. http://dx.doi.org/10.1016/s0006-3495(03)74629-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Negishi, Atsuko, Clare L. Armstrong, Laurent Kreplak, Maikel C. Rheinstadter, Loong-Tak Lim, Todd E. Gillis, and Douglas S. Fudge. "The Production of Fibers and Films from Solubilized Hagfish Slime Thread Proteins." Biomacromolecules 13, no. 11 (October 15, 2012): 3475–82. http://dx.doi.org/10.1021/bm3011837.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Fudge, Douglas S., Sonja Hillis, Nimrod Levy, and John M. Gosline. "Hagfish slime threads as a biomimetic model for high performance protein fibres." Bioinspiration & Biomimetics 5, no. 3 (August 20, 2010): 035002. http://dx.doi.org/10.1088/1748-3182/5/3/035002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Ehrenberg, Rachel. "Life: Repellent slime has material virtues: Hagfish excretions exhibit superior strength and flexibility." Science News 183, no. 2 (January 16, 2013): 14. http://dx.doi.org/10.1002/scin.5591830216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Jain, Gaurav, Marie Starksen, Kashika Singh, Christopher Hoang, Paul Yancey, Charlene McCord, and Douglas S. Fudge. "High concentrations of trimethylamines in slime glands inhibit skein unraveling in Pacific hagfish." Journal of Experimental Biology 222, no. 22 (October 31, 2019): jeb213793. http://dx.doi.org/10.1242/jeb.213793.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

KOCH, E. "Structural forms and possible roles of aligned cytoskeletal biopolymers in hagfish (slime eel) mucus*1." Journal of Structural Biology 106, no. 3 (June 1991): 205–10. http://dx.doi.org/10.1016/1047-8477(91)90070-d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Bernards, M. A., I. Oke, A. Heyland, and D. S. Fudge. "Spontaneous unraveling of hagfish slime thread skeins is mediated by a seawater-soluble protein adhesive." Journal of Experimental Biology 217, no. 8 (April 15, 2014): 1263–68. http://dx.doi.org/10.1242/jeb.096909.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Winegard, T. M., and D. S. Fudge. "Deployment of hagfish slime thread skeins requires the transmission of mixing forces via mucin strands." Journal of Experimental Biology 213, no. 8 (March 26, 2010): 1235–40. http://dx.doi.org/10.1242/jeb.038075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Herr, J. E., A. M. Clifford, G. G. Goss, and D. S. Fudge. "Defensive slime formation in Pacific hagfish requires Ca2+- and aquaporin-mediated swelling of released mucin vesicles." Journal of Experimental Biology 217, no. 13 (April 15, 2014): 2288–96. http://dx.doi.org/10.1242/jeb.101584.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Fudge, Douglas S., and John M. Gosline. "Molecular design of the α–keratin composite: insights from a matrix–free model, hagfish slime threads." Proceedings of the Royal Society of London. Series B: Biological Sciences 271, no. 1536 (February 7, 2004): 291–99. http://dx.doi.org/10.1098/rspb.2003.2591.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Böni, L. J., A. Sanchez-Ferrer, M. Widmer, M. D. Biviano, R. Mezzenga, E. J. Windhab, R. R. Dagastine, and P. Fischer. "Structure and Nanomechanics of Dry and Hydrated Intermediate Filament Films and Fibers Produced from Hagfish Slime Fibers." ACS Applied Materials & Interfaces 10, no. 47 (October 29, 2018): 40460–73. http://dx.doi.org/10.1021/acsami.8b17166.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

SUBRAMANIAN, S., N. ROSS, and S. MACKINNON. "Comparison of the biochemical composition of normal epidermal mucus and extruded slime of hagfish (Myxine glutinosa L.)." Fish & Shellfish Immunology 25, no. 5 (November 2008): 625–32. http://dx.doi.org/10.1016/j.fsi.2008.08.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Glover, Chris N., Tamzin A. Blewett, and Chris M. Wood. "Novel Route of Toxicant Exposure in an Ancient Extant Vertebrate: Nickel Uptake by Hagfish Skin and the Modifying Effects of Slime." Environmental Science & Technology 49, no. 3 (January 20, 2015): 1896–902. http://dx.doi.org/10.1021/es5052815.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Koch, E. A., R. H. Spitzer, R. B. Pithawalla, and D. A. Parry. "An unusual intermediate filament subunit from the cytoskeletal biopolymer released extracellularly into seawater by the primitive hagfish (Eptatretus stouti)." Journal of Cell Science 107, no. 11 (November 1, 1994): 3133–44. http://dx.doi.org/10.1242/jcs.107.11.3133.

Full text
Abstract:
Each slime gland thread cell from the primitive Pacific hagfish (Eptatretus stouti) contains a massive, conical, intermediate filament (IF)-rich biopolymer (‘thread,’ approximately 60 cm length, approximately 3 microns width). In view of the unusual ultrastructure of the thread, its extracellular role in modulation of the viscoelastic properties of mucus, and the ancient lineage of this primitive vertebrate, we report the nucleotide and deduced amino acid sequences of one major thread IF subunit, alpha (pI 7.5), which is coexpressed with a second polypeptide, gamma (pI 5.3). These two polypeptides coassemble in vitro into approximately 10 nm filaments. The alpha-thread chain, a 66.6 kDa polypeptide, has an unusual central rod domain containing 318 residues flanked by N- and C-terminal domains of 192 and 133 residues, respectively. Each peripheral region exhibits some epidermal keratin-like features including peptide repeats and a high total content of glycine and serine residues. The terminal domains, however, lack the H1 and H2 subdomains characteristic of known keratins. Moreover, when the central rod is aligned either in relation to established homology profiles (J. F. Conway and D. A. D. Parry (1988) Int. J. Biol. Macromol. 10, 79–98) of other IF subunits (types I-V, nestin, non-neuronal invertebrate), or by computer-based homology searches of the GenBank/EMBL Data Bank, a low identity (< 30%) is evident, with no preferred identity to keratins or other known IF types. Although the central rod of 318 residues consists of the canonical apolar heptad repeats interspersed with three linker regions, a discontinuity in phasing of the heptad substructure in rod 2B, and conserved sequences at either end of the rod domain, other collective characteristics are atypical: overall high threonine content (13.2% vs 2.3-5.4% for other IFs), high threonine content in rod 1B (18.8% vs 1–6%), five Thr-Thr repeats in coiled coil segments, L12 of length greater than in keratins, substitution of phenylalanine for a highly conserved glutamate in the sixth position of L2, and a glycine-proline sequence in segment 2B. Possibly as a result of the high threonine content, the percentage of both acidic and basic residues in most helical subdomains is reduced relative to type I and II chains. Fast Fourier transform analyses show that only the acidic residues in segment 1B and basic residues in segment 2 have near typical IF periods.(ABSTRACT TRUNCATED AT 400 WORDS)
APA, Harvard, Vancouver, ISO, and other styles
38

Knight, Kathryn. "De-slimed hagfish take a month to recover." Journal of Experimental Biology 221, no. 16 (August 15, 2018): jeb188037. http://dx.doi.org/10.1242/jeb.188037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Glover, Chris N., and Alyssa M. Weinrauch. "The good, the bad and the slimy: experimental studies of hagfish digestive and nutritional physiology." Journal of Experimental Biology 222, no. 14 (July 15, 2019): jeb190470. http://dx.doi.org/10.1242/jeb.190470.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Schorno, Sarah, Todd E. Gillis, and Douglas S. Fudge. "Emptying and refilling of slime glands in Atlantic (Myxine glutinosa) and Pacific (Eptatretus stoutii) hagfishes." Journal of Experimental Biology 221, no. 7 (February 27, 2018): jeb172254. http://dx.doi.org/10.1242/jeb.172254.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Lametschwandtner, A., U. Lametschwandtner, and R. A. Patzner. "The Different Vascular Patterns of Slime Glands in the Hagfishes,Myxine glutinosaLinnaeus andEptatretus stoutiLockington A Scanning Electron Microscope Study of Vascular Corrosion Casts." Acta Zoologica 67, no. 4 (December 1986): 243–48. http://dx.doi.org/10.1111/j.1463-6395.1986.tb00869.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Zintzen, Vincent, Clive D. Roberts, Marti J. Anderson, Andrew L. Stewart, Carl D. Struthers, and Euan S. Harvey. "Hagfish predatory behaviour and slime defence mechanism." Scientific Reports 1, no. 1 (October 27, 2011). http://dx.doi.org/10.1038/srep00131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

"Slime killer hagfish feasts in rotten flesh." New Scientist 212, no. 2837 (November 2011): 18. http://dx.doi.org/10.1016/s0262-4079(11)62705-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Lane, Jim, Alyne Torenvliet, Mary Edmunds, and Ava Schimnowski. "Slimed! Better understanding the role of aquaporin in the slime gland of hagfish." FASEB Journal 33, S1 (April 2019). http://dx.doi.org/10.1096/fasebj.2019.33.1_supplement.lb145.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

"Blind, slime-producing hagfish holds the secret of vertebrate vision." New Scientist 196, no. 2632 (December 2007): 20. http://dx.doi.org/10.1016/s0262-4079(07)63011-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Böni, Lukas, Peter Fischer, Lukas Böcker, Simon Kuster, and Patrick A. Rühs. "Hagfish slime and mucin flow properties and their implications for defense." Scientific Reports 6, no. 1 (July 27, 2016). http://dx.doi.org/10.1038/srep30371.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Böni, L. J., R. Zurflüh, M. E. Baumgartner, E. J. Windhab, P. Fischer, S. Kuster, and P. A. Rühs. "Effect of ionic strength and seawater cations on hagfish slime formation." Scientific Reports 8, no. 1 (June 29, 2018). http://dx.doi.org/10.1038/s41598-018-27975-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Carlson, Erika K. "How hagfish launch slime missiles that swell 10,000 times in size." Science, January 15, 2019. http://dx.doi.org/10.1126/science.aaw6849.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Winegard, Timothy, Julia Herr, Carlos Mena, Betty Lee, Ivo Dinov, Deborah Bird, Mark Bernards, et al. "Coiling and maturation of a high-performance fibre in hagfish slime gland thread cells." Nature Communications 5, no. 1 (April 4, 2014). http://dx.doi.org/10.1038/ncomms4534.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Pennisi, Elizabeth. "How the slimy hagfish ties itself up in knots—and survives shark attacks." Science, January 6, 2017. http://dx.doi.org/10.1126/science.aal0584.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography