Academic literature on the topic 'Halides. Metal halides'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Halides. Metal halides.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Halides. Metal halides"

1

Petko, Dina, Samuel Koh, and William Tam. "Transition Metal-Catalyzed Reactions of Alkynyl Halides." Current Organic Synthesis 16, no. 4 (July 4, 2019): 546–82. http://dx.doi.org/10.2174/1570179416666190329200616.

Full text
Abstract:
Background: Transition metal-catalyzed reactions of alkynyl halides are a versatile means of synthesizing a wide array of products. Their use is of particular interest in cycloaddition reactions and in constructing new carbon-carbon and carbon-heteroatom bonds. Transition metal-catalyzed reactions of alkynyl halides have successfully been used in [4+2], [2+2], [2+2+2] and [3+2] cycloaddition reactions. Many carbon-carbon coupling reactions take advantage of metal-catalyzed reactions of alkynyl halides, including Cadiot-Chodkiewicz, Suzuki-Miyaura, Stille, Kumada-Corriu and Inverse Sonogashira reactions. All the methods of constructing carbon-nitrogen, carbon-oxygen, carbon-phosphorus, carbon-sulfur, carbon-silicon, carbon-selenium and carbon-tellurium bonds employed alkynyl halides. Objective: The purpose of this review is to highlight and summarize research conducted in transition metalcatalyzed reactions of alkynyl halides in recent years. The focus will be placed on cycloaddition and coupling reactions, and their scope and applicability to the synthesis of biologically important and industrially relevant compounds will be discussed. Conclusion: It can be seen from the review that the work done on this topic has employed the use of many different transition metal catalysts to perform various cycloadditions, cyclizations, and couplings using alkynyl halides. The reactions involving alkynyl halides were efficient in generating both carbon-carbon and carbonheteroatom bonds. Proposed mechanisms were included to support the understanding of such reactions. Many of these reactions face retention of the halide moiety, allowing additional functionalization of the products, with some new products being inaccessible using their standard alkyne counterparts.
APA, Harvard, Vancouver, ISO, and other styles
2

Karaman, Ali, Zehra Akdeniz, and Mario P. Tosi. "Transferable Deformation-Dipole Model for Ionic Materials." Zeitschrift für Naturforschung A 62, no. 5-6 (June 1, 2007): 265–69. http://dx.doi.org/10.1515/zna-2007-5-606.

Full text
Abstract:
A model for the ionic interactions in polyvalent metal halides was originally built for chloroaluminate clusters using an analysis of data on static and dynamic structure of their molecular monomers [for a review see M. P. Tosi, Phys. Chem. Liquids 43, 409 (2005)]. Recently, by continuing the deformation-dipole model calculations, the transferability of the halogen parameters was tested through the calculation of the structure of alkali halides and alkaline-earth halides. In this work we test the usefulness of the deformation-dipole model in the study of ionic materials by examining the transferability of the overlap parameters for the halogen ions across families of halide compounds. Following a comparative discussion of alkali and alkaline-earth halide monomers near equilibrium, results on alkaline-earth halides are given. By using the transferable ionic potential model we also calculate the equilibrium structure of the molecular clusters, as well as the vibrational frequencies of ACl4 compounds (where A = U, Np, Pu, Am and Th).
APA, Harvard, Vancouver, ISO, and other styles
3

Kumar, Vineet, and Zhiping Luo. "A Review on X-ray Excited Emission Decay Dynamics in Inorganic Scintillator Materials." Photonics 8, no. 3 (March 4, 2021): 71. http://dx.doi.org/10.3390/photonics8030071.

Full text
Abstract:
Scintillator materials convert high-energy radiation into photons in the ultraviolet to visible light region for radiation detection. In this review, advances in X-ray emission dynamics of inorganic scintillators are presented, including inorganic halides (alkali-metal halides, alkaline-earth halides, rare-earth halides, oxy-halides, rare-earth oxyorthosilicates, halide perovskites), oxides (binary oxides, complex oxides, post-transition metal oxides), sulfides, rare-earth doped scintillators, and organic-inorganic hybrid scintillators. The origin of scintillation is strongly correlated to the host material and dopants. Current models are presented describing the scintillation decay lifetime of inorganic materials, with the emphasis on the short-lived scintillation decay component. The whole charge generation and the de-excitation process are analyzed in general, and an essential role of the decay kinetics is the de-excitation process. We highlighted three decay mechanisms in cross luminescence emission, exitonic emission, and dopant-activated emission, respectively. Factors regulating the origin of different luminescence centers controlling the decay process are discussed.
APA, Harvard, Vancouver, ISO, and other styles
4

van Erk, W. "Transport processes in metal halide gas discharge lamps." Pure and Applied Chemistry 72, no. 11 (January 1, 2000): 2159–66. http://dx.doi.org/10.1351/pac200072112159.

Full text
Abstract:
An overview is given of transport reactions and corrosion phenomena in metal halide gas discharge lamps filled with a mixture of alkali halides with scandium or rare-earth iodides. The phenomena that are discussed are: (a) pressures of light-emitting species above the molten salt mixture, (b) interaction of the metal halides with the vessel wall, quartz glass as well as polycrystalline alumina, (c) transport processes along the vessel wall giving rise to wall corrosion, and (d) transport to and from the electrodes (i.e., electrode corrosion and wall blackening).
APA, Harvard, Vancouver, ISO, and other styles
5

Šídlo, Michal, Přemysl Lubal, and Pavel Anzenbacher. "Colorimetric Chemosensor Array for Determination of Halides." Chemosensors 9, no. 2 (February 18, 2021): 39. http://dx.doi.org/10.3390/chemosensors9020039.

Full text
Abstract:
The halide anions are essential for supporting life. Therefore, halide anion analyses are of paramount importance. For this reason, we have performed both qualitative and quantitative ana- lyses of halides (chloride, bromide, iodide) using the Tl(III) complex of azodye, 4-(2-pyridylazo)re- sorcinol (PAR), a potential new chemical reagent/sensor that utilizes the substitution reaction whereas the Tl(III)PAR complex reacts with a halide to yield a more stable thallium(III)-halide while releasing the PAR ligand in a process accompanied by color change of the solution. The experimental conditions (e.g., pH, ratio metal ion-to-ligand ratio, etc.) for the substitution reaction between the metal complex and a halide were optimized to achieve increased sensitivity and a lower limit of detection (chloride 7 mM, bromide 0.15 mM, iodide 0.05 mM). It is demonstrated that this single chemosensor can, due to release of colored PAR ligand and the associated analyte-specific changes in the UV/VIS spectra, be employed for a multicomponent analysis of mixtures of anions (chloride + bromide, chloride + iodide, bromide + iodide). The spectrophotometric data evaluated by artificial neural networks (ANNs) enable distinguishing among the halides and to determine halide species concentrations in a mixture. The Tl(III)-PAR complex was also used to construct sensor arrays utilizing a standard 96-well plate format where the output was recorded at several wavelengths (up to 7) using a conventional plate reader. It is shown that the data obtained using a digital scanner employing only three different input channels may also be successfully used for a subsequent ANN analysis. The results of all approaches utilized for data evaluation were similar. To increase the practical utility of the chemosensor, we have developed a test paper strip indicator useful for routine naked-eye visual determination of halides. This test can also be used for halide anion determination in solutions using densitometer. The methodology described in this paper can be used for a simple, inexpensive, and fast routine analysis both in a laboratory as well as in a field setting.
APA, Harvard, Vancouver, ISO, and other styles
6

Cheng, Lu, Chang Yi, Yunfang Tong, Lin Zhu, Gunnar Kusch, Xiaoyu Wang, Xinjiang Wang, et al. "Halide Homogenization for High-Performance Blue Perovskite Electroluminescence." Research 2020 (December 24, 2020): 1–10. http://dx.doi.org/10.34133/2020/9017871.

Full text
Abstract:
Metal halide perovskite light-emitting diodes (LEDs) have achieved great progress in recent years. However, bright and spectrally stable blue perovskite LED remains a significant challenge. Three-dimensional mixed-halide perovskites have potential to achieve high brightness electroluminescence, but their emission spectra are unstable as a result of halide phase separation. Here, we reveal that there is already heterogeneous distribution of halides in the as-deposited perovskite films, which can trace back to the nonuniform mixture of halides in the precursors. By simply introducing cationic surfactants to improve the homogeneity of the halides in the precursor solution, we can overcome the phase segregation issue and obtain spectrally stable single-phase blue-emitting perovskites. We demonstrate efficient blue perovskite LEDs with high brightness, e.g., luminous efficacy of 4.7, 2.9, and 0.4 lm W-1 and luminance of over 37,000, 9,300, and 1,300 cd m-2 for sky blue, blue, and deep blue with Commission Internationale de l’Eclairage (CIE) coordinates of (0.068, 0.268), (0.091, 0.165), and (0.129, 0.061), respectively, suggesting real promise of perovskites for LED applications.
APA, Harvard, Vancouver, ISO, and other styles
7

Han, Dan, Hongliang Shi, Wenmei Ming, Chenkun Zhou, Biwu Ma, Bayrammurad Saparov, Ying-Zhong Ma, Shiyou Chen, and Mao-Hua Du. "Unraveling luminescence mechanisms in zero-dimensional halide perovskites." Journal of Materials Chemistry C 6, no. 24 (2018): 6398–405. http://dx.doi.org/10.1039/c8tc01291a.

Full text
Abstract:
Zero-dimensional (0D) halides perovskites, in which anionic metal-halide octahedra (MX6)4− are separated by organic or inorganic countercations, have recently shown promise as excellent luminescent materials.
APA, Harvard, Vancouver, ISO, and other styles
8

Yang, S. H., C. S. Li, and C. H. Cheng. "Halide exchange reactions between aryl halides and alkali halides catalyzed by nickel metal." Journal of Organic Chemistry 52, no. 4 (February 1987): 691–94. http://dx.doi.org/10.1021/jo00380a041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cecchi, Teresa, Paolo Passamonti, and Filippo Pucciarelli. "Effect of Alkali Halides Upon Photocurrent Due to Emission of Electrons from Dropping Mercury Electrode Into Water." Collection of Czechoslovak Chemical Communications 67, no. 4 (2002): 439–53. http://dx.doi.org/10.1135/cccc20020439.

Full text
Abstract:
When dropping mercury electrode (DME) dipped in ultrapure water, thoroughly deaerated with pure hydrogen, is irradiated with UV light, we can observe a cathodic photocurrent in the non-faradaic region of the polarographic curve, in the absence of scavengers of hydrated electrons. Newly we have followed the effect on photocurrent of initial very small additions of alkali metal chlorides to pure water. By repeated experiments, we could show that first additions of the alkali metal halides increase the photocurrent and that the already known suppression of photocurrent by addition of halides begins only after the halide concentration exceeds ca 10-4 mol l-1. We could show for the first time that in ultrapure water and dilute electrolyte solutions, the photocurrent follows a modified seven-halves law. The extent of the positive effect of small additions of alkali metal halides on photocurrent depends on the nature of each alkali metal cation. The reason for this specificity is discussed.
APA, Harvard, Vancouver, ISO, and other styles
10

Kovbasyuk, Larisa A., Olga Yu Vassilyeva, Vladimir N. Kokozay, Wolfgang Linert, and Paul R. Raithby. "A Mixed-metal Mixed-halide Complex Prepared from Zerovalent Copper and Lead Salts: Solution and Solid-state Chemistry." Journal of Chemical Research 23, no. 11 (November 1999): 670–71. http://dx.doi.org/10.1177/174751989902301117.

Full text
Abstract:
The mixed-metal mixed-halide complex [CuPbBrlL2]2 has been prepared by the direct interaction of zerovalent copper with lead halides and 2-dimethylaminoethanol (HL) in dmso and has been characterized by X-ray crystallography; the structure shows a layer arrangement of the tetranuclear metal units through the μ3-halogen bridging.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Halides. Metal halides"

1

Moock, K. H. "Electrochemical studies on transition metal halides." Thesis, University of Glasgow, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.375467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Field, Marianne Alice Louise. "Transition metal oxides and oxide-halides." Thesis, University of Southampton, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.401833.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jefferis, Jesse Mark. "The preparation and reactivity of group 5 indenyl complexes." Virtual Press, 1995. http://liblink.bsu.edu/uhtbin/catkey/958792.

Full text
Abstract:
The preparation of tri-n-butylstannylindene, has led to new synthetic routes to obtaining indenyl metal complexes of the Group V metal halides. Also, the fluxional behavior of tri-n-butylstannylindene has been studied by variable temperature 1H NMR spectroscopy.The interaction of the Group V metal halides with tri-n-butylstannylindene has led to the isolation and characterization of [(q5-C9H7)2TaC12] [TaC16] and [('q5-C9H7)2NbC12] [NbCl6]. Subsequent Lewis base chemistry has produced (T15-C9H7)TaC14(PMe3). The crystal structures of [(r15-C9H7)2TaCl2] [TaC16] and (15-C9H7)TaC14(PMe3) have been determined. The preparation and characterization of these compounds are discussed as well as the exploratory indenyl, Lewis base, and /or salt chemistry of vanadium, niobium, and tantalum.
Department of Chemistry
APA, Harvard, Vancouver, ISO, and other styles
4

Shaw, Scott Lee. "The preparation and reactivity of group 4 mono-indenyl metal halides." Virtual Press, 1994. http://liblink.bsu.edu/uhtbin/catkey/917038.

Full text
Abstract:
The entire set of analogous mono-indenyl metal trichlorides have been prepared for the titanium triad metals, (715-C9H7)TiC13, [(715-C9H7)ZrCI(.t-Cl)2]X, [(715-C9H7)HfCl2(µCl)]2. The interaction of (715-C9H7)TiCl3 and [(715-C9H7)HfC12(p.-Cl)]2 with A1Me3 hasled to the isolation and characterization of (715-C9H7)TiCH3C12 and [(715C9H7)HfCH3C1(µ-C1)]2, respectively. Also, the unexpected production of (715C9H7)2Ti(CH3)2 from the reaction of (715-C9H7)TiCl3 with LiMe has been examined. The reactivity of (715-C9H7)TiC13, [(715-C9H7)ZrCl(µ-Cl)2]X, and [(715-C9H7)HfC12(9-Cl)]2 with various Lewis bases has been explored and has afforded the isolation and characterization of the unusual half-sandwich phosphine complexes (C9H7)TiC13(PMe3), (715-C9H7)ZrC13(PMe3)2, (715-C9H7)HfC13(PMe3)2, and (715-C9H7)HfC13(PMe3) as well as (T15-C9H7)ZrC13(DME) and (715-C9H7)HfCI3(DME). Several examples of indenyl-metal bond cleavage have been observed. The indenyl-imido complex, [(715-C9H7)TiCI(p.NCH3)]2, has also been synthesized. The crystal structures of (715-C9H7)TiC13, [(715C9H7)HfC12(p.-Cl)]2, [(715-C9H7)HfCH3C1(µ-Cl)]2, and (715-C9H7)HfC13(PMe3) have been determined.
Department of Chemistry
APA, Harvard, Vancouver, ISO, and other styles
5

Hutchinson, Francis. "Structure and energetics of trivalent metal halides." Thesis, University of Oxford, 1999. http://ora.ox.ac.uk/objects/uuid:0fdaf43d-0414-491c-a3dc-04414b84a164.

Full text
Abstract:
Metal trihalide (MX3) systems represent a stern challenge in terms of constructing transferable potential models. Starting from a previously published set of potentials, 'extended' ionic models are developed which, at the outset, include only anion polarization. Deficiencies in these models, particularly for smaller (highly polarizing) cations, are shown to be significant. For example, crystal structures different to those observed experimentally are adopted. The potentials are improved upon by reference to ab initio information available for alkali halides with the 'constraint' that the parameters transfer systematically in a physically transparent manner, for example, in terms of ion radii. The possible influence of anion compression ('breathing') and the relative abundance of anion-anion interactions are considered. Simulation techniques are developed to allow for the effective simulation of any system symmetry and for the study of transitions between different crystals (constant stress). The developed models are fully tested for a large range of metal trichloride (MCl3) systems. Particular attention is paid to the comparison with recent neutron and X-ray diffraction data on the liquid state. Polarization effects are shown to be vital in reproducing strong experimental features. The excellent agreement between simulation and experiment allows for differences in experimental procedures to be highlighted. The transferability is further tested by modelling mixtures of the lanthanides with alkali halides with potentials unchanged from the pure systems. The complex evolution of the melt structure is highlighted as the concentration of MCl3 increases. The effectiveness of the models is tested by reference to dynamical properties. Particular attention is paid to the comparison with Raman scattering data available for a wide range of systems and mixture concentrations. The simulated spectra are generated both by a simple molecular picture of the underlying vibrations and by a more complex (fluctuating polarizability) model in which the spectra are broken down into contributions from different mechanisms. This comparison allows for the validity of treating network-like systems as a series of 'isolated' molecules to be assessed. The transferability of the potentials is pushed to the limits by modelling metal tribromides, in which the parameters are obtained from the trichlorides by the same simple scaling arguments.
APA, Harvard, Vancouver, ISO, and other styles
6

Cullison, Scott Alan. "The chemistry of indenyl titanium trihalides." Virtual Press, 1998. http://liblink.bsu.edu/uhtbin/catkey/1139529.

Full text
Abstract:
The interaction of TiX4 (X= Cl and Br) with 1-(trimethylsilyl) indene or 1(tributylstannyl) indene results in the formation of the crystalline trihalide complexes (rl5C9H7 )TiX3 in excellent yield. Isolation of these complexes has provided pathways for the monoalkyl complexes (TI5-C9H7 )TiX2 reaction of (r15-C9H7 )TiX3 (X = Cl and Br) withtrimethylaluminum resulted in the formation of the crystalline monomethyl complexes (Tl5C9H7 )TiX2R in good yield. Isolating these complexes free of the dimethyl derivativeproved difficult in normal alkylating solvents, but the pure monomethyl species were isolated in high yields when the reaction was performed in pentane. The chloride and bromide analogues have been stucturally characterized. Attempts to isolate thetrimethylsilylmethyl complexes (rl5-C9H7)Ti(CH2SiMe3)X2 (X = Cl and Br) as puremonoalkyl species were also successful, albeit in low yield. This set of four compounds provides a set of monoalkyl indenyl titanium species in which there are small alkyl groups or large alkyl groups as well as different halides. These complexes may prove to be excellent catalysts for the polymerization of olefins.
Department of Chemistry
APA, Harvard, Vancouver, ISO, and other styles
7

Chim, Raymond Yin Loong. "Vacuum-ultraviolet photoexcitation of some non-metal halides." Thesis, University of Birmingham, 2003. http://etheses.bham.ac.uk//id/eprint/1526/.

Full text
Abstract:
The vacuum-ultraviolet (VUV) fluorescence spectroscopy of CX\(_2\)Y\(_2\) (X, Y = H, Cl or Br) has been studied following gaseous photoexcitation in the range 9-22 eV using synchrotron radiation. Fluorescence excitation, dispersed emission and action spectra have been recorded to probe the molecule in this way. Photoexcitation of these molecules has resulted in the population of Rydberg states of the neutral molecule and outer valence states of the parent ion. The study has shown that the emitters in the range 190-690 nm are due to either, neutral fragments formed by dissociation of Rydberg states of the neutral molecule or excited states of the parent ion. The identity of some of the dominant dissociation channels have also been identified via. appearance potentials extracted from action spectra. The threshold photoelectron photoion coincidence (TPEPICO) spectroscopy of CX\(_2\)Y\(_2^+\) (X, Y = H, Cl or Br), SeFe\(_6^+\), TeF\(_6^+\), SF\(_5\)CF\(_3^+\) and SF\(_5\)Cl\(^+\) has been studied following gaseous photoexcitation in the range ca. 12-27 eV using synchrotron radiation. The identity of some of the dominant dissociation channels have been identified in a similar way in which the information is extracted from action spectra in fluorescence spectroscopy. Appearance potentials extracted from ion yield plots have allowed comparison with known calculated thermochemistry. Measurement of fixed-energy TPEPICO spectra have been used to determine the decay dynamics of some two-bodied ionic dissociations. Finally, using a variation of TPEPICO spectroscopy, the kinetic energy released into certain fragments over a range of energies has been determined. Using an impulsive model, the data has been extrapolated to zero kinetic energy to obtain a value for the first dissociative ionisation energy of these molecules. From this value, more thermochemical data has been inferred.
APA, Harvard, Vancouver, ISO, and other styles
8

Laios, Michail. "Ammonia Metal Halides Thermochemical Heat Storage System Design." Thesis, KTH, Energiteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-263607.

Full text
Abstract:
One of the most crucial issues nowadays is the protection of the environment and the replacement of fossil fuels, which are abundantly used around the world, with more efficient and renewable sources. The highest portion of global energy demands today is used in heating and cooling purposes. One way of alleviating the fossil-based thermal energy uses is to harvest excess thermal energy using thermochemical storage materials (TCMs) for use at heating/cooling demands at different times and locations. Along this, in this master’s thesis, a bench-scale thermochemical heat storage (TCS) system is numerically designed, as a part of a collaborative project: Neutrons for Heat Storage (NHS), funded by Nordforsk. The TCS system that is designed herein employs the reversible chemical reaction of ammonia with a metal halide (MeX) for a heat storage capacity of 0.5 kWh, respectively releasing and storing heat during absorption and desorption of ammonia into and from the MeX. This system is designed for low temperature heat applications, around 40-80 °C. SrCl2 is chosen as the metal halide to be used, based on the research outcomes in determining the most suitable materials conducted by NHS project partners. In the ammonia-SrCl2 system, only the absorption and desorption between SrCl2∙NH3 and SrCl2∙8NH3 are considered. The main reason is because absorption/desorption between the last ammine and SrCl2 undergoes at a significantly higher/lower reaction pressure (for a given temperature), with a significant volume change compared to the rest of the ammines, and therefore is practically less cost effective. This thesis also includes a detailed discussion of four different thermochemical storage designs from literature, found as the most relevant to the present TCS system study, which use the reaction between ammonia and metal halides. The first system that was examined is a TCS system built by the NHS project partners at Technical University of Denmark (DTU), owing to its similarities with the desired project, regarding the design and parameters the system uses. This system works in batch mode, only allowing either absorption (i.e. heat release) or desorption (i.e. heat storage) at a given cycle. Thus, upgrading the design of this TCS system at DTU is considered as a most-likely solution to the research objectives of this current thesis project. Moreover, the TCS system at DTU uses storage conditions and desorption temperature similar to the current project’s desired low temperature range of 40-80 °C. The second system discussed herein from literature uses two reactors for cold and heat generation, which means that both charging and discharging processes occur simultaneously. This simultaneous operability is the main reason that this particular system was examined in this thesis. The next discussed system from literature also uses two reactors, for absorption and desorption processes, which work reversibly when each process is completed, like in the desired concept of this project. These two systems (i.e., the secondly and the thirdly discussed systems) use the reversible solid-gas reaction for absorption and desorption between SrCl2∙NH3 and SrCl2∙8NH3, however, the conditions of pressure and temperature between them differ. The second system from literature operates at desorption and absorption at respective conditions of 96 °C, 15 bar and 87 °C, 11 bar while the third system discussed operates at 103 °C, 16 bar and 59 °C, 3 bar during desorption and absorption respectively. The last system from literature that is discussed herein provides the same desorption temperature of 80 °C. Inaddition this particular study suggests that the reaction of solid with gaseous NH3 is better (than the solid with liquid NH3 reaction) based on results derived from several different low-pressure experiments of the reactions. The main differences between all these discussed systems from literature, as opposed to the desired TCS system design in this thesis project, concern the systems’ operating mode and the pressure and temperature-conditions. The first difference is that only one of the examined systems pumps the solid VIII powder salt around the system in contrast to the others that keep the salt static inside the reactors and pumped only the ammonia around the system, as chosen in the current system. The second difference concerns the operating conditions during absorption and desorption reactions, where these different systems operate at a widely different pressure and temperature conditions as compared to the current system expectations. Thus, there are four main lessons that were learnt via this literature analysis, to improve the TCS system at DTU to the desired new system in this work. The first lesson is related to the reactants’ transportation mechanism that should be used in this system. Regarding this, it was decided to maintain the solid salt (metal halide) stationary inside each reactor (but not pumping it instead of ammonia), similar to the majority of designs discussed from literature. According to the second and third lessons, the solid-gas reaction is the most suitable solution and only the reactions of absorption and desorption between SrCl2∙NH3 and SrCl2∙8NH3 are considered, following the experience from literature (for the reasons explained earlier). The last lesson regards the system’s suitable operating conditions and more specifically the TCS system’s temperatures that should match the district heating temperatures. Thus, the temperature point that was chosen as a priority was 80 °C, from the range 40- 80 °C set in the partner project NHS. To maintain this condition, therefore, the most suitable condition of pressure of both reactions (according to the equilibrium pressure vs temperature curve) was chosen to be at around 8 bar. This same pressure was chosen for both reactions, since the pressure difference between these reactors and the storage of ammonia (i.e. from 8 to 10 bar) should be as small as possible due to the high costs that can arise in the case of a higher pressure difference (i.e. requiring more compressors and heat exchangers). Inspired by these literature cases, firstly a conceptually suitable TCS system was proposed in this project and after that the final desired system was designed and was implemented and evaluated numerically. The numerical design and optimization of the chosen TCS system was performed herein by using the software Aspen Plus (version 9), which contains both fluids and solids in a simulation environment, using consistent physical properties. This TCS system is designed to store and release heat at around 80 °C and 8 bar through absorption and desorption by using two identical reactors respectively. Each reactor includes the amount of around 1 kg (more specifically 0.985 kg) strontium chloride salt reacting with 1.7 kg of ammonia. A verification system is also modelled in Aspen, using available experimental data from literature. Here, the modelled novel system design was adapted to this chosen other system layout from literature which uses the same reaction pair, yet at different operating conditions. This adapted system design in Aspen was then used to verify the chosen configuration and the reliability of the constructed system for the NHS project. Good agreements between the modelled results in Aspen against the available experimental data of this verification model are obtained. A sensitivity analysis is also conducted herein on the proposed novel TCS system to identify the optimum operating conditions and the behaviour of the chosen most important parameters of the system. The designed system provides an energy storage capacity of 0.5 kWh for the specific amounts (in volumetric flow rates) of ammonia and monoammine of strontium chloride, that comes from the analysis, of 1.08696 e-05 kmol/s and 1.5528 e-06 kmol/s respectively. For these specific values of the HTF, the analysis showed that the volumetric flow rates of the heat and cold external sources must be 1.56 l/min (which is decreasing with the increase of the inlet HTF temperature) and 0.42 l/min (which is increasing with the increase of the inlet HTF temperature) respectively. In conclusion, this study presents an ammonia-SrCl2 TCS benchscale system design that allows continuous heat storage and release, in an easy-to-scale up design, also suggesting optimum operating conditions.
En av de mest avgörande frågorna i dag är skyddet av miljön och utfasningen av fossila bränslen som används allmänt över hela världen för mer effektiva och förnybara resurser. Den största delen av den globala energibehovet idag avser uppvärmnings- och kylapplikationer. Ett sätt att minska fossilbaserad termiskenergianvändning är att lagra överskottsvärmeenergi genom termokemiska lagringsmaterial (TCM) och använda den för värme- och kylbehov vid olika tidpunkter och platser. I samband med detta är ett termokemiskt värmelagringssystem numeriskt utformat i detta mastersexamensprojekt, som en del av ett samarbetsprojekt Neutrons for Heat Storage (NHS) finansierat av Nordforsk. Det termokemiska lagringssystemet (TCS) som är konstruerat utnyttjar den reversibla kemiska reaktionen av ammoniak med en metallhalogenid (MeX) för en värmelagringskapacitet på 0.5 kWh, och frigör och lagrar värme respektive under absorption och desorption av ammoniak till och från MeX. Systemet är designat för lågtemperaturuppvärmningstillämpningar runt 40-80 °C. SrCl2 väljs som det mest lämpliga metallhalogeniden för systemet, baserat på studier som utförts av NHS-projektpartnerna. I ammoniak SrCl2-systemet beaktas endast absorption och desorption mellan SrCl2NH3 och SrCl28NH3. De huvudsakliga orsakerna till detta är att absorptionen/desorptionen mellan den sista aminen och SrCl2 kräver ett betydligt högre/lägre reaktionstryck (för en given temperatur), och resulterar i en betydande volymförändring jämfört med resten av aminerna, och är därför praktiskt taget mindre kostnadseffektivt. Detta mastersexamensprojekt inkluderar en detaljerad genomgång av fyra olika TCS-system från litteratur som använder reaktionen mellan ammoniak och metallhalogenider. Dessa väljs här eftersom dessa anses vara de mest relevanta (från litteratur) jämfört med det valda systemet i denna studie. Det första undersökta systemet är ett system byggt av NHS-projektpartnerna vid Danmarks Tekniska Universitet (DTU). Detta har valts på grund av likheterna med det önskade systemet i det aktuella mastersexamensprojektet, vad gäller systemdesign och parametrar. Detta system fungerar i batch-läge, vilket endast tillåter antingen absorption (dvs värmeavgivning) eller desorption (dvs värmelagring) under en specifik cykel. Således kan en uppgraderad design av detta TCS-system vid DTU möjligen vara en lämplig lösning på forskningsmålen för detta mastersexamensprojekt. Dessutom använder detta TCS-system från DTU ganska liknande driftsförhållanden (temperaturer och tryck) i nivå med det aktuella projektets önskade lågtemperaturintervall på 40-80 °C. Det andra systemet från den litteratur som diskuterats använder två reaktorer för kyla och värmeproduktion, vilket innebär att både laddningsoch urladdningsprocesser sker samtidigt. Denna samtidiga operation är främst anledningen till att systemet undersöktes, eftersom detta är en önskad funktion att uppnå i det aktuella projektet. Nästa system från den litteratur som diskuteras häri använder också två reaktorer för absorptions- och desorptionsprocesser, som fungerar reversibelt när varje process är klar, precis som önskat i detta projekt. Dessa två system (dvs det andra och det tredje diskuterade systemen) använder den reversibla fastgasreaktionen för absorption och desorption mellan SrCl2NH3 och SrCl28NH3, dock vid olika tryck- och temperaturförhållanden. Det andra systemet arbetar nämligen under kombinationer av absorption och desorption av 96 °C, 15 bar och 87 °C, 11 bar, medan det tredje systemet arbetar vid 103 °C, 16 bar respektive 59 °C, 3 bar. Det sista systemet som diskuterats från litteraturen arbetar vid samma temperatur som det önskade systemet gör (dvs. 80 ° C) och genom olika lågtrycksexperiment visar att den fasta salt-gasreaktionen är ett bättre val än reaktionen av det fasta saltet med flytande gasreaktion. De viktigaste skillnaderna mellan alla dessa diskuterade system från litteratur i motsats till det önskade TCS-system i detta mastersexamensprojekt, avser systemdriftläge samt deras tryck och X temperaturförhållanden. Den första skillnaden är att endast ett av alla undersökta system pumpar saltet i fast pulverform, till skillnad från de andra som håller saltet stillastående i reaktorerna och endast pumpar ammoniak. Den andra skillnaden gäller driftsförhållandena under absorptions- och desorptionsreaktioner där dessa system arbetar vid mycket olika tryck- och temperaturförhållanden jämfört med det nuvarande systemet. Således, från översynen av alla system, finns det fyra huvudsakliga lärdomar för att förbättra TCS-systemet vid DTU till det önskade nya systemet. Den första är relaterad till reaktanttransportmekanismen som bör användas i detta system. I detta avseende har det beslutats att hålla det fasta saltet (metallhalogenid) stillastående i varje reaktor (men inte pumpa det istället för ammoniak), till skillnad från de flesta system i litteraturen. Enligt dem andra och tredje lektionerna är den fasta gasreaktionen den mest lämpliga lösningen och endast reaktionerna på absorption och desorption mellan SrCl2∙NH3 och SrCl2∙8NH3 bör övervägas enligt erfarenheten från litteraturen (av de skäl som förklarats tidigare). Den sista lärdomen avser systemets lämpliga driftsförhållanden och mer specifikt TCS-systemets temperaturer för att matcha fjärrvärmetemperaturerna. Den temperaturpunkten valts som prioritet, från området 40-80 °C inställt av moderprojektet NHS, sattes till 80 °C. För att bibehålla detta tillstånd var det lämpligaste tryckvillkoret för båda reaktionerna (enligt jämviktstrycket kontra temperaturkurva) valdes att ligga på cirka 8 bar. Samma tryck valdes för båda reaktionerna, eftersom tryckskillnaden mellan dessa reaktorer och lagring av ammoniak (dvs. från 8 till 10 bar) borde vara så liten som möjligt på grund av de höga kostnaderna som kan uppstå vid högre tryckskillnad (dvs. fler kompressorer krävs och värmeväxlare). Inspirerad av denna litteratur föreslogs för det första ett konceptuellt lämpligt TCS-system i detta mastersexamensprojekt, varefter det slutliga systemet implementerades och utvärderades numeriskt för de önskade förhållandena. Den numeriska utformningen och optimeringen av det valda TCS-systemet utfördes här med hjälp av programvaran Aspen Plus (version 9), som innehåller både vätskor och fasta ämnen i en simuleringsmiljö, med konstant fysiska egenskaper. Detta TCS-system är utformat för att lagra och släppa värme vid cirka 80 °C och 8 bar genom absorption och desorption med användning av två identiska reaktorer respektive. Varje reaktor innefattar cirka 1 kg (närmare bestämt 0.985 kg) strontiumkloridsalt reagerande med 1.7 kg ammoniak. Ett verifieringssystem modelleras också i Aspen med hjälp av tillgängliga experimentella data från litteraturen. I detta anpassades den modellerade nya systemdesignen till denna valda andra verifieringssystemlayout från litteratur, som använder samma reaktionspar, men under olika driftsförhållanden. Denna anpassade systemdesign i Aspen användes sedan för att verifiera den valda konfigurationen och tillförlitligheten för det designade systemet för NHS-projektet. Här erhålls ett bra avtal för denna verifieringssystemdesign mellan Aspenmodellresultaten och experimentdata. Här utförs också en känslighetsanalys för det utformade TCSsystemet i det aktuella projektet för att identifiera de optimala driftsförhållandena och beteendet för de valda viktigaste parametrarna i systemet. Det konstruerade systemet ger en energilagringskapacitet på 0.5 kWh för de specifika mängderna (i volymflöde) av ammoniak och monoamin av strontiumklorid, som kommer från analysen, av 1.08696 e-05 kmol/s och 1.5528 e-06 kmol/s respektive. För dessa specifika värden på värmeöverföringsvätskan visade analysen att de volymetriska flödeshastigheterna för värme och kalla yttre källor måste vara 1.56 l/min (vilket minskar när temperaturen på värmeöverföringsvätskan ökar) och 0.42 l/min (som ökar när temperaturen på värmeöverföringsvätskan ökar). Sammanfattningsvis presenterar denna studie ett ammoniak-SrCl2 TCS-bänkskålsystem som möjliggör kontinuerlig värmelagring och frigöring, har en design som är lätt att anpassa och föreslår också optimala driftsförhållanden.
APA, Harvard, Vancouver, ISO, and other styles
9

Spittle, Peta Jean. "Characterisation of high temperature metal halides by mass spectrometry and matrix isolation infrared spectroscopy." Thesis, University of Southampton, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.242391.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ye, Jianjun. "Electronic spectroscopy of transition metal monohalides." Click to view the E-thesis via HKUTO, 2007. http://sunzi.lib.hku.hk/hkuto/record/B38990167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Halides. Metal halides"

1

Georgiev, Mladen. F' centers in alkali halides. Berlin: Springer-Verlag, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Goldmann, A., ed. Noble Metals, Noble Metal Halides and Nonmagnetic Transition Metals. Berlin/Heidelberg: Springer-Verlag, 2003. http://dx.doi.org/10.1007/b72681.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chim, Raymond Yin Loong. Vacuum-ultraviolet photoexcitation of some non-metal halides. Birmingham: University of Birmingham, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wilson, John W. Analysis of the physical atomic forces between noble gas atoms, alkali ions, and halogen ions. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Seccombe, Dominic Paul. The nature of the excited states of some non metal halides and their cations. Birmingham: University of Birmingham, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lakin, Miles T. Complexation of early- and post- transition metal halides with aza-, oxa-, and thiamacrocyclic ligands. [s.l.]: typescript, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lange, Norbert. Schwingungsspektroskopische Untersuchungen an Erdalkali- und Übergangsmetallhalogenaten. Rheinfelden: Schäuble, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

From coherent tunneling to relaxation: Dissipative quantum dynamics of interacting defects. Berlin: Springer, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ravindran, Mythili. Synthesis and structural studies of N - and O - donor complexes of transition and post-transition metal halides. [s.l.]: typescript, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Silfsten, Pertti. Studies on the information storage and laser optic properties of colour centres: Academic dissertation. Joensuu: University of Joensuu, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Halides. Metal halides"

1

Mews, R. "With Metal Halides." In Inorganic Reactions and Methods, 166–68. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145173.ch103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tyree, S. Y. "Anhydrous Metal Halides." In Inorganic Syntheses, 103–11. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470132357.ch36.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mews, R. "By Metal Halides." In Inorganic Reactions and Methods, 87–89. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145173.ch69.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mews, R. "With Metal Halides." In Inorganic Reactions and Methods, 114–16. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145173.ch82.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Page, E. M., and D. A. Rice. "From Metal Halides." In Inorganic Reactions and Methods, 230–31. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145180.ch149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Brill, T. B. "By Metal Halides." In Inorganic Reactions and Methods, 138. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145180.ch78.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Röschenthaler, G. V. "Of Transition-Metal Halides." In Inorganic Reactions and Methods, 220. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145173.ch153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Page, E. M., and D. A. Rice. "Wiih Complex Metal Halides." In Inorganic Reactions and Methods, 232. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145180.ch150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Page, E. M. "Of Transition-Metal Halides by Halogenation with Non-Transition-Metal Halides." In Inorganic Reactions and Methods, 181–82. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145180.ch111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Röschenthaler, G. V. "To Give Group-VB Halides from Transition-Metal Halides." In Inorganic Reactions and Methods, 213. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145173.ch139.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Halides. Metal halides"

1

Jaeger, Heinrich M., H. R. Borsje, and Sybrand Radelaar. "Nanolithography with metal halides." In Optical Engineering Midwest 1992, edited by Robert J. Heaston. SPIE, 1992. http://dx.doi.org/10.1117/12.130965.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bredikhin, Roman, Vyacheslav Platonov, and Alexander Maksimov. "Transformations of polyfluoroarenesulfonyl halides with alkenes, polyfluoroarenethiols and alkali metal halides." In The 15th International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 2011. http://dx.doi.org/10.3390/ecsoc-15-00606.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Belfore, Benjamin, Deewakar Poudel, Elizabeth Palmiotti, Grace Rajan, Shankar Karki, Angus Rockett, and Sylvain Marsillac. "In-situ Recrystallization of CIGS via Metal Halides." In 2020 IEEE 47th Photovoltaic Specialists Conference (PVSC). IEEE, 2020. http://dx.doi.org/10.1109/pvsc45281.2020.9300436.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Belfore, Benjamin, Deewakar Poudel, Elizabeth Palmiotti, Grace Rajan, Shankar Karki, Angus Rockett, and Sylvain Marsillac. "Ex-Situ Recrystallization of CIGS via Metal Halides." In 2020 IEEE 47th Photovoltaic Specialists Conference (PVSC). IEEE, 2020. http://dx.doi.org/10.1109/pvsc45281.2020.9300941.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Boi, Mauro, Daniele Battaglia, Andrea Salimbeni, and Alfonso Damiano. "Energy Storage Systems Based on Sodium Metal Halides Batteries." In 2019 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2019. http://dx.doi.org/10.1109/ecce.2019.8913257.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Boi, Mauro, Andrea Salimbeni, and Alfonso Damiano. "A Thévenin circuit modelling approach for sodium metal halides batteries." In IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2017. http://dx.doi.org/10.1109/iecon.2017.8217334.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Liu, Yu, and Ruben Martin. "Metal-catalyzed direct carboxylation of unactivated alkyl halides with CO2." In 15th Brazilian Meeting on Organic Synthesis. São Paulo: Editora Edgard Blücher, 2013. http://dx.doi.org/10.5151/chempro-15bmos-bmos2013_201362534256.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Palazon, Francisco, Yousra El Ajjouri, Michele Sessolo, and Henk J. Bolink. "Perovskites and Beyond: Dry Mechanochemical Synthesis of Multinary Metal Halides." In 1st Interfaces in Organic and Hybrid Thin-Film Optoelectronics. València: Fundació Scito, 2019. http://dx.doi.org/10.29363/nanoge.inform.2019.046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Novinson, Thomas, Jeffrey I. Zink, John Kennedy, and William C. Kaska. "Optical, thermal, and electronic semiconductor properties of thermochromic metal halides." In San Dieg - DL Tentative, edited by Richard I. Seddon. SPIE, 1990. http://dx.doi.org/10.1117/12.22388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

El Hefnawy, Somia M., Mervet M. Aboelkher, and H. Abdelkader. "IR analysis of polyvinylidene fluoride doped with transition metal halides." In SPIE Scanning Microscopy, edited by Michael T. Postek, Dale E. Newbury, S. Frank Platek, and David C. Joy. SPIE, 2009. http://dx.doi.org/10.1117/12.820521.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Halides. Metal halides"

1

Chen, A. L., and P. Y. Yu. Charge-transfer gap closure in transition-metal halides under pressure. Office of Scientific and Technical Information (OSTI), January 1995. http://dx.doi.org/10.2172/69161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Akdeniz, Z., and M. P. Tosi. Stability diagrams for fourfold coordination of polyvalent metal ions in molten mixtures of halide salts. Office of Scientific and Technical Information (OSTI), November 1988. http://dx.doi.org/10.2172/6060227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography