Journal articles on the topic 'Hall effect thruster'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Hall effect thruster.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Hopping, Ethan P., Wensheng Huang, and Kunning G. Xu. "Small Hall Effect Thruster with 3D Printed Discharge Channel: Design and Thrust Measurements." Aerospace 8, no. 8 (2021): 227. http://dx.doi.org/10.3390/aerospace8080227.
Full textBaird, Matthew, Thomas Kerber, Ron McGee-Sinclair, and Kristina Lemmer. "Plume Divergence and Discharge Oscillations of an Accessible Low-Power Hall Effect Thruster." Applied Sciences 11, no. 4 (2021): 1973. http://dx.doi.org/10.3390/app11041973.
Full textYan, Li, Ping-Yang Wang, Yang-Hua Ou, and Xiao-Lu Kang. "Numerical Study of Hall Thruster Plume and Sputtering Erosion." Journal of Applied Mathematics 2012 (2012): 1–16. http://dx.doi.org/10.1155/2012/327021.
Full textZidar, David G., and Joshua L. Rovey. "Hall-Effect Thruster Channel Surface Properties Investigation." Journal of Propulsion and Power 28, no. 2 (2012): 334–43. http://dx.doi.org/10.2514/1.b34312.
Full textBoniface, C., G. J. M. Hagelaar, L. Garrigues, J. P. Boeuf, and M. Prioul. "Modeling of double stage Hall effect thruster." IEEE Transactions on Plasma Science 33, no. 2 (2005): 522–23. http://dx.doi.org/10.1109/tps.2005.845117.
Full textKurzyna, Jacek, Maciej Jakubczak, Agnieszka Szelecka, and Käthe Dannenmayer. "Performance tests of IPPLM's krypton Hall thruster." Laser and Particle Beams 36, no. 1 (2018): 105–14. http://dx.doi.org/10.1017/s0263034618000046.
Full textLangendorf, S., K. Xu, and M. Walker. "Effects of wall electrodes on Hall effect thruster plasma." Physics of Plasmas 22, no. 2 (2015): 023508. http://dx.doi.org/10.1063/1.4908273.
Full textSzelecka, Agnieszka, Jacek Kurzyna, and Loic Bourdain. "Thermal stability of the krypton Hall effect thruster." Nukleonika 62, no. 1 (2017): 9–15. http://dx.doi.org/10.1515/nuka-2017-0002.
Full textSzelecka, Agnieszka. "Advanced laboratory for testing plasma thrusters and Hall thruster measurement campaign." Nukleonika 61, no. 2 (2016): 213–18. http://dx.doi.org/10.1515/nuka-2016-0036.
Full textMullins, Carl R., Casey C. Farnell, Cody C. Farnell, et al. "Non-invasive Hall current distribution measurement in a Hall effect thruster." Review of Scientific Instruments 88, no. 1 (2017): 013507. http://dx.doi.org/10.1063/1.4974098.
Full textBook, Carl F., and Mitchell L. R. Walker. "Effect of Anode Temperature on Hall Thruster Performance." Journal of Propulsion and Power 26, no. 5 (2010): 1036–44. http://dx.doi.org/10.2514/1.48028.
Full textGarrigues, L., G. J. M. Hagelaar, C. Boniface, and J. P. Boeuf. "Optimized atom injection in a Hall effect thruster." Applied Physics Letters 85, no. 22 (2004): 5460–62. http://dx.doi.org/10.1063/1.1829137.
Full textJiang, Yiwei, Haibin Tang, Junxue Ren, Min Li, and Jinbin Cao. "Magnetic mirror effect in a cylindrical Hall thruster." Journal of Physics D: Applied Physics 51, no. 3 (2017): 035201. http://dx.doi.org/10.1088/1361-6463/aa9e3e.
Full textGuo, Zongshuai. "Radial distribution of electrons rotation moment in hall effect and plasma-ion thrusters." Aerospace technic and technology, no. 4 (August 27, 2021): 28–34. http://dx.doi.org/10.32620/aktt.2021.4.04.
Full textDésangles, Victor, Sergey Shcherbanev, Thomas Charoy, et al. "Fast Camera Analysis of Plasma Instabilities in Hall Effect Thrusters Using a POD Method under Different Operating Regimes." Atmosphere 11, no. 5 (2020): 518. http://dx.doi.org/10.3390/atmos11050518.
Full textPanelli, Mario, Davide Morfei, Beniamino Milo, Francesco D’Aniello, and Francesco Battista. "Axisymmetric Hybrid Plasma Model for Hall Effect Thrusters." Particles 4, no. 2 (2021): 296–324. http://dx.doi.org/10.3390/particles4020026.
Full textMakela, Jason M., Robert L. Washeleski, Dean R. Massey, Lyon B. King, and Mark A. Hopkins. "Development of a Magnesium and Zinc Hall-Effect Thruster." Journal of Propulsion and Power 26, no. 5 (2010): 1029–35. http://dx.doi.org/10.2514/1.47410.
Full textDragnea, Horatiu C., Alejandro Lopez Ortega, Hani Kamhawi, and Iain D. Boyd. "Simulation of a Hall Effect Thruster Using Krypton Propellant." Journal of Propulsion and Power 36, no. 3 (2020): 335–45. http://dx.doi.org/10.2514/1.b37499.
Full textDorf, L., Y. Raitses, N. J. Fisch, and V. Semenov. "Effect of anode dielectric coating on Hall thruster operation." Applied Physics Letters 84, no. 7 (2004): 1070–72. http://dx.doi.org/10.1063/1.1646727.
Full textROSSI, Alberto, Frédéric MESSINE, and Carole HENAUX. "Parametric Optimization of a Hall Effect Thruster Magnetic Circuit." TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN 14, ists30 (2016): Pb_197—Pb_202. http://dx.doi.org/10.2322/tastj.14.pb_197.
Full textFrieman, Jason D., Nathan P. Brown, Connie Y. Liu, et al. "Impact of Propellant Species on Hall Effect Thruster Electrical Facility Effects." Journal of Propulsion and Power 34, no. 3 (2018): 600–613. http://dx.doi.org/10.2514/1.b36566.
Full textCichocki, Filippo, Adrián Domínguez-Vázquez, Mario Merino, Pablo Fajardo, and Eduardo Ahedo. "Three-dimensional neutralizer effects on a Hall-effect thruster near plume." Acta Astronautica 187 (October 2021): 498–510. http://dx.doi.org/10.1016/j.actaastro.2021.06.042.
Full textROY, SUBRATA, and B. P. PANDEY. "Plasma–wall interaction inside a Hall thruster." Journal of Plasma Physics 68, no. 4 (2002): 305–19. http://dx.doi.org/10.1017/s0022377802002027.
Full textPassaro, A., A. Vicini, F. Nania, and L. Biagioni. "Numerical Rebuilding of SMART-1 Hall Effect Thruster Plasma Plume." Journal of Propulsion and Power 26, no. 1 (2010): 149–58. http://dx.doi.org/10.2514/1.36821.
Full textHause, Michael L., Benjamin D. Prince, and Raymond J. Bemish. "Krypton charge exchange cross sections for Hall effect thruster models." Journal of Applied Physics 113, no. 16 (2013): 163301. http://dx.doi.org/10.1063/1.4802432.
Full textBoniface, C., L. Garrigues, G. J. M. Hagelaar, J. P. Boeuf, D. Gawron, and S. Mazouffre. "Anomalous cross field electron transport in a Hall effect thruster." Applied Physics Letters 89, no. 16 (2006): 161503. http://dx.doi.org/10.1063/1.2360182.
Full textGarrigues, L., J. Pérez-Luna, J. Lo, G. J. M. Hagelaar, J. P. Boeuf, and S. Mazouffre. "Empirical electron cross-field mobility in a Hall effect thruster." Applied Physics Letters 95, no. 14 (2009): 141501. http://dx.doi.org/10.1063/1.3242336.
Full textKwon, Kybeom, Mitchell L. R. Walker, and Dimitri N. Mavris. "Self-consistent, one-dimensional analysis of the Hall effect thruster." Plasma Sources Science and Technology 20, no. 4 (2011): 045021. http://dx.doi.org/10.1088/0963-0252/20/4/045021.
Full textLi, Lai, Xi Lu, Hulin Huang, Xidong Zhang, and Guiping Zhu. "The Numerical Simulation of a High Power Hall Effect Thruster." IOP Conference Series: Earth and Environmental Science 192 (November 5, 2018): 012008. http://dx.doi.org/10.1088/1755-1315/192/1/012008.
Full textKwon, Kybeom, Mitchell L. R. Walker, and Dimitri N. Mavris. "Study on Anomalous Electron Diffusion in the Hall Effect Thruster." International Journal of Aeronautical and Space Sciences 15, no. 3 (2014): 320–34. http://dx.doi.org/10.5139/ijass.2014.15.3.320.
Full textKim, Eun-Hyouek, Youn-Ho Kim, Jong-Soo Park, Dong-Wook Koh, Yun-Hwang Jeong, and Hyun-Woo Lee. "Orbit Evolution Analysis of DubaiSat-2 using Hall-effect Thruster." Journal of the Korean Society for Aeronautical & Space Sciences 43, no. 4 (2015): 377–86. http://dx.doi.org/10.5139/jksas.2015.43.4.377.
Full textLangendorf, S., and M. L. R. Walker. "Characterization of Hall effect thruster propellant distributors with flame visualization." Review of Scientific Instruments 84, no. 1 (2013): 013302. http://dx.doi.org/10.1063/1.4774049.
Full textLoyan, A. V., S. Yu Nesterenko, Guo Zongshuai та Huang Zhihao. "КВАЗІОДНОВИМІРНА МАТЕМАТИЧНА МОДЕЛЬ ПРОЦЕСІВ В ХОЛЛІВСЬКОМУ ТА ПЛАЗМОВО-ІОННОМУ ДВИГУНІ". Open Information and Computer Integrated Technologies, № 92 (6 вересня 2021): 41–54. http://dx.doi.org/10.32620/oikit.2021.92.04.
Full textXu, Kunning G., and Mitchell L. R. Walker. "Technique to Collimate Ions in a Hall-Effect Thruster Discharge Chamber." Journal of Propulsion and Power 27, no. 3 (2011): 564–72. http://dx.doi.org/10.2514/1.49171.
Full textCho, Shinatora, Hiroki Watanabe, Kenichi Kubota, and Ikkoh Funaki. "Numerical Sensitivity Analysis of Chamber Backpressure Effect in Hall Thruster Experiment." JOURNAL OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES 66, no. 3 (2018): 61–68. http://dx.doi.org/10.2322/jjsass.66.61.
Full textMartinez, Rafael A., Hoang Dao, and Mitchell L. R. Walker. "Power Deposition into the Discharge Channel of a Hall Effect Thruster." Journal of Propulsion and Power 30, no. 1 (2014): 209–20. http://dx.doi.org/10.2514/1.b34897.
Full textFrieman, Jason D., Thomas M. Liu, and Mitchell L. R. Walker. "Background Flow Model Validation with a Six-Kilowatt Hall Effect Thruster." Journal of Propulsion and Power 36, no. 2 (2020): 308–11. http://dx.doi.org/10.2514/1.b37512.
Full textHargus, William A. "Laser-Induced-Fluorescence-Derived Hall Effect Thruster Ion Velocity Distribution Visualization." IEEE Transactions on Plasma Science 39, no. 11 (2011): 2918–19. http://dx.doi.org/10.1109/tps.2011.2132149.
Full textKwon, Ky-Beom. "Design Space Exploration of the Hall Effect Thruster for Conceptual Design." Journal of the Korean Society for Aeronautical & Space Sciences 39, no. 12 (2011): 1133–40. http://dx.doi.org/10.5139/jksas.2011.39.12.1133.
Full textXu, Zhang, Wei Liqiu, Han Liang, Ding Yongjie, and Yu Daren. "Effect of azimuthal diversion rail on an ATON-type Hall thruster." Journal of Physics D: Applied Physics 50, no. 9 (2017): 095202. http://dx.doi.org/10.1088/1361-6463/aa5622.
Full textDing, Yongjie, Boyang Jia, Yu Xu, et al. "Effect of vortex inlet mode on low-power cylindrical Hall thruster." Physics of Plasmas 24, no. 8 (2017): 080703. http://dx.doi.org/10.1063/1.4986007.
Full textBalika, L., C. Focsa, S. Gurlui, et al. "Laser ablation in a running hall effect thruster for space propulsion." Applied Physics A 112, no. 1 (2012): 123–27. http://dx.doi.org/10.1007/s00339-012-7211-0.
Full textXu, Kunning G., and Mitchell L. R. Walker. "Effect of External Cathode Azimuthal Position on Hall-Effect Thruster Plume and Diagnostics." Journal of Propulsion and Power 30, no. 2 (2014): 506–13. http://dx.doi.org/10.2514/1.b34980.
Full textChernyshev, Timofey, Eduard Son, and Oleg Gorshkov. "2D3V kinetic simulation of Hall effect thruster, including azimuthal waves and diamagnetic effect." Journal of Physics D: Applied Physics 52, no. 44 (2019): 444002. http://dx.doi.org/10.1088/1361-6463/ab35cb.
Full textYuge, Seiro, Atsushi Shirasaki, and Hirokazu Tahara. "Effect of Magnetic Field Characteristics on Thrust Efficiency and Internal Efficiency of a Hall Thruster." JOURNAL OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES 55, no. 636 (2007): 8–16. http://dx.doi.org/10.2322/jjsass.55.8.
Full textKwon, Kybeom, Gregory Lantoine, Ryan P. Russell, and Dimitri N. Mavris. "A study on simultaneous design of a Hall Effect Thruster and its low-thrust trajectory." Acta Astronautica 119 (February 2016): 34–47. http://dx.doi.org/10.1016/j.actaastro.2015.11.002.
Full textSzelecka, Agnieszka, Maciej Jakubczak, and Jacek Kurzyna. "Plasma beam structure diagnostics in krypton Hall thruster." Laser and Particle Beams 36, no. 2 (2018): 219–25. http://dx.doi.org/10.1017/s0263034618000198.
Full textWalker, Jonathan A., Jason D. Frieman, Mitchell L. R. Walker, Vadim Khayms, David King, and Peter Y. Peterson. "Electrical Facility Effects on Hall-Effect-Thruster Cathode Coupling: Discharge Oscillations and Facility Coupling." Journal of Propulsion and Power 32, no. 4 (2016): 844–55. http://dx.doi.org/10.2514/1.b35835.
Full textWu, Zhi Wen, Shu Shu, Da Ren Yu, Xiang Yang Liu, and Ning Fei Wang. "Numerical Simulation for the Effect of Wall Material on Near Wall Conductivity in Hall Thrusters." Applied Mechanics and Materials 29-32 (August 2010): 519–24. http://dx.doi.org/10.4028/www.scientific.net/amm.29-32.519.
Full textWalker, Mitchell L. R., Allen L. Victor, Richard R. Hofer, and Alec D. Gallimore. "Effect of Backpressure on Ion Current Density Measurements in Hall Thruster Plumes." Journal of Propulsion and Power 21, no. 3 (2005): 408–15. http://dx.doi.org/10.2514/1.7713.
Full text