To see the other types of publications on this topic, follow the link: HAMILTON–JACOBI–ISAACS EQUATION.

Dissertations / Theses on the topic 'HAMILTON–JACOBI–ISAACS EQUATION'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'HAMILTON–JACOBI–ISAACS EQUATION.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Ferreira, Henrique Cezar. "Controle H-infinito não linear e a equação de Hamilton Jacobi-Isaacs." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/3/3139/tde-14052009-142310/.

Full text
Abstract:
O objetivo desta tese é investigar aspectos práticos que facilitem a aplicação da teoria de controle H1 não linear em projetos de sistemas de controle. A primeira contribuição deste trabalho é a proposta do uso de funções ponderação com dinâmica no projeto de controladores H1 não lineares. Essas funções são usadas no projeto de controladores H1 lineares para rejeição de perturbações, ruídos, atenuação de erro de rastreamento, dentre outras especificações. O maior obstáculo para aplicação prática da teoria de controle H1 não linear é a dificuldade para resolver simultaneamente as duas equações de Hamilton-Jacobi-Isaacs relacionadas ao problema de realimentação de estados e injeção da saída. Não há métodos sistematicos para resolver essas duas equações diferenciais parciais não lineares, equivalentes µas equações de Riccati da teoria de controle H1 linear. A segunda contribuição desta tese é um método para obter a injeção da saída transformando a equação de Hamilton-Jacobi-Isaacs em uma sequencia de equações diferenciais parciais lineares, que são resolvidas usando o método de Galerkin. Controladores H1 não lineares para um sistema de levitação magnética são obtidos usando o método clássico de expansão em série de Taylor e o método de proposto para comparação.<br>The purpose of this thesis is to investigate practical aspects to facilitate the ap- plication of nonlinear H1 theory in control systems design. Firstly, it is shown that dynamic weighting functions can be used to improve the performance and robustness of the nonlinear H1 controller such as in the design of H1 controllers for linear plants. The biggest bottleneck to the practical applications of nonlinear H1 control theory has been the di±culty in solving the Hamilton-Jacobi-Isaacs equations associated with the design of a state feedback and an output injection gain. There is no systematic numerical approach for solving this ¯rst order, nonlinear partial di®erential equations, which reduces to Riccati equations in the linear context. In this work, successive ap- proximation and Galerkin approximation methods are combined to derive an algorithm that produces an output injection gain. Design of nonlinear H1 controllers obtained by the well established Taylor approximation and by the proposed Galerkin approxi- mation method applied to a magnetic levitation system are presented for comparison purposes.
APA, Harvard, Vancouver, ISO, and other styles
2

Detournay, Sylvie. "Multigrid methods for zero-sum two player stochastic games." Palaiseau, Ecole polytechnique, 2012. http://pastel.archives-ouvertes.fr/docs/00/76/20/10/PDF/lathese.pdf.

Full text
Abstract:
Dans cette thèse, nous proposons des algorithmes et présentons des résultats numériques pour la résolution de jeux répétés stochastiques, à deux joueurs et somme nulle dont l'espace d'état est de grande taille. En particulier, nous considérons la classe de jeux en information complète et en horizon infini. Dans cette classe, nous distinguons d'une part le cas des jeux avec gain actualisé et d'autre part le cas des jeux avec gain moyen. Nos algorithmes, implémentés en C, sont principalement basés sur des algorithmes de type itérations sur les politiques et des méthodes multigrilles. Ces algorithmes sont appliqués soit à des équations de la programmation dynamique provenant de problèmes de jeux à deux joueurs à espace d'états fini, soit à des discrétisations d'équations de type Isaacs associées à des jeux stochastiques différentiels. Dans la première partie de cette thèse, nous proposons un algorithme qui combine l'algorithme des itérations sur les politiques pour les jeux avec gain actualisé à des méthodes de multigrilles algébriques utilisées pour la résolution des systèmes linéaires. Nous présentons des résultats numériques pour des équations d'Isaacs et des inéquations variationnelles. Nous présentons également un algorithme d'itérations sur les politiques avec raffinement de grilles dans le style de la méthode FMG. Des exemples sur des inéquations variationnelles montrent que cet algorithme améliore de façon non négligeable le temps de résolution de ces inéquations. Pour le cas des jeux avec gain moyen, nous proposons un algorithme d'itération sur les politiques pour les jeux à deux joueurs avec espaces d'états et d'actions finis, dans le cas général multichaine (c'est-à-dire sans hypothèse d'irréductibilité sur les chaînes de Markov associées aux stratégies des deux joueurs). Cet algorithme utilise une idée développée dans Cochet-Terrasson et Gaubert (2006). Cet algorithme est basé sur la notion de projecteur spectral non-linéaire d'opérateurs de la programmation dynamique de jeux à un joueur (lequel est monotone et convexe). Nous montrons que la suite des valeurs et valeurs relatives satisfont une propriété de monotonie lexicographique qui implique que l'algorithme termine en temps fini. Nous présentons des résultats numériques pour des jeux discrets provenant d'une variante des jeux de Richman et sur des problèmes de jeux de poursuite. Finalement, nous présentons de nouveaux algorithmes de multigrilles algébriques pour la résolution de systèmes linéaires singuliers particuliers. Ceux-ci apparaissent, par exemple, dans l'algorithme d'itérations sur les politiques pour les jeux stochastiques à deux joueurs et somme nulle avec gain moyen, décrit ci-dessus. Nous introduisons également une nouvelle méthode pour la recherche de mesures invariantes de chaînes de Markov irréductibles basée sur une approche de contrôle stochastique. Nous présentons un algorithme qui combine les itérations sur les politiques d'Howard et des itérations de multigrilles algébriques pour les systèmes linéaires singuliers<br>In this thesis, we present some algorithms and numerical results for the solution of large scale zero-sum two player repeated stochastic games. In particular, we consider the class of games with perfect information and infinite horizon. In this class, we consider the games with discounted payoff and the games with mean payoff. Our algorithms are mainly based on policy iteration type algorithms and multigrid methods, and are implemented in C. These algorithms are applied either to the dynamic programming equation of a true finite state space zero-sum two player game or to the discretization of an Isaacs PDE of a zero-sum stochastic differential game. In a first part, we propose an algorithm which combines policy iterations for discounted games and algebraic multigrid methods to solve the linear systems involved in the policy iterations. We present numerical tests on discretizations of Isaacs equations or variational inequalities. We also present a full multilevel policy iteration, similar to FMG, which allows one to improve substantially the computation time for solving some variational inequalities. For the games with mean payoff, we develop a policy iteration algorithm to solve zero-sum stochastic games with finite state and action spaces, perfect information and in the general multichain case (i. E. Without irreducibility assumption on the Markov chains determined by the strategies of the players), following an idea of Cochet-Terrasson and Gaubert (2006). This algorithm relies on a notion of nonlinear spectral projection of dynamic programming operators of a one player games (which are monotone and convex). We show that the sequence of values and relative values satisfies a lexicographical monotonicity property, which implies that the algorithm does terminate. We present numerical results on a variant of Richman games and on pursuit-evasion games. We propose new algebraic multigrid algorithms to solve particular singular linear systems that arise for instance in the above policy iteration algorithm for zero-sum two player stochastic games with mean payoff. Furthermore, we introduce a new method to find the stationary probability of an irreducible Markov chain using a stochastic control approach and present an algorithm which combines the Howard policy iterations and algebraic multigrid iterations for singular systems
APA, Harvard, Vancouver, ISO, and other styles
3

Zhao, Xuzhe. "Problèmes de switching optimal, équations différentielles stochastiques rétrogrades et équations différentielles partielles intégrales." Thesis, Le Mans, 2014. http://www.theses.fr/2014LEMA1008/document.

Full text
Abstract:
Cette thèse est composée de trois parties. Dans la première nous montrons l'existence et l'unicité de la solution continue et à croissance polynomiale, au sensviscosité, du système non linéaire de m équations variationnelles de type intégro-différentiel à obstacles unilatéraux interconnectés. Ce système est lié au problème du switching optimal stochastique lorsque le bruit est dirigé par un processus de Lévy. Un cas particulier du système correspond en effet à l’équation d’Hamilton-Jacobi-Bellman associé au problème du switching et la solution de ce système n’est rien d’autre que la fonction valeur du problème. Ensuite, nous étudions un système d’équations intégro-différentielles à obstacles bilatéraux interconnectés. Nous montrons l’existence et l’unicité des solutions continus à croissance polynomiale, au sens viscosité, des systèmes min-max et max-min. La démarche conjugue les systèmes d’EDSR réfléchies ainsi que la méthode de Perron. Dans la dernière partie nous montrons l’égalité des solutions des systèmes max-min et min-max d’EDP lorsque le bruit est uniquement de type diffusion. Nous montrons que si les coûts de switching sont assez réguliers alors ces solutions coïncident. De plus elles sont caractérisées comme fonction valeur du jeu de switching de somme nulle<br>There are three main results in this thesis. The first is existence and uniqueness of the solution in viscosity sense for a system of nonlinear m variational integral-partial differential equations with interconnected obstacles. From the probabilistic point of view, this system is related to optimal stochastic switching problem when the noise is driven by a Lévy process. As a by-product we obtain that the value function of the switching problem is continuous and unique solution of its associated Hamilton-Jacobi-Bellman system of equations. Next, we study a general class of min-max and max-min nonlinear second-order integral-partial variational inequalities with interconnected bilateralobstacles, related to a multiple modes zero-sum switching game with jumps. Using Perron’s method and by the help of systems of penalized unilateral reflected backward SDEs with jumps, we construct a continuous with polynomial growth viscosity solution, and a comparison result yields the uniqueness of the solution. At last, we deal with the solutions of systems of PDEs with bilateral inter-connected obstacles of min-max and max-min types in the Brownian framework. These systems arise naturally in stochastic switching zero-sum game problems. We show that when the switching costs of one side are smooth, the solutions of the min-max and max-min systems coincide. Furthermore, this solution is identified as the value function of the zero-sum switching game
APA, Harvard, Vancouver, ISO, and other styles
4

Pnevmatikos, Nikolaos. "Contributions à la théorie des jeux : valeur asymptotique des jeux dépendant de la fréquence et décompositions des jeux finis." Thesis, Paris 1, 2016. http://www.theses.fr/2016PA01E026/document.

Full text
Abstract:
Les problèmes abordés et les résultats obtenus dans cette thèse se divisent en deux parties. La première concerne l'étude de la valeur asymptotique de jeux dépendant de la fréquence (jeux-FD). Nous introduisons un jeu différentiel associé au jeu-FD dont la valeur se ramène à une équation de Hamilton-Jacobi-Bellman-lsaacs. En affrontant un problème d'irrégularité à l'origine, nous prouvons l’existence de la valeur du jeu différentiel sur [0.1 ] et ceci nous permet de prouver que la valeur du jeu FD converge vers la valeur du jeu continu qui débute à l'état initial 0. Dans la deuxième partie, l'objectif fondamental est la décomposition de l'espace des jeux finis en sous espaces des jeux adéquats et plus faciles à étudier vu que leurs équilibres sont distingués. Cette partie est divisée en deux chapitres. Dans le premier chapitre, nous établissons une décomposition canonique de tout jeu arbitraire fini en trois composantes et nous caractérisons les équilibres approximatifs d'un jeu donné par les équilibres uniformément mixtes et en stratégies dominantes lesquels apparaissent sur ses composantes. Dans le deuxième chapitre, nous introduisons sur l'espace des jeux finis une famille de produits scalaires et nous définissons la classe des jeux harmoniques relativement au produit scalaire choisi dans cette famille. Inspiré par la décomposition de Helmholtz-Hodge appliquée aux jeux par Candogan et al. (2011), nous établissons une décomposition orthogonale de l'espace des jeux finis, par rapport au produit scalaire choisi, en les sous espaces des jeux potentiels, des jeux harmoniques et des jeux non­stratégiques c nous généralisons les résultats de Candogan et al. (2011)<br>The problems addressed and results obtained in this thesis are divided in two parts. The first part concerns the study of the asymptotic value of frequency-dependent games (FD-games). We introduce a differential game associated to the FD-game whose value leads to a Hamilton-Jacob-Bellman-lsaacs equation. Although an irregularity occurs at the origin, we prove existence of the value in the differential game played over [0.1 ], which allows to prove that the value of the FD-game, as the number of stages tend to infinity, converges to the value of the continuous-time game with initial state 0. ln the second part, the objective is the decomposition of the space of finite games in subspaces of suitable games which admit disguised equilibria and more tractable analysis. This part is divided in two chapters. In the first chapter, we establish a canonical decomposition of an arbitrary game into three components and we characterize the approximate equilibria of a given game in terms of the uniform equilibrium and the equilibrium in dominant strategies that appear in its components. In the second part, we introduce a family of inner products in the space of finite games and we define the class of harmonic games relatively to the chosen inner product. Inspired of the Helmholtz-Hodge decomposition applied to games by Candogan et al (2011 ), we establish an orthogonal decomposition of the space of finite games with respect to the chosen inner product, in the subspaces of potential harmonic and non-strategic games and we further generalize several results of Candogan et al (2011)
APA, Harvard, Vancouver, ISO, and other styles
5

Detournay, Sylvie. "Méthodes multigrilles pour les jeux stochastiques à deux joueurs et somme nulle, en horizon infini." Phd thesis, Ecole Polytechnique X, 2012. http://pastel.archives-ouvertes.fr/pastel-00762010.

Full text
Abstract:
Dans cette thèse, nous proposons des algorithmes et présentons des résultats numériques pour la résolution de jeux répétés stochastiques, à deux joueurs et somme nulle dont l'espace d'état est de grande taille. En particulier, nous considérons la classe de jeux en information complète et en horizon infini. Dans cette classe, nous distinguons d'une part le cas des jeux avec gain actualisé et d'autre part le cas des jeux avec gain moyen. Nos algorithmes, implémentés en C, sont principalement basés sur des algorithmes de type itérations sur les politiques et des méthodes multigrilles. Ces algorithmes sont appliqués soit à des équations de la programmation dynamique provenant de problèmes de jeux à deux joueurs à espace d'états fini, soit à des discrétisations d'équations de type Isaacs associées à des jeux stochastiques différentiels. Dans la première partie de cette thèse, nous proposons un algorithme qui combine l'algorithme des itérations sur les politiques pour les jeux avec gain actualisé à des méthodes de multigrilles algébriques utilisées pour la résolution des systèmes linéaires. Nous présentons des résultats numériques pour des équations d'Isaacs et des inéquations variationnelles. Nous présentons également un algorithme d'itérations sur les politiques avec raffinement de grilles dans le style de la méthode FMG. Des exemples sur des inéquations variationnelles montrent que cet algorithme améliore de façon non négligeable le temps de résolution de ces inéquations. Pour le cas des jeux avec gain moyen, nous proposons un algorithme d'itération sur les politiques pour les jeux à deux joueurs avec espaces d'états et d'actions finis, dans le cas général multichaine (c'est-à-dire sans hypothèse d'irréductibilité sur les chaînes de Markov associées aux stratégies des deux joueurs). Cet algorithme utilise une idée développée dans Cochet-Terrasson et Gaubert (2006). Cet algorithme est basé sur la notion de projecteur spectral non-linéaire d'opérateurs de la programmation dynamique de jeux à un joueur (lequel est monotone et convexe). Nous montrons que la suite des valeurs et valeurs relatives satisfont une propriété de monotonie lexicographique qui implique que l'algorithme termine en temps fini. Nous présentons des résultats numériques pour des jeux discrets provenant d'une variante des jeux de Richman et sur des problèmes de jeux de poursuite. Finalement, nous présentons de nouveaux algorithmes de multigrilles algébriques pour la résolution de systèmes linéaires singuliers particuliers. Ceux-ci apparaissent, par exemple, dans l'algorithme d'itérations sur les politiques pour les jeux stochastiques à deux joueurs et somme nulle avec gain moyen, décrit ci-dessus. Nous introduisons également une nouvelle méthode pour la recherche de mesures invariantes de chaînes de Markov irréductibles basée sur une approche de contrôle stochastique. Nous présentons un algorithme qui combine les itérations sur les politiques d'Howard et des itérations de multigrilles algébriques pour les systèmes linéaires singuliers.
APA, Harvard, Vancouver, ISO, and other styles
6

Park, Jaeyong. "Safe Controller Design for Intelligent Transportation System Applications using Reachability Analysis." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1366201401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Amos, Gideon. "Solving the Hamilton-Jacobi-Bellman equation for animation." Thesis, University College London (University of London), 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.271612.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Helin, Mikael. "Inverse Parameter Estimation using Hamilton-Jacobi Equations." Thesis, KTH, Numerisk analys, NA, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-123092.

Full text
Abstract:
Inthis degree project, a solution on a coarse grid is recovered by fitting apartial differential equation to a few known data points. The PDE to consideris the heat equation and the Dupire’s equation with their synthetic data,including synthetic data from the Black-Scholes formula. The approach to fit aPDE is by optimal control to derive discrete approximations to regularized Hamiltoncharacteristic equations to which discrete stepping schemes, and parameters forsmoothness, are examined. By non-parametric numerical implementation thedervied method is tested and then a few suggestions on possible improvementsare given<br>I detta examensarbete återskapas en lösning på ett glest rutnät genom att anpassa en partiell differentialekvation till några givna datapunkter. De partiella differentialekvationer med deras motsvarande syntetiska data som betraktas är värmeledningsekvationen och Dupires ekvation inklusive syntetiska data från Black-Scholes formel. Tillvägagångssättet att anpassa en PDE är att med hjälp av optimal styrning härleda diskreta approximationer på ett system av regulariserade Hamilton karakteristiska ekvationer till vilka olika diskreta stegmetoder och parametrar för släthet undersöks. Med en icke-parametrisk numerisk implementation prövas den härledda metoden och slutligen föreslås möjliga förbättringar till metoden.
APA, Harvard, Vancouver, ISO, and other styles
9

Pusch, Gordon D. "Differential algebraic methods for obtaining approximate numerical solutions to the Hamilton-Jacobi equation." Diss., This resource online, 1990. http://scholar.lib.vt.edu/theses/available/etd-07282008-135711/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Megdich, Nadia. "Méthodes anti-dissipatives pour les équations Hamilton Jacobi Bellman." Paris 6, 2008. http://www.theses.fr/2008PA066073.

Full text
Abstract:
On étudie la convergence d'un schéma anti-dissipatif, l'UltraBee, pour les équations Hamilton Jacobi Bellman en dimension 1. Deux méthodes de résolution utilisant ce schéma sont proposées. La première combine l'UltraBee à une adaptation de grille, la deuxième utilise un stockage creux. Cette dernière est appliquée au problème de la rentrée atmosphérique. Enfin, quelques extensions théoriques sont données.
APA, Harvard, Vancouver, ISO, and other styles
11

Mosskull, Albin, and Arfvidsson Kaj Munhoz. "Solving the Hamilton-Jacobi-Bellman Equation for Route Planning Problems Using Tensor Decomposition." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-289326.

Full text
Abstract:
Optimizing routes for multiple autonomous vehiclesin complex traffic situations can lead to improved efficiency intraffic. Attempting to solve these optimization problems centrally,i.e. for all vehicles involved, often lead to algorithms that exhibitthe curse of dimensionality: that is, the computation time andmemory needed scale exponentially with the number of vehiclesresulting in infeasible calculations for moderate number ofvehicles. However, using a numerical framework called tensordecomposition one can calculate and store solutions for theseproblems in a more manageable way. In this project, we investi-gate different tensor decomposition methods and correspondingalgorithms for solving optimal control problems, by evaluatingtheir accuracy for a known solution. We also formulate complextraffic situations as optimal control problems and solve them.We do this by using the best tensor decomposition and carefullyadjusting different cost parameters. From these results it canbe concluded that the Sequential Alternating Least Squaresalgorithm used with canonical tensor decomposition performedthe best. By asserting a smooth cost function one can solve certainscenarios and acquire satisfactory solutions, but it requiresextensive testing to achieve such results, since numerical errorsoften can occur as a result of an ill-formed problem.<br>Att optimera färdvägen för flertalet au-tonoma fordon i komplexa trafiksituationer kan leda till effekti-vare trafik. Om man försöker lösa dessa optimeringsproblemcentralt, för alla fordon samtidigt, leder det ofta till algorit-mer som uppvisar The curse of dimensionality, vilket är då beräkningstiden och minnes-användandet växer exponentielltmed antalet fordon. Detta gör många problem olösbara för endasten måttlig mängd fordon. Däremot kan sådana problem hanterasgenom numeriska verktyg så som tensornedbrytning. I det här projektet undersöker vi olika metoder för tensornedbrytningoch motsvarandes algoritmer för att lösa optimala styrproblem,genom att jämföra dessa för ett problem med en känd lösning.Dessutom formulerar vi komplexa trafiksituationer som optimalastyrproblem för att sedan lösa dem. Detta gör vi genom attanvända den bästa tensornedbrytningen och genom att noggrantanpassa kostnadsparametrar. Från dessa resultat framgår det att Sequential Alternating Least Squaresalgoritmen, tillsammans medkanonisk tensornedbrytning, överträffade de andra algoritmersom testades. De komplexa trafiksituationerna kan lösas genomatt ansätta släta kostnadsfunktioner, men det kräver omfattandetestning för att uppnå sådana resultat då numeriska fel lätt kan uppstå som ett resultat av dålig problemformulering.<br>Kandidatexjobb i elektroteknik 2020, KTH, Stockholm
APA, Harvard, Vancouver, ISO, and other styles
12

Pichon, Eric. "Novel Methods for Multidimensional Image Segmentation." Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7504.

Full text
Abstract:
Artificial vision is the problem of creating systems capable of processing visual information. A fundamental sub-problem of artificial vision is image segmentation, the problem of detecting a structure from a digital image. Examples of segmentation problems include the detection of a road from an aerial photograph or the determination of the boundaries of the brain's ventricles from medical imagery. The extraction of structures allows for subsequent higher-level cognitive tasks. One of them is shape comparison. For example, if the brain ventricles of a patient are segmented, can their shapes be used for diagnosis? That is to say, do the shapes of the extracted ventricles resemble more those of healthy patients or those of patients suffering from schizophrenia? This thesis deals with the problem of image segmentation and shape comparison in the mathematical framework of partial differential equations. The contribution of this thesis is threefold: 1. A technique for the segmentation of regions is proposed. A cost functional is defined for regions based on a non-parametric functional of the distribution of image intensities inside the region. This cost is constructed to favor regions that are homogeneous. Regions that are optimal with respect to that cost can be determined with limited user interaction. 2. The use of direction information is introduced for the segmentation of open curves and closed surfaces. A cost functional is defined for structures (curves or surfaces) by integrating a local, direction-dependent pattern detector along the structure. Optimal structures, corresponding to the best match with the pattern detector, can be determined using efficient algorithms. 3. A technique for shape comparison based on the Laplace equation is proposed. Given two surfaces, one-to-one correspondences are determined that allow for the characterization of local and global similarity measures. The local differences among shapes (resulting for example from a segmentation step) can be visualized for qualitative evaluation by a human expert. It can also be used for classifying shapes into, for example, normal and pathological classes.
APA, Harvard, Vancouver, ISO, and other styles
13

Parry, Joseph. "Long-wavelength cosmological perturbations." Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.321111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Bruce, Aaron. "On the Solution of the Hamilton-Jacobi Equation by the Method of Separation of Variables." Thesis, University of Waterloo, 2000. http://hdl.handle.net/10012/1031.

Full text
Abstract:
The method of separation of variables facilitates the integration of the Hamilton-Jacobi equation by reducing its solution to a series of quadratures in the separable coordinates. The case in which the metric tensor is diagonal in the separable coordinates, that is, orthogonal separability, is fundamental. Recent theory by Benenti has established a concise geometric (coordinate-independent) characterisation of orthogonal separability of the Hamilton-Jacobi equation on a pseudoRiemannian manifold. It generalises an approach initiated by Eisenhart and developed by Kalnins and Miller. Benenti has shown that the orthogonal separability of a system via a point transformation is equivalent to the existence of a Killing tensor with real simple eigen values and orthogonally integrable eigenvectors. Applying a moving frame formalism, we develop a method that produces the orthogonal separable coordinates for low dimensional Hamiltonian systems. The method is applied to a two dimensional Riemannian manifold of arbitrary curvature. As an illustration, we investigate Euclidean 2-space, and the two dimensional surfaces of constant curvature, recovering known results. Using our formalism, we also derive the known superseparable potentials for Euclidean 2-space. Some of the original results presented in this thesis were announced in [8, 9, 10].
APA, Harvard, Vancouver, ISO, and other styles
15

Oudet, Salomé. "Équations de Hamilton-Jacobi sur des réseaux ou des structures hétérogènes." Thesis, Rennes 1, 2015. http://www.theses.fr/2015REN1S051/document.

Full text
Abstract:
Cette thèse porte sur l'étude de problèmes de contrôle optimal sur des réseaux (c'est-à-dire des ensembles constitués de sous-régions reliées entre elles par des jonctions), pour lesquels on autorise différentes dynamiques et différents coûts instantanés dans chaque sous-région du réseau. Comme dans les cas plus classiques, on aimerait pouvoir caractériser la fonction valeur d'un tel problème de contrôle par le biais d'une équation de Hamilton-Jacobi-Bellman. Cependant, les singularités géométriques du domaine, ainsi que les discontinuités des données ne nous permettent pas d'appliquer la théorie classique des solutions de viscosité. Dans la première partie de cette thèse nous prouvons que les fonctions valeurs de problèmes de contrôle optimal définis sur des réseaux 1-dimensionnel sont caractérisées par de telles équations. Dans la seconde partie les résultats précédents sont étendus au cas de problèmes de contrôle définis sur une jonction 2-dimensionnelle. Enfin, dans une dernière partie, nous utilisons les résultats obtenus précédemment pour traiter un problème de perturbation singulière impliquant des problèmes de contrôle optimal dans le plan pour lesquels les dynamiques et les coûts instantanés peuvent être discontinus à travers une frontière oscillante<br>This thesis focuses on the study of optimal control problems defined on networks (i.e. sets consisting of sub-regions connected together through junctions), where different dynamics and different running costs are allowed in each sub-region of the network. As in classical cases, we would like to characterize the value function of such an optimal control problem through an Hamilton-Jacobi-Bellman equation. However, the geometrical singularities of the domain and the data discontinuities do not allow us to apply the classical theory of viscosity solutions. In the first part of this thesis, we prove this kind of characterization for the value functions of optimal control problems defined on 1-dimensional networks. In the second part, the previous results are extended to the case of control problems defined on a 2-dimensional junction. Finally, in the last part, we use the results obtained previously to treat a singular perturbation problem involving optimal control problems in the plane for which the dynamics and running costs can be discontinuous through an oscillating border
APA, Harvard, Vancouver, ISO, and other styles
16

Capitanio, Gianmarco. "Familles Tangentielles et solutions de minimax pour l'équation de Hamilton-Jacobi." Phd thesis, Université Paris-Diderot - Paris VII, 2004. http://tel.archives-ouvertes.fr/tel-00008669.

Full text
Abstract:
Cette Thèse porte sur les familles tangentielles et les équations de Hamilton--Jacobi. <br />Ces deux sujets sont reliés à des thèmes classiques en théorie des singularités, comme la théorie des enveloppes, les singularités des fronts d'onde et des caustiques, la géométrie symplectique et de contact. <br />Les premiers trois chapitres de la Thèse sont consacrés à l'étude des familles tangentielles, à la classification de leurs singularités stables et simples, et à leurs interprétation dans le cadre de la Géométrie de Contact. <br />Le dernier chapitre est dédié à l'étude des solutions de minimax pour l'équation de Hamilton--Jacobi, notamment à la classification des leurs singularités génériques de petite codimension.
APA, Harvard, Vancouver, ISO, and other styles
17

Roos, Valentine. "Solutions variationnelles et solutions de viscosité de l'équation de Hamilton-Jacobi." Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLED023/document.

Full text
Abstract:
On étudie l'équation de Hamilton-Jacobi évolutive du premier ordre, couplée avec une donnée initiale lipschitzienne. Le but est de comparer les solutions de viscosité et les solutions variationnelles pour cette équation, deux notions de solutions faibles qui coïncident en dynamique hamiltonienne convexe. Pour travailler dans un cadre pertinent pour les deux types de solutions, on doit d’abord construire une solution variationnelle sans hypothèse de compacité sur la variété ou le hamiltonien étudiés. On retrace dans ce cas la construction historique des solutions variationnelles, en détaillant les propriétés de la famille génératrice obtenue par la méthode des géodésiques brisées. Il en découle des estimées permettant d’obtenir la solution de viscosité à partir de la solution variationnelle par un procédé d’itération. Après avoir vérifié que la solution variationnelle construite coïncide effectivement avec la solution de viscosité pour un Hamiltonien convexe, on caractérise les Hamiltoniens intégrables pour lesquels cette propriété persiste, en étudiant attentivement des exemples élémentaires en dimension 1 et 2<br>We study the first order Hamilton-Jacobi equation associated with a Lipschitz initial condition. The purpose of this thesis is to compare two notions of weak solutions for this equation, namely the viscosity solution and the variational solution, that are known to coincide in convex Hamiltonian dynamics. In order to work in a relevant framework for both notions, we first need to build a variational solution without compactness assumption on the manifold or the Hamiltonian. To do so, we follow the historical construction, detailing properties of the generating family obtained via the broken geodesics method. Local estimates allow to prove that the viscosity solution can be obtained from the variational solution via an iterative process. We then check that this construction gives effectively the viscosity solution for a convex Hamiltonian, and characterize the integrable Hamiltonians for which this property persists by carefully studying elementary examples in dimension 1 and 2
APA, Harvard, Vancouver, ISO, and other styles
18

Dao, Manh-Khang. "Équation de Hamilton-Jacobi et jeux à champ moyen sur les réseaux." Thesis, Rennes 1, 2018. http://www.theses.fr/2018REN1S042/document.

Full text
Abstract:
Cette thèse porte sur l'étude d'équation de Hamilton-Jacobi-Bellman associées à des problèmes de contrôle optimal et de jeux à champ moyen avec la particularité qu'on se place sur un réseau (c'est-à-dire, des ensembles constitués d'arêtes connectées par des jonctions) dans les deux problèmes, pour lesquels on autorise différentes dynamiques et différents coûts dans chaque bord d'un réseau. Dans la première partie de cette thèse, on considère un problème de contrôle optimal sur les réseaux dans l'esprit des travaux d'Achdou, Camilli, Cutrì &amp; Tchou (2013) et Imbert, Moneau &amp; Zidani (2013). La principale nouveauté est qu'on rajoute des coûts d'entrée (ou de sortie) aux sommets du réseau conduisant à une éventuelle discontinuité de la fonction valeur. Celle-ci est caractérisée comme l'unique solution de viscosité d'une équation Hamilton-Jacobi pour laquelle une condition de jonction adéquate est établie. L'unicité est une conséquence d'un principe de comparaison pour lequel nous donnons deux preuves différentes, l'une avec des arguments tirés de la théorie du contrôle optimal, inspirée par Achdou, Oudet &amp; Tchou (2015) et l'autre basée sur les équations aux dérivées partielles, d'après Lions &amp; Souganidis (2017). La deuxième partie concerne les jeux à champ moyen stochastiques sur les réseaux. Dans le cas ergodique, ils sont décrits par un système couplant une équation de Hamilton-Jacobi-Bellman et une équation de Fokker- Planck, dont les inconnues sont la densité m de la mesure invariante qui représente la distribution des joueurs, la fonction valeur v qui provient d'un problème de contrôle optimal "moyen" et la constante ergodique ρ. La fonction valeur v est continue et satisfait dans notre problème des conditions de Kirchhoff aux sommets très générales. La fonction m satisfait deux conditions de transmission aux sommets. En particulier, due à la généralité des conditions de Kirchhoff, m est en général discontinue aux sommets. L'existence et l'unicité d'une solution faible sont prouvées pour des Hamiltoniens sous-quadratiques et des hypothèses très générales sur le couplage. Enfin, dans la dernière partie, nous étudions les jeux à champ moyen stochastiques non stationnaires sur les réseaux. Les conditions de transition pour la fonction de valeur v et la densité m sont similaires à celles données dans la deuxième partie. Là aussi, nous prouvons l'existence et l'unicité d'une solution faible pour des Hamiltoniens sous-linéaires et des couplages et dans le cas d'un couplage non-local régularisant et borné inférieurement. La principale difficulté supplémentaire par rapport au cas stationnaire, qui nous impose des hypothèses plus restrictives, est d'établir la régularité des solutions du système posé sur un réseau. Notre approche consiste à étudier la solution de l'équation de Hamilton-Jacobi dérivée pour gagner de la régularité sur la solution de l'équation initiale<br>The dissertation focuses on the study of Hamilton-Jacobi-Bellman equations associated with optimal control problems and mean field games problems in the case when the state space is a network. Different dynamics and running costs are allowed in each edge of the network. In the first part of this thesis, we consider an optimal control on networks in the spirit of the works of Achdou, Camilli, Cutrì &amp; Tchou (2013) and Imbert, Monneau &amp; Zidani (2013). The main new feature is that there are entry (or exit) costs at the edges of the network leading to a possible discontinuous value function. The value function is characterized as the unique viscosity solution of a Hamilton-Jacobi equation for which an adequate junction condition is established. The uniqueness is a consequence of a comparison principle for which we give two different proofs. One uses some arguments from the theory of optimal control and is inspired by Achdou, Oudet &amp; Tchou (2015). The other one is based on partial differential equations techniques and is inspired by a recent work of Lions &amp; Souganidis (2017). The second part is about stochastic mean field games for which the state space is a network. In the ergodic case, they are described by a system coupling a Hamilton- Jacobi-Bellman equation and a Fokker-Planck equation, whose unknowns are the density m of the invariant measure which represents the distribution of the players, the value function v which comes from an "average" optimal control problem and the ergodic constant ρ. The function v is continuous and satisfies general Kirchhoff conditions at the vertices. The density m satisfies dual transmission conditions. In particular, due to the generality of Kirchhoff’s conditions, m is in general discontinuous at the vertices. Existence and uniqueness are proven for subquadratic Hamiltonian and very general assumptions about the coupling term. Finally, in the last part, we study non-stationary stochastic mean field games on networks. The transition conditions for value function v and the density m are similar to the ones given in second part. Here again, we prove the existence and uniqueness of a weak solution for sublinear Hamiltonian and bounded non-local regularizing coupling term. The main additional difficulty compared to the stationary case, which imposes us more restrictive hypotheses, is to establish the regularity of the solutions of the system placed on a network. Our approach is to study the solution of the derived Hamilton-Jacobi equation to gain regularity over the initial equation
APA, Harvard, Vancouver, ISO, and other styles
19

Sakamoto, Noboru, and der Schaft Arjan J. van. "An analytical approximation method for the stabilizing solution of the Hamilton-Jacobi equation based on stable manifold theory." IEEE, 2007. http://hdl.handle.net/2237/9430.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Umemura, Yoshio, Noboru Sakamoto, and Yuto Yuasa. "Optimal Control Designs for Systems with Input Saturations and Rate Limiters." IEEE, 2010. http://hdl.handle.net/2237/14447.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Picarelli, Athena. "Sur des problèmes de contrôle stochastique avec contraintes sur l'état." Palaiseau, École nationale supérieure de techniques avancées, 2015. http://www.theses.fr/2015ESTA0013.

Full text
Abstract:
Cette thèse concerne l'approche Hamilton-Jacobi-Bellman (HJB) pour des problèmes de contrôle stochastique en présence de contraintes sur l'état du système. Cette classe de problèmes se pose dans de nombreuses applications importantes, et une grande littérature les a déjà analysé sous des conditions de compatibilité fortes. La principale contribution de cette thèse est de fournir de nouvelles façons de affronter la présence de contraintes sans hypothèse de contrôlabilité. La première contribution de cette thèse est obtenue en exploitant le lien existant entre l'atteignabilité des systèmes stochastiques et des problèmes de contrôle optimal. Il est montré que en considérant un problème approprié auxiliaire de la commande optimale sans contraintes sur l'état, l'approche level-set peut être étendure pour caractériser les ensembles atteignables sous contrainte sur l'état. D'autre part l'épigraphe de la fonction valeur associée à un problème général de commande optimale stochastique sous contraintes d'état peut être caractérisée par un ensemble atteignable d'un système dynamique augmenté. Ce résultat permet l'application de la méthode level-set pour gérer la présence des contraintes sur l'état sans faire d'hypothèse de contrôlabilité. Ce lien entre les problèmes de contrôle optimal et les level-set a conduit à l'analyse théorique et numérique des équations HJB avec conditions aux limites de derivé obliques et de problèmes avec contrôles non bornés. Les estimations d'erreur d'approximation de type Chaine de Markov représentent une autre contribution de ce manuscrit. En outre, les propriétés de contrôlabilité asymptotique d'un système stochastique ont également été analysées. Une généralisation de la méthode de Zubov aux systèmes stochastiques contraints est étudiée dans le manuscrit. La dernière partie de la thèse est dédié à l'étude de problèmes de contrôle optimal ergodiques en présence de contraintes sur l'état<br>This thesis deals with Hamilton-Jacobi-Bellman (HJB) approach for some stochastic control problems in presence of state-constraints. This class of problems arises in many challenging applications, and a wide literature has already analysed such problems under some strong compatibility conditions. The main features of the present thesis is to provide new ways to face the presence of constraints without assuming any controllability condition. The first contribution of the thesis in this direction is obtained by exploiting the existing link between backward reachability and optimal control problems. It is shown that by considering a suitable auxiliary unconstrained optimal control problem, the level set approach can be extended to characterize the backward reachable sets under state-constrained. On the other hand the value function associated with a general state constrained stochastic optimal control problem is characterized by means of a state constrained backward reachable set, enabling the application of the level set method for handling the presence of the state constraints. This link between optimal control problems and reachability sets led to the theoretical and numerical analysis of HJB equations with oblique derivative boundary conditions and problems with unbounded controls. Error estimates for Markov-chain approximation represent another contribution of this manuscript. Furthermore, the properties of asymptotic controllability of a stochastic system have also been studied. A generalization of the Zubov method to state constrained stochastic systems is presented. In the last part of the thesis an ergodic optimal control problems in presence of state-constraints are considered
APA, Harvard, Vancouver, ISO, and other styles
22

Basco, Vincenzo. "Infinite Horizon Control Problems under State Constraints and Hamilton-Jacobi-Bellman equations." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS025.

Full text
Abstract:
Dans cette thèse, nous abordons des problèmes de contrôle optimal non autonomes à l’horizon infini soumis à des contraintes d’état. Des relations de sensibilité, partielle et totale, sont obtenues, en supposant que la fonction valeur associée soit localement Lipschitzienne par rapport à la variable d’état. Nous discutons également des conditions suffisantes pour la régularité Lipschitz de la fonction valeur. Nous nous concentrons sur les problèmes liés aux fonctions de coût admettant un facteur d’actualisation, avec la dynamique et le Lagrangien dépendant du temps. De plus, les contraintes d’état peuvent être non-bornés et peuvent avoir une frontière non lisse. La régularité Lipschitz est obtenue à partir d’estimations sur la distance d’une trajectoire donnée de l’ensemble de toutes les trajectoires viables, à condition que le taux d’actualisation soit suffisamment élevé. Nous étudions également l’existence et l’unicité des solutions faibles des équations non autonomes d’Hamilton-Jacobi-Bellman sur un domaine de la forme (0, ∞)×A. L’Hamiltonien est supposé être uniquement mesurable par rapport au temps et l’ensemble A est fermé. En présence de contraintes d’état, (en général) l’équation d’Hamilton-Jacobi-Bellman n’admet pas de solutions continues. Dans ce travail, nous proposons une notion de solution faible pour laquelle, sous une hypothèse de contrôlabilité appropriée, les théorèmes d’existence et d’unicité sont valides dans la classe des fonctions semi-continues inférieurement s’annulant à l’infini. Enfin, nous étudions une équation autonome d’Hamilton-Jacobi-Bellman sur un sous-ensemble compact, avec des conditions de Dirichlet sur la frontière. Dans ce contexte, nous obtenons des résultats de semi-concavité de l’unique solution de l’équation et les relations de sensibilité sous la forme d’inclusions différentielles. Nous étendons ainsi un résultat connu pour la distance sous-Riemannienne sous la condition d’Hörmander<br>In this thesis we address infinite horizon control problems subject to state constraints. Partial and full sensitivity relations are obtained for nonautonomous optimal control problems in this setting, assuming the associated value function to be locally Lipschitz in the state. We also discuss sufficient conditions for the Lipschitz regularity of the value function. We focus on problems with cost functionals admitting a discount factor and allow time dependent dynamics and Lagrangians. Furthermore, state constraints may be unbounded and may have a nonsmooth boundary. Lipschitz regularity is recov- ered as a consequence of estimates on the distance of a given trajectory from the set of all its viable (feasible) trajectories, provided the discount rate is sufficiently large. We investigate as well the existence and uniqueness of weak solutions of nonautonomous Hamilton-Jacobi-Bellman equations on the domain (0, ∞) × A. The Hamiltonian is assumed to be merely measurable in time and the set A is closed. When state constraints arise, the classical analysis of the Hamilton-Jacobi-Bellman equation lacks an appropriate notion of solution because continuous solutions may not exist. In this work, we propose a notion of weak solution for which, under a suitable controllability assumption, existence and uniqueness theorems are valid in the class of lower semicontinuous functions vanishing at infinity. Finally, we study an autonomous Hamilton-Jacobi-Bellman equation, with Dirichlet boundary conditions, on a compact subset. We give semiconcavity results on its (unique) solution and sensitivity relations in terms of differential inclusions, extending a known result for the point-to-point sub-Riemannian distance when the Hörmander condition holds true
APA, Harvard, Vancouver, ISO, and other styles
23

Qu, Zheng. "Nonlinear Perron-Frobenius theory and max-plus numerical methods for Hamilton-Jacobi equations." Palaiseau, Ecole polytechnique, 2013. http://pastel.archives-ouvertes.fr/docs/00/92/71/22/PDF/thesis.pdf.

Full text
Abstract:
Une approche fondamentale pour la résolution de problémes de contrôle optimal est basée sur le principe de programmation dynamique. Ce principe conduit aux équations d'Hamilton-Jacobi, qui peuvent être résolues numériquement par des méthodes classiques comme la méthode des différences finies, les méthodes semi-lagrangiennes, ou les schémas antidiffusifs. À cause de la discrétisation de l'espace d'état, la dimension des problèmes de contrôle pouvant être abordés par ces méthodes classiques est souvent limitée à 3 ou 4. Ce phénomène est appellé malédiction de la dimension. Cette thèse porte sur les méthodes numériques max-plus en contôle optimal deterministe et ses analyses de convergence. Nous étudions et developpons des méthodes numériques destinées à attenuer la malédiction de la dimension, pour lesquelles nous obtenons des estimations théoriques de complexité. Les preuves reposent sur des résultats de théorie de Perron-Frobenius non linéaire. En particulier, nous étudions les propriétés de contraction des opérateurs monotones et non expansifs, pour différentes métriques de Finsler sur un cône (métrique de Thompson, métrique projective d'Hilbert). Nous donnons par ailleurs une généralisation du "coefficient d'ergodicité de Dobrushin" à des opérateurs de Markov sur un cône général. Nous appliquons ces résultats aux systèmes de consensus ainsi qu'aux équations de Riccati généralisées apparaissant en contrôle stochastique<br>Dynamic programming is one of the main approaches to solve optimal control problems. It reduces the latter problems to Hamilton-Jacobi partial differential equations (PDE). Several techniques have been proposed in the literature to solve these PDE. We mention, for example, finite difference schemes, the so-called discrete dynamic programming method or semi-Lagrangian method, or the antidiffusive schemes. All these methods are grid-based, i. E. , they require a discretization of the state space, and thus suffer from the so-called curse of dimensionality. The present thesis focuses on max-plus numerical solutions and convergence analysis for medium to high dimensional deterministic optimal control problems. We develop here max-plus based numerical algorithms for which we establish theoretical complexity estimates. The proof of these estimates is based on results of nonlinear Perron-Frobenius theory. In particular, we study the contraction properties of monotone or non-expansive nonlinear operators, with respect to several classical metrics on cones (Thompson's metric, Hilbert's projective metric), and obtain nonlinear or non-commutative generalizations of the "ergodicity coefficients" arising in the theory of Markov chains. These results have applications in consensus theory and also to the generalized Riccati equations arising in stochastic optimal control
APA, Harvard, Vancouver, ISO, and other styles
24

Ley, Olivier. "Evolution de fronts avec vitesse non-locale et équations de Hamilton-Jacobi." Habilitation à diriger des recherches, Université François Rabelais - Tours, 2008. http://tel.archives-ouvertes.fr/tel-00362409.

Full text
Abstract:
Ce mémoire présente mes travaux de recherche effectués après ma thèse, entre 2002 et 2008. Les thèmes principaux sont les équations aux dérivées partielles non-linéaires et des problèmes d'évolutions de fronts ou d'interfaces. Il est organisé en trois chapitres.<br /><br />Le premier chapitre concerne l'évolution de fronts avec une vitesse normale prescrite. Pour étudier ce genre de problème, une première approche, dite par lignes de niveaux, consiste àreprésenter le front comme une ligne de niveau d'une fonction auxiliaire u. Cette approche ramène l'étude du problème d'évolution géométrique à un problème d'EDP puisque u vérifie une équation de Hamilton-Jacobi. Quelques résultats dans le cas de vitesses locales comme la courbure moyenne sont présentés mais la majorité des résultats concerne le cas de vitesses non-locales décrivant la dynamique des dislocations dans un cristal ou modélisant l'asymptotique d'un système de FitzHugh-Nagumo apparaissant en biologie. Une approche différente, basée sur des solutions de viscosité géométriques, est utilisée pour étudier des problèmes de propagation de fronts apparaissant en optimisation de formes. Le but est de trouver un ensemble optimal minimisant une énergie du type capacité à volume ou périmètre constant. L'idée est de déformer le bord d'un ensemble donné avec une vitesse normale adéquate de manière à diminuer au plus son énergie. La mise en oeuvre de cette idée nécessite la construction rigoureuse d'une telle évolution pour tout temps et la preuve de la convergence vers une solution du problème initial. De plus, la décroissance de l'énergie est obtenue le long du flot.<br /><br />Le deuxième chapitre décrit des résultats d'unicité, d'existence et d'homogénéisation pour des équations de Hamilton-Jacobi-Bellman. La majeure partie du travail effectué concerne des équations provenant de problèmes de contrôle stochastique avec des contrôles non-bornés. Les équations comportent alors des termes quadratiques par rapport au gradient et les solutions étudiées sont elles-mêmes à croissance quadratique. Des liens entre ces solutions et les fonctions valeurs des problèmes de contrôle correspondants sont établis. La seconde partie est consacrée à un théorème d'homogénéisation pour un système d'équations de Hamilton-Jacobi du premier ordre.<br /><br />Le troisième et dernier chapitre traite d'un sujet un peu à part, à savoir le lien entre les flots de gradient et l'inégalité de Lojasiewicz. La principale originalité de ce travail est de placer l'étude dans un cadre hilbertien pour des fonctions semiconvexes, ce qui sort du cadre de l'inégalité de Lojasiewicz classique. Le principal théorème produit des caractérisations de cette inégalité. Les résultats peuvent être précisés dans le cas des fonctions convexes ; en particulier, un contre-exemple de fonction convexe ne vérifiant pas l'inégalité de Lojasiewicz est construit. Cette dernière inégalité est reliée à la longueur des trajectoires de gradient. Une borne de cette longueur est obtenue pour les fonctions convexes coercives en dimension deux même lorsque cette inégalité n'est pas vérifiée.
APA, Harvard, Vancouver, ISO, and other styles
25

Fabrini, Giulia. "Numerical methods for optimal control problems with biological applications." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066096/document.

Full text
Abstract:
Cette thèse se développe sur deux fronts: nous nous concentrons sur les méthodes numériques des problèmes de contrôle optimal, en particulier sur le Principe de la Programmation Dynamique et sur le Model Predictive Control (MPC) et nous présentons des applications de techniques de contrôle en biologie. Dans la première partie, nous considérons l'approximation d'un problème de contrôle optimal avec horizon infini, qui combine une première étape, basée sur MPC permettant d'obtenir rapidement une bonne approximation de la trajectoire optimal, et une seconde étape, dans la quelle l¿équation de Bellman est résolue dans un voisinage de la trajectoire de référence. De cette façon, on peux réduire une grande partie de la taille du domaine dans lequel on résout l¿équation de Bellman et diminuer la complexité du calcul. Le deuxième sujet est le contrôle des méthodes Level Set: on considère un problème de contrôle optimal, dans lequel la dynamique est donnée par la propagation d'un graphe à une dimension, contrôlé par la vitesse normale. Un état finale est fixé, l'objectif étant de le rejoindre en minimisant une fonction coût appropriée. On utilise la programmation dynamique grâce à une réduction d'ordre de l'équation utilisant la Proper Orthogonal Decomposition. La deuxième partie est dédiée à l'application des méthodes de contrôle en biologie. On présente un modèle décrit par une équation aux dérivées partielles qui modélise l'évolution d'une population de cellules tumorales. On analyse les caractéristiques du modèle et on formule et résout numériquement un problème de contrôle optimal concernant ce modèle, où le contrôle représente la quantité du médicament administrée<br>This thesis is divided in two parts: in the first part we focus on numerical methods for optimal control problems, in particular on the Dynamic Programming Principle and on Model Predictive Control (MPC), in the second part we present some applications of the control techniques in biology. In the first part of the thesis, we consider the approximation of an optimal control problem with an infinite horizon, which combines a first step based on MPC, to obtain a fast but rough approximation of the optimal trajectory and a second step where we solve the Bellman equation in a neighborhood of the reference trajectory. In this way, we can reduce the size of the domain in which the Bellman equation can be solved and so the computational complexity is reduced as well. The second topic of this thesis is the control of the Level Set methods: we consider an optimal control, in which the dynamics is given by the propagation of a one dimensional graph, which is controlled by the normal velocity. A final state is fixed and the aim is to reach the trajectory chosen as a target minimizing an appropriate cost functional. To apply the Dynamic Programming approach we firstly reduce the size of the system using the Proper Orthogonal Decomposition. The second part of the thesis is devoted to the application of control methods in biology. We present a model described by a partial differential equation that models the evolution of a population of tumor cells. We analyze the mathematical and biological features of the model. Then we formulate an optimal control problem for this model and we solve it numerically
APA, Harvard, Vancouver, ISO, and other styles
26

Nemoto, Jiro, and Mika Goto. "Measurement of Dynamic Efficiency in Production : An Application of Data Envelopment Analysis to Japanese Electric Utilities." Springer, 2003. http://hdl.handle.net/2237/7775.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Gkortzas, Panagiotis. "Study on optimal train movement for minimum energy consumption." Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-21234.

Full text
Abstract:
The presented thesis project is a study on train energy consumption calculation and optimal train driving strategies for minimum energy consumption. This study is divided into three parts; the first part is a proposed model for energy consumption calculation for trains based on driving resistances. The second part is a presentation of a method based on dynamic programming and the Hamilton-Jacobi-Bellman equation (Bellman’s backward approach) for obtaining optimal speed and control profiles leading to minimum energy consumption. The third part is a case study for a Bombardier Transportation case. It includes the presentation of a preliminary algorithm developed within this thesis project; an algorithm based on the HJB equation that can be further improved in order to be used online in real-time as an advisory system for train drivers.
APA, Harvard, Vancouver, ISO, and other styles
28

Barles, Guy. "Contribution à la théorie des solutions de viscosité des équations de Hamilton-Jacobi du premier ordre et applications à des problèmes de contrôle optimal et de perturbations singulières." Paris 9, 1988. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=1988PA090004.

Full text
Abstract:
Nous présentons dans ce travail divers résultats concernant les équations de Hamilton-Jacobi du premier ordre ainsi que leurs applications à certains problèmes de contrôle optimal déterministe et de perturbations singulières. La première partie est consacrée à l'étude des solutions continues: nous donnons divers résultats d'existence, d'unicité et de régularité à la fois locale et globale). La deuxième partie décrit une étude systématique des solutions discontinues: elle fournit une approche générale très simple des problèmes de temps de sortie, de contrôle non-borne et de perturbations singulières, avec, en particulier, des applications dans le cadre des grandes déviations
APA, Harvard, Vancouver, ISO, and other styles
29

Moukoukou, Arsène. "Existence d'un portefeuille optimal et étude d'un modèle a volatilité stochastique." Rouen, 1999. http://www.theses.fr/1999ROUES010.

Full text
Abstract:
La thèse est consacrée à l'étude des problèmes de contrôle stochastique. Le premier chapitre traite du problème de maximisation de l’espérance d'utilité de richesse terminale en marché incomplet. On montre que l'existence d'une solution du problème dual permet de résoudre le problème primal. Dans le deuxième chapitre, on définit un marché complet en présence d'une infinité d'actifs de base, puis on résoud le problème de contrôle considéré. Le dernier chapitre étudie un modèle à volatilité stochastique multidimensionnel, dans le cas markovien.
APA, Harvard, Vancouver, ISO, and other styles
30

Gombao, Sophie. "Equations de Hamilton-Jacobi-Bellman pour des problèmes de contrôle d'équations paraboliques semi-linéaires : approches théorique et numérique." Toulouse 3, 2004. http://www.theses.fr/2004TOU30027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Popovic, Jelena. "Fast Adaptive Numerical Methods for High Frequency Waves and Interface Tracking." Doctoral thesis, KTH, Numerisk analys, NA (stängd 2012-06-30), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-105062.

Full text
Abstract:
The main focus of this thesis is on fast numerical methods, where adaptivity is an important mechanism to lowering the methods' complexity. The application of the methods are in the areas of wireless communication, antenna design, radar signature computation, noise prediction, medical ultrasonography, crystal growth, flame propagation, wave propagation, seismology, geometrical optics and image processing.   We first consider high frequency wave propagation problems with a variable speed function in one dimension, modeled by the Helmholtz equation. One significant difficulty of standard numerical methods for such problems is that the wave length is very short compared to the computational domain and many discretization points are needed to resolve the solution. The computational cost, thus grows algebraically with the frequency w. For scattering problems with impenetrable scatterer in homogeneous media, new methods have recently been derived with a provably lower cost in terms of w. In this thesis, we suggest and analyze a fast numerical method for the one dimensional Helmholtz equation with variable speed function (variable media) that is based on wave-splitting. The Helmholtz equation is split into two one-way wave equations which are then solved iteratively for a given tolerance. We show rigorously that the algorithm is convergent, and that the computational cost depends only weakly on the frequency for fixed accuracy.  We next consider interface tracking problems where the interface moves by a velocity field that does not depend on the interface itself. We derive fast adaptive  numerical methods for such problems. Adaptivity makes methods robust in the sense that they can handle a large class of problems, including problems with expanding interface and problems where the interface has corners. They are based on a multiresolution representation of the interface, i.e. the interface is represented hierarchically by wavelet vectors corresponding to increasingly detailed meshes. The complexity of standard numerical methods for interface tracking, where the interface is described by marker points, is O(N/dt), where N is the number of marker points on the interface and dt is the time step. The methods that we develop in this thesis have O(dt^(-1)log N) computational cost for the same order of accuracy in dt. In the adaptive version, the cost is O(tol^(-1/p)log N), where tol is some given tolerance and p is the order of the numerical method for ordinary differential equations that is used for time advection of the interface.   Finally, we consider time-dependent Hamilton-Jacobi equations with convex Hamiltonians. We suggest a numerical method that is computationally efficient and accurate. It is based on a reformulation of the equation as a front tracking problem, which is solved with the fast interface tracking methods together with a post-processing step.  The complexity of standard numerical methods for such problems is O(dt^(-(d+1))) in d dimensions, where dt is the time step. The complexity of our method is reduced to O(dt^(-d)|log dt|) or even to O(dt^(-d)).<br><p>QC 20121116</p>
APA, Harvard, Vancouver, ISO, and other styles
32

Yaegashi, Yuta. "Stochastic Optimal Control Models for Management of Plecoglossus altivelis under Predation Pressure from Phalacrocorax carbo." Kyoto University, 2020. http://hdl.handle.net/2433/253324.

Full text
Abstract:
Kyoto University (京都大学)<br>0048<br>新制・課程博士<br>博士(農学)<br>甲第22488号<br>農博第2392号<br>新制||農||1076(附属図書館)<br>学位論文||R2||N5268(農学部図書室)<br>京都大学大学院農学研究科地域環境科学専攻<br>(主査)教授 藤原 正幸, 教授 村上 章, 准教授 宇波 耕一<br>学位規則第4条第1項該当
APA, Harvard, Vancouver, ISO, and other styles
33

Meira, Anna Carolina Granja. "Aplicação de modelos de tempo-contínuo para escolha de portfólio ótimo." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2011. http://hdl.handle.net/10183/49933.

Full text
Abstract:
A presente dissertação expõe o ambiente em que o Problema de Merton é construído e, baseando-se na bibliografia apresentada, constrói exemplos em softwares cujas especificidades podem colaborar na clareza da resolução. O software Matlab engloba as soluções numéricas, enquanto o software Maple é responsável pela solução de equações diferenciais ordinárias e parciais de forma simbólica. Apresenta-se modificações do Problema de Merton original como exercícios para melhor esclarecer os diferentes parâmetros abordados. Na seção final é apresentada a solução de viscosidade, uma alternativa quando a função valor não apresenta características desejáveis para a análise apresentada.<br>This dissertation explicit the environment which Merton’s problem is built, according to the presented bibliography, exemples are built in softwares whose specificity might help to clarify the solution. The Matlab software embraces numeric solutions, while Maple software is appropriate to solve ordinary and parcial differential equations in symbolic form. Some modifications are presented to Merton’s Problem as exercise to improve understanding on the variations adopted. On final section, viscosity solutions are presented as an alternative solution for when the value function does not possess the desirables properties that allow the analysis on focus.
APA, Harvard, Vancouver, ISO, and other styles
34

Patout, Florian. "Analyse asymptotique d'équations intégro-différentielles : modèles d'évolution et de dynamique des populations." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEN044/document.

Full text
Abstract:
Cette thèse est consacrée à l’étude de phénomènes de propagation et de concentration dans des modèles d’équations intégro-différentielles venant de la écologie. On étudie certaines équations de réaction-diffusion non locales apparaissant en dynamique de populations, ainsi que des modèles représentant l’évolution Darwinienne avec un mode de reproduction sexué.Dans une première partie, nous étudions la propagation spatiale pour une équation de réaction-diffusion ou la dispersion opère via un noyau de convolution à queue lourde. Nous mesurons de manière précise l’accélération du front de propagation de la solution. Nous proposons également une échelle adaptée pour mesurer les «petites» mutations. Dans les deux cas nous utilisons le formalisme des équations de Hamilton-Jacobi.Dans un second temps nous étudions un modèle de génétique quantitative, avec un mode de reproduction sexuée. Un petit paramètre mesure la déviation entre le trait des descendants est la moyenne des traits des parents. Dans le régime où ce paramètre est petit nous étudions l’existence de solutions stationnaires, puis le problème de Cauchy lié à ce modèle. Les solutions se concentrent autour des optima de sélection, sous la forme de perturbations de distributions Gaussiennes avec petite variance fixée par le paramètre. Notre analyse généralise le cas linéaire de la reproduction asexuée en utilisant des outils d’analyse perturbative. Enfin dans une dernière partie nous fournissons des simulations numériques et des méthodes mathématiques pour étudier la dynamique interne des équilibres dans le régime de petite variance, pour les deux modes de reproduction : asexué et sexué<br>This manuscript tackles propagation and concentration phenomena in different integro-differential equations with a background in ecology. We study non local reaction-diffusion equations from population dynamics, and models for Darwinian evolution with a sexual or asexual mode of reproduction, with a preference for the former.In a first part, we study spatial propagation for a reaction diffusion equation where dispersion acts through a fat tailed kernel. We measure accurately the acceleration of the propagation front of the population. We propose as well a scaling well adapted to “small mutations” when we consider the model in the context of adaptative dynamics. This scaling is very natural following the previous spatial investigation. In both cases we look at the long time behavior and we use the Hamilton-Jacobi framework. Then we turn our attention towards a quantitative genetics model, with a sexual mode of reproduction, imposed by the “infinitesimal operator”. In this non-linear setting, a small parameter tunes the deviation between the phenotypic trait of the offspring and the mean of the traits of the parents. In the regime where this parameter is small, we prove existence of stationary solutions, and their local uniqueness. We also provide an example of non-uniqueness in the case where the selection function admits several extrema. We prove that the solution concentrates around the points of minimum of the selection function. The analysis is carried by the small perturbations of special profiles : Gaussian distributions with small variance fixed by the parameter.We then study the stability of the Cauchy problem associated to the previous model. This time we prove that at all times, for a well prepared initial data, the solutions is arbitrary close to a Gaussian distribution with small variance. The proof follows the framework of the previous : we use perturbative analysis tools, but this time an even more precise description of the correctors is needed and we linearize the equation to obtain it. In a final part we show numerical simulations and different mathematical approaches to study inside dynamics of phenotypic lineages in the regime of small variance, with a moving environement
APA, Harvard, Vancouver, ISO, and other styles
35

Dewaal, Nicholas. "The Importance of the Riemann-Hilbert Problem to Solve a Class of Optimal Control Problems." Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd1759.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Wei, Fajin. "Stochastic Infinity-Laplacian equation and One-Laplacian equation in image processing and mean curvature flows : finite and large time behaviours." Thesis, Loughborough University, 2010. https://dspace.lboro.ac.uk/2134/7345.

Full text
Abstract:
The existence of pathwise stationary solutions of this stochastic partial differential equation (SPDE, for abbreviation) is demonstrated. In Part II, a connection between certain kind of state constrained controlled Forward-Backward Stochastic Differential Equations (FBSDEs) and Hamilton-Jacobi-Bellman equations (HJB equations) are demonstrated. The special case provides a probabilistic representation of some geometric flows, including the mean curvature flows. Part II includes also a probabilistic proof of the finite time existence of the mean curvature flows.
APA, Harvard, Vancouver, ISO, and other styles
37

Erfaneh, Sharifi. "Stochastic Modeling of Hydrological Events for Better Water Management." Kyoto University, 2016. http://hdl.handle.net/2433/217181.

Full text
Abstract:
Kyoto University (京都大学)<br>0048<br>新制・課程博士<br>博士(農学)<br>甲第20006号<br>農博第2190号<br>新制||農||1045(附属図書館)<br>学位論文||H28||N5015(農学部図書室)<br>33102<br>京都大学大学院農学研究科地域環境科学専攻<br>(主査)教授 藤原 正幸, 教授 村上 章, 准教授 宇波 耕一<br>学位規則第4条第1項該当
APA, Harvard, Vancouver, ISO, and other styles
38

Shu, Yan. "Opérateurs d’inf-convolution et inégalités de transport sur les graphes." Thesis, Paris 10, 2016. http://www.theses.fr/2016PA100096/document.

Full text
Abstract:
Dans cette thèse, nous nous intéressons à différents opérateurs d'inf-convolutions et à leurs applications à une classe d'inégalités de transport générales, plus spécifiquement sur les graphes. Notre objet de recherche s'inscrit donc dans les théories du transport de mesure et de l'analyse fonctionnelle. En introduisant une notion de gradient adapté au cadre discret (et plus généralement à tout espace métrique dont les boules sont compactes), nous prouvons que certains opérateurs d'inf-convolution sont solutions d'une inéquation d'Hamilton Jacobi sur les graphes. Ce résultat nous permet d'étendre au cadre discret un théorème classique de Bobkov, Gentil et Ledoux. Plus précisément nous montrons que des inégalités de transport faible (adaptées au cadre discret) sont équivalentes, sur un graphe, à l'hypercontractivité des opérateurs d'inf-convolutions. On en déduit plusieurs résultats concernant différentes inégalités fonctionnelles, dont celle de Sobolev logarithmique et de transport faible. Nous étudions par ailleurs les propriétés générales de différents opérateurs d'inf-convolutions, incluant le précédent, mais aussi un opérateur relié à un modèle issu de la physique (et au phénomène de grande déviation), toujours sur les graphes (dérivabilités, convexité, points extremum etc.). Dans un deuxième temps, nous nous intéressons aux liens entre différentes notions de courbure de Ricci sur les graphes -- proposées récemment par plusieurs auteurs -- et les inégalités fonctionnelles de type transport-entropie, ou transport-information associées à une chaîne de Markov. Nous obtenons également une borne supérieure sur le diamètre d'un graphe dont la courbure, en un certain sens, est minorée, un résultat à la Bonnet-Myers. Enfin, en nous restreignant au cas de la dimension 1, sur la droite réelle, nous obtenons une caractérisation d'une inégalité de transport faible et de l'inégalité de Sobolev logarithmique restreinte aux fonctions convexes. Ces résultats utilisent des propriétés géométriques liés à l'ordre convexe<br>In this thesis, we interest in different inf-convolution operators and their applications to a class of general transportation inequalities, more specifically in the graphs. Therefore, our research topic fits in the theories of transportation and functional analysis. By introducing a gradient notion adapting to a discrete space (more generally to all space in which all closed balls are compact), we prove that some inf-convolution operators are solutions of a Hamilton-Jacobi's inequation. This result allows us to extend a classical theorem from Bobkov, Gentil and Ledoux. More precisely, we prove that, in a graph, some weak transport inequalities are equivalent to the hypercontractivity of inf-convolution operators. Thanks to this result, we deduce some properties concerning different functional inequalities, including Log-Sobolev inequalities and weak-transport inequalities. Besides, we study some general properties (differentiability, convexity, extreme points etc.) of different inf-convolution operators, including the one before, but also an operator related to a physical model (and to a large deviation phenomenon). We stay always in a graph. Secondly, we interest in connections between different notions of discrete Ricci curvature on the graphs which are proposed by several authors in the recent years, and functional inequalities of type transport-entropy, or transport-information related to a Markov chain. We also obtain an extension of Bonnet-Myers' result: an upper bound on the diameter of a graph of which the curvature is floored in some ways. Finally, restricting in the real line, we obtains a characterisation of a weak transport inequality and a log-Sobolev inequality restricted to convex functions. These results are from the geometrical properties related to the convex ordering
APA, Harvard, Vancouver, ISO, and other styles
39

Taing, Cécile. "Dynamique de concentration dans des équations aux dérivées partielles non locales issues de la biologie." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS077.

Full text
Abstract:
Cette thèse porte sur l'étude des dynamiques de masses de Dirac dans des équations aux dérivées partielles et intégro-différentielles issues de la biologie évolutive. Nous nous intéressons à des modèles de populations structurées en trait phénotypique en tenant compte des phénomènes d'adaptation et de mutations, afin de montrer la sélection d'individus les plus adaptés dans un environnement donné. La description de ces problèmes biologiques conduit à l'étude d'équations non linéaires et non locales, avec la présence d'un petit paramètre qui induit deux échelles de temps. Les solutions asymptotiques de ces équations sont des distributions de populations dans l'espace des traits et se concentrent en masses de Dirac en les traits dominants. Dans une première partie, nous nous intéressons à la dynamique des masses de Dirac dans un modèle de chémostat en utilisant une formulation Hamilton-Jacobi. Le modèle de chémostat est constitué d'un système d'équations décrivant la dynamique consommateurs-nutriment dans un système fermé. Dans une deuxième partie, nous étudions un modèle de compétition structuré en âge et en trait. Grâce à une factorisation adaptée, nous obtenons la limite asymptotique de la solution comme le produit d'un profil en âge et d'un profil en trait. Lorsque les mutations sont introduites, une équation d'Hamilton-Jacobi apparaît et nous démontrons un résultat d’unicité associé dans le cadre des solutions de viscosité. La dernière partie s'intéresse aux populations sexuées. Nous étudions une famille de modèles de populations sexuées présentant une asymétrie dans l'hérédité ou la fécondité : chaque individu hérite principalement des traits de la mère<br>This thesis focuses on the dynamics of Dirac mass concentrations in non-local partial differential and integro-differential equations motivated by evolutionary biology. We consider population models structured in phenotypical traits and, taking into account adaptation and mutation phenomena, we aim to describe the selection of the fittest traits in a given environment. The mathematical modeling of these biological problems leads to nonlinear and nonlocal equations, with a small parameter that induces two time-scales. The asymptotic solutions to these equations are population distributions on the traits space and concentrate in Dirac masses located on the dominant traits. In the first part, we study the Dirac mass dynamics in a chemostat model, using a Hamilton-Jacobi formulation. The chemostat model is a system of equations describing the dynamics of consumers and nutrients in a bioreactor. In a second part, we investigate a competition model structured in age and phenotypical traits. By means of an appropriate factorization, we obtain the asymptotic limit of the solution as a decomposition into two profiles, one in age, the other in traits. When mutations are introduced, a Hamilton-Jacobi equation arises and we prove a uniqueness result of the solution to this equation in the framework of viscosity solutions. The last part is devoted to sexual population models. These models under investigation include asymmetric trait heredity or asymmetric trait-dependent fecundity between the parents: each individual inherits mostly its traits from the female
APA, Harvard, Vancouver, ISO, and other styles
40

Moutsinga, Octave. "Approche probabiliste des particules collantes et système de gaz sans pression." Phd thesis, Université des Sciences et Technologie de Lille - Lille I, 2003. http://tel.archives-ouvertes.fr/tel-00008721.

Full text
Abstract:
A chaque instant $t$, nous construisons la dynamique des particules collantes dont la masse est distribuée initialement suivant une fonction de répartition $F_0$, avec une vitesse $u_0$, à partir de l'enveloppe convexe $H(\cdot,t)$ de la fonction $m\in (0,1)\mapsto \int_a^m\big( F_0^(-1)(z) + tu_0\big(F_0^(-1)(z)\big)\big)dz$. Ici, $F_0^(-1)$ est l'une des deux fonctions inverses de $F_0$. Nous montrons que les deux processus stochastiques $X_t^-(m)= \partial_m^-H(m,t),\; X_t^+(m) = \partial_m^+H(m,t)$, définis sur l'espace probabilisé $([0, 1], (\cal B), \lambda)$, sont indistinguables et ils modélisent les trajectoires des particules. Le processus $X_t:= X_t^- = X_t^+$ est une solution de l'équation $(EDS): \; \frac(dX_t)(dt) =\E[ u_0(X_0)/X_t]$, telle que $P(X_0 \leq x) = F_0(x)\,\,\forall x$. L'inverse $M_t:= M(\cdot,t)$ de la fonction $m\mapsto \partial_mH(m,t)$ est la fonction de répartition de la masse à l'instant $t$. Elle est aussi la fonction de répartition de la variable aléatoire $X_t$. On montre l'existence d'un flot $(\phi(x,t,M_s, u_s))_( s < t)$ tel que $X_t= \phi(X_s,t,M_s,u_s)$, où $u_s(x) = \E[ u_0(X_0)/X_s = x]$ est la fonction vitesse des particules à l'instant $s$. Si $\frac(dF_0^n)(dx)$ converge faiblement vers $\frac(dF_0)(dx)$, alors la suite des flots $\phi(\cdot,\cdot,F_0^n,u_0)$ converge uniformément, sur tout compact, vers $\phi(\cdot,\cdot,F_0,u_0)$. Ensuite, nous retrouvons et étendons certains résultats des équations aux dérivées partielles, à savoir que la fonction $(x,t)\mapsto M(x,t)$ est la solution entropique d'une loi de conservation scalaire de donnée initiale $F_0$, et la famille $\big(\rho(dx,t) = P(X_t\in dx),\, u(x,t) = \E[ u_0(X_0)/X_t = x]\big)_(t >0)$ est une solution faible du système de gaz sans pression de données initiales $\frac(dF_0(x))(dx), u_0$. Cette thèse contient aussi d'autres solutions de l'équation différentielle stochastique $(EDS)$ ci-dessus.
APA, Harvard, Vancouver, ISO, and other styles
41

Lima, Lucas Fabiano. "A mean-field game model of economic growth : an essay in regularity theory." Universidade Federal de São Carlos, 2016. https://repositorio.ufscar.br/handle/ufscar/8902.

Full text
Abstract:
Submitted by Aelson Maciera (aelsoncm@terra.com.br) on 2017-06-27T20:42:50Z No. of bitstreams: 1 DissLFL.pdf: 818058 bytes, checksum: a45e8f4dbdc692c6f31fde1d45f6574d (MD5)<br>Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-07-03T17:56:46Z (GMT) No. of bitstreams: 1 DissLFL.pdf: 818058 bytes, checksum: a45e8f4dbdc692c6f31fde1d45f6574d (MD5)<br>Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-07-03T17:56:52Z (GMT) No. of bitstreams: 1 DissLFL.pdf: 818058 bytes, checksum: a45e8f4dbdc692c6f31fde1d45f6574d (MD5)<br>Made available in DSpace on 2017-07-03T18:01:59Z (GMT). No. of bitstreams: 1 DissLFL.pdf: 818058 bytes, checksum: a45e8f4dbdc692c6f31fde1d45f6574d (MD5) Previous issue date: 2016-12-20<br>Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)<br>In this thesis, we present a priori estimates for solutions of a mean-field game (MFG) defined over a bounded domain Ω ⊂ ℝd. We propose an application of these results to a model of capital and wealth accumulation. In Chapter 1, an introduction to mean-field games is presented. We also put forward some of the motivation from Economics and discuss previous developments in the theory of differential games. These comments aim at indicating the connection between mean-field games theory, its applications and the realm of Mathematical Analysis. In Chapter 2, we present an optimal control problem. Here, the agents are supposed to be undistinguishable, rational and intelligent. Undistinguishable means that every agent is governed by the same stochastic differential equation. Rational means that all efforts of the agent is to maximize a payoff functional. Intelligent means that they are able to solve an optimal control problem. Once we describe this (stochastic) optimal control problem, we produce a heuristic derivation of the mean-field games system, which is summarized in a Verification Theorem; this gives rise to the Hamilton-Jacobi equation (HJ). After that, we obtain the Fokker-Plank equation (FP). Finally, we present a representation formula for the solutions to the (HJ) equation, together with some regularity results. In Chapter 3, a specific optimal control problem is described and the associated MFG is presented. This MFG is prescribed in a bounded domain Ω ⊂ ℝd, which introduces substantialadditional challenges from the mathematical view point. This is due to estimates for the solutionsat the boundary in Lp. The rest of the chapter puts forward two well known tips of estimates: theso-called Hopf-Lax formula and the First Order Estimate. In Chapter 4, the wealth and capital accumulation mean-field game model is presented. The relevance of studying MFG in a bounded domain then becomes clear. In light of the results obtained in Chapter 3, we close Chapter 4 with the Hopf-Lax formula, and the First Order estimates. Three appendices close this thesis. They gather elementary material on Stochastic Calculus and Functional Analysis.<br>Nesta dissertação são apresentadas algumas estimativas a priori para soluções de sistemas mean-field games (MFG), definidos em domínios limitados Ω ⊂ ℝd. Tais estimativas são aplicadas em um modelo mean-field específico, que descreve o acúmulo de riqueza e capital. No Capítulo 1, é apresentada uma breve introdução histórica sobre os mean-field games. Nesta introdução, exploramos sua relação com a teoria dos jogos, cujos alicerces foram construídos por economistas e matemáticos ao longo do século XX. O objetivo do capítulo é transmitir. No Capítulo 2, apresentamos um problema de controle ótimo em que cada agente é suposto ser indistinguível, racional e inteligente. Indistinguível no sentido de que cada um é governado pela mesma equação diferencial estocástica. Racional no sentido de que todos os esforços do agente são no sentido de maximizar um funcional de recompensa e, inteligente no sentido de que são capazes de resolver um problema de controle ótimo. Descreve-se este problema de controle ótimo, e apresenta-se a derivação heurística dos mean-field games; obtém-se através de um Teorema de Verificação, a equação de Hamilton-Jacobi (HJ) associada, e em seguida, obtémse a equação de Fokker-Planck. De posse destas equações, apresentamos alguns resultados preliminares, como uma fórmula de representação para soluções da equação de HJ e alguns resultados de regularidade. No Capítulo 3, descreve-se um problema específico de controle ótimo e apresenta-se a respectiva derivação heurística culminando na descrição de um MFG com condições não periódicas na fronteira; esta abordagem é original na literatura de MFG. O restante do capítulo é dedicado à exposição de dois tipos bem conhecidos de estimativas: a fórmula de Hopf-Lax e estimativa de Primeira Ordem. Uma observação relevante, é a de que o trabalho em obter-se estimativas a priori é aumentado substancialmente neste caso, devido ao fato de lidarmos com estimativas para os termos de fronteira com normas em Lp. ao leitor, as origens da Teoria Econômica contemporânea, que surgem à partir da utilização da Matemática na formulação e resolução de problemas econômicos. Tal abordagem é motivada principalmente pelo rigor e clareza da Matemática em tais circunstâncias. No Capítulo 4, apresenta-se o modelo de jogo do tipo mean-field de acúmulo de capital e riqueza, o que deixa claro a relevância do estudo dos MFG em um domínio limitado. À luz dos resultados obtidos no Capítulo 3, encerramos o Capítulo 4 com as estimativas do tipo Hopf-Lax e de Primeira Ordem. Três apêndices encerram o texto desta dissertação de mestrado; estes reúnem material elementar sobre Cálculo Estocástico e Análise Funcional.
APA, Harvard, Vancouver, ISO, and other styles
42

Caillerie, Nils. "Équations cinétiques stochastiques et déterministes dans le contexte des mathématiques appliquées à la biologie." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1117/document.

Full text
Abstract:
Cette thèse étudie des modèles mathématiques inspirés par la biologie. Plus précisément, nous nous concentrons sur des équations aux dérivées partielles cinétiques. Les champs d'application des équations cinétiques sont nombreux mais nous nous concentrons ici sur des phénomènes de propagation d'espèces invasives, notamment la bactérie Escherichia coli et le crapaud buffle Rhinella marina.La première partie de la thèse ne présente pas de résultats mathématiques. Nous construisons plusieurs modélisations pour la dispersion à grande échelle du crapaud buffle en Australie. Nous confrontons ces mêmes modèles à des données statistiques multiples (taux de fécondité, taux de survie, comportements dispersifs) pour mesurer leur pertinence. Ces modèles font intervenir des processus à sauts de vitesses et des équations cinétiques.Dans la seconde partie, nous étudions des phénomènes de propagation dans des modèles cinétiques plus simples. Nous illustrons plusieurs méthodes pour établir mathématiquement des formules de vitesse de propagation dans ces modèles. Cette partie nous amène à établir des résultats de convergence d'équations cinétiques vers des équations de Hamilton-Jacobi par la méthode de la fonction test perturbée. Nous montrons également comment le formalisme Hamilton-Jacobi permet de trouver des résultats de propagation et enfin, nous construisons des solutions en ondes progressives pour un modèle de transport-réaction. Dans la dernière partie, nous établissons un résultat de limite de diffusion stochastique pour une équation cinétique aléatoire. Pour ce faire, nous adaptons la méthode de la fonction test perturbée sur la formulation d'une EDP stochastique en terme de générateurs infinitésimaux.La thèse comporte également une annexe qui expose les données trajectorielles des crapauds dont nous nous servons en première partie."<br>In this thesis, we study some biology inspired mathematical models. More precisely, we focus on kinetic partial differential equations. The fields of application of such equations are numerous but we focus here on propagation phenomena for invasive species, the Escherichia coli bacterium and the cane toad Rhinella marina, for example. The first part of this this does not establish any mathematical result. We build several models for the dispersion of the cane toad in Australia. We confront those very models to multiple statistical data (birth rate, survival rate, dispersal behaviors) to test their validity. Those models are based on velocity-jump processes and kinetic equations. In the second part, we study propagation phenomena on simpler kinetic models. We illustrate several methods to mathematically establish propagation speed in this models. This part leads us to establish convergence results of kinetic equations to Hamilton-Jacobi equations by the perturbed test function method. We also show how to use the Hamilton-Jacobi framework to establish spreading results et finally, we build travelling wave solutions for reaction-transport model. In the last part, we establish a stochastic diffusion limit result for a kinetic equation with a random term. To do so, we adapt the perturbed test function method on the formulation of a stochastic PDE in term of infinitesimal generators. The thesis also contains an annex which presents the data on toads’ trajectories used in the first part."
APA, Harvard, Vancouver, ISO, and other styles
43

Kaibe, Bosiu C. "Modelling of asset allocation in banking using the mean-variance approach." Thesis, University of the Western Cape, 2012. http://hdl.handle.net/11394/4051.

Full text
Abstract:
>Magister Scientiae - MSc<br>Bank asset management mainly involves profit maximization through invest- ment in loans giving high returns on loans, investment in securities for reducing risk and providing liquidity needs. In particular, commercial banks grant loans to creditors who pay high interest rates and are not likely to default on their loans. Furthermore, the banks purchase securities with high returns and low risk. In addition, the banks attempt to lower risk by diversifying their asset portfolio. The main categories of assets held by banks are loans, treasuries (bonds issued by the national treasury), reserves and intangible assets. In this mini-thesis, we solve an optimal asset allocation problem in banking under the mean-variance frame work. The dynamics of the different assets are modelled as geometric Brownian motions, and our optimization problem is of the mean- variance type. We assume the Basel II regulations on banking supervision. In this contribution, the bank funds are invested into loans and treasuries with the main objective being to obtain an optimal return on the bank asset port- folio given a certain risk level. There are two main approaches to portfolio optimization, which are the so called martingale method and Hamilton Jacobi Bellman method. We shall follow the latter. As is common in portfolio op- timization problems, we obtain an explicit solution for the value function in the Hamilton Jacobi Bellman equation. Our approach to the portfolio prob- lem is similar to the presentation in the paper [Hojgaard, B., Vigna, E., 2007. Mean-variance portfolio selection and efficient frontier for defined contribution pension schemes. ISSN 1399-2503. On-line version ISSN 1601-7811]. We pro- vide much more detail and we make the application to banking. We illustrate our findings by way of numerical simulations.
APA, Harvard, Vancouver, ISO, and other styles
44

Huang, Junbo. "Théorème de Berry-Esseen pour martingales normalisées et algorithmes stochastiques : application en contrôle stochastique." Paris 6, 2009. http://www.theses.fr/2009PA066174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

SANTOS, Watson Robert Macedo. "Metodos para Solução da Equação HJB-Riccati via Famíla de Estimadores Parametricos RLS Simplificados e Dependentes de Modelo." Universidade Federal do Maranhão, 2014. http://tedebc.ufma.br:8080/jspui/handle/tede/1892.

Full text
Abstract:
Submitted by Maria Aparecida (cidazen@gmail.com) on 2017-09-04T13:42:58Z No. of bitstreams: 1 Watson Robert.pdf: 2699368 bytes, checksum: cf204eec3df50b251f4adbbbd380ffd0 (MD5)<br>Made available in DSpace on 2017-09-04T13:42:58Z (GMT). No. of bitstreams: 1 Watson Robert.pdf: 2699368 bytes, checksum: cf204eec3df50b251f4adbbbd380ffd0 (MD5) Previous issue date: 2014-08-21<br>Due to the demand for high-performance equipments and the rising cost of energy, the industrial sector is developing equipments to attend minimization of the theirs operational costs. The implementation of these requirements generate a demand for projects and implementations of high-performance control systems. The optimal control theory is an alternative to solve this problem, because in its design considers the normative specifications of the system design, as well as those that are related to the operational costs. Motivated by these perspectives, it is presented the study of methods and the development of algorithms to the approximated solution of the Equation Hamilton-Jacobi-Bellman, in the form of discrete Riccati equation, model free and dependent of the dynamic system. The proposed solutions are developed in the context of adaptive dynamic programming that are based on the methods for online design of optimal control systems, Discrete Linear Quadratic Regulator type. The proposed approach is evaluated in multivariable models of the dynamic systems to evaluate the perspectives of the optimal control law for online implementations.<br>Devido a demanda por equipamentos de alto desempenho e o custo crescente da energia, o setor industrial desenvolve equipamentos que atendem a minimização dos seus custos operacionais. A implantação destas exigências geram uma demanda por projetos e implementações de sistemas de controle de alto desempenho. A teoria de controle ótimo é uma alternativa para solucionar este problema, porque considera no seu projeto as especificações normativas de projeto do sistema, como também as relativas aos seus custos operacionais. Motivado por estas perspectivas, apresenta-se o estudo de métodos e o desenvolvimento de algoritmos para solução aproximada da Equação Hamilton-Jacobi-Bellman, do tipo Equação Discreta de Riccati, livre e dependente de modelo do sistema dinâmico. As soluções propostas são desenvolvidas no contexto de programação dinâmica adaptativa (ADP) que baseiam-se nos métodos para o projeto on-line de Controladores Ótimos, do tipo Regulador Linear Quadrático Discreto. A abordagem proposta é avaliada em modelos de sistemas dinâmicos multivariáveis, tendo em vista a implementação on-line de leis de controle ótimo.
APA, Harvard, Vancouver, ISO, and other styles
46

Albosaily, Sahar. "Stratégies optimales d'investissement et de consommation pour des marchés financiers de type"spread"." Thesis, Normandie, 2018. http://www.theses.fr/2018NORMR099/document.

Full text
Abstract:
Dans cette thèse, on étudie le problème de la consommation et de l’investissement pour le marché financier de "spread" (différence entre deux actifs) défini par le processus Ornstein-Uhlenbeck (OU). Ce manuscrit se compose de sept chapitres. Le chapitre 1 présente une revue générale de la littérature et un bref résumé des principaux résultats obtenus dans cetravail où différentes fonctions d’utilité sont considérées. Dans le chapitre 2, on étudie la stratégie optimale de consommation / investissement pour les fonctions puissances d’utilité pour un intervalle de temps réduit a 0 &lt; t &lt; T &lt; T0. Dans ce chapitre, nous étudions l’équation de Hamilton–Jacobi–Bellman (HJB) par la méthode de Feynman - Kac (FK). L’approximation numérique de la solution de l’équation de HJB est étudiée et le taux de convergence est établi. Il s’avère que dans ce cas, le taux de convergencedu schéma numérique est super–géométrique, c’est-à-dire plus rapide que tous ceux géométriques. Les principaux théorèmes sont énoncés et des preuves de l’existence et de l’unicité de la solution sont données. Un théorème de vérification spécial pour ce cas des fonctions puissances est montré. Le chapitre 3 étend notre approche au chapitre précédent à la stratégie de consommation/investissement optimale pour tout intervalle de temps pour les fonctions puissances d’utilité où l’exposant γ doit être inférieur à 1/4. Dans le chapitre 4, on résout le problème optimal de consommation/investissement pour les fonctions logarithmiques d’utilité dans le cadre du processus OU multidimensionnel en se basant sur la méthode de programmation dynamique stochastique. En outre, on montre un théorème de vérification spécial pour ce cas. Le théorème d’existence et d’unicité pour la solution classique de l’équation de HJB sous forme explicite est également démontré. En conséquence, les stratégies financières optimales sont construites. Quelques exemples sont donnés pour les cas scalaires et pour les cas multivariés à volatilité diagonale. Le modèle de volatilité stochastique est considéré dans le chapitre 5 comme une extension du chapitre précédent des fonctions logarithmiques d’utilité. Le chapitre 6 propose des résultats et des théorèmes auxiliaires nécessaires au travail.Le chapitre 7 fournit des simulations numériques pour les fonctions puissances et logarithmiques d’utilité. La valeur du point fixe h de l’application de FK pour les fonctions puissances d’utilité est présentée. Nous comparons les stratégies optimales pour différents paramètres à travers des simulations numériques. La valeur du portefeuille pour les fonctions logarithmiques d’utilité est également obtenue. Enfin, nous concluons nos travaux et présentons nos perspectives dans le chapitre 8<br>This thesis studies the consumption/investment problem for the spread financial market defined by the Ornstein–Uhlenbeck (OU) process. Recently, the OU process has been used as a proper financial model to reflect underlying prices of assets. The thesis consists of 8 Chapters. Chapter 1 presents a general literature review and a short view of the main results obtained in this work where different utility functions have been considered. The optimal consumption/investment strategy are studied in Chapter 2 for the power utility functions for small time interval, that 0 &lt; t &lt; T &lt; T0. Main theorems have been stated and the existence and uniqueness of the solution has been proven. Numeric approximation for the solution of the HJB equation has been studied and the convergence rate has been established. In this case, the convergence rate for the numerical scheme is super geometrical, i.e., more rapid than any geometrical ones. A special verification theorem for this case has been shown. In this chapter, we have studied the Hamilton–Jacobi–Bellman (HJB) equation through the Feynman–Kac (FK) method. The existence and uniqueness theorem for the classical solution for the HJB equation has been shown. Chapter 3 extended our approach from the previous chapter of the optimal consumption/investment strategies for the power utility functions for any time interval where the power utility coefficient γ should be less than 1/4. Chapter 4 addressed the optimal consumption/investment problem for logarithmic utility functions for multivariate OU process in the base of the stochastic dynamical programming method. As well it has been shown a special verification theorem for this case. It has been demonstrated the existence and uniqueness theorem for the classical solution for the HJB equation in explicit form. As a consequence the optimal financial strategies were constructed. Some examples have been stated for a scalar case and for a multivariate case with diagonal volatility. Stochastic volatility markets has been considered in Chapter 5 as an extension for the previous chapter of optimization problem for the logarithmic utility functions. Chapter 6 proposed some auxiliary results and theorems that are necessary for the work. Numerical simulations has been provided in Chapter 7 for power and logarithmic utility functions. The fixed point value h for power utility has been presented. We study the constructed strategies by numerical simulations for different parameters. The value function for the logarithmic utilities has been shown too. Finally, Chapter 8 reflected the results and possible limitations or solutions
APA, Harvard, Vancouver, ISO, and other styles
47

Claisse, Julien. "Dynamique des populations : contrôle stochastique et modélisation hybride du cancer." Phd thesis, Université Nice Sophia Antipolis, 2014. http://tel.archives-ouvertes.fr/tel-01066020.

Full text
Abstract:
L'objectif de cette thèse est de développer la théorie du contrôle stochastique et ses applications en dynamique des populations. D'un point de vue théorique, nous présentons l'étude de problèmes de contrôle stochastique à horizon fini sur des processus de diffusion, de branchement non linéaire et de branchement-diffusion. Dans chacun des cas, nous raisonnons par la méthode de la programmation dynamique en veillant à démontrer soigneusement un argument de conditionnement analogue à la propriété de Markov forte pour les processus contrôlés. Le principe de la programmation dynamique nous permet alors de prouver que la fonction valeur est solution (régulière ou de viscosité) de l'équation de Hamilton-Jacobi-Bellman correspondante. Dans le cas régulier, nous identifions également un contrôle optimal markovien par un théorème de vérification. Du point de vue des applications, nous nous intéressons à la modélisation mathématique du cancer et de ses stratégies thérapeutiques. Plus précisément, nous construisons un modèle hybride de croissance de tumeur qui rend compte du rôle fondamental de l'acidité dans l'évolution de la maladie. Les cibles de la thérapie apparaissent explicitement comme paramètres du modèle afin de pouvoir l'utiliser comme support d'évaluation de stratégies thérapeutiques.
APA, Harvard, Vancouver, ISO, and other styles
48

Solliec, Ian. "Optique géométrique eulérienne et calcul d'énérgie électromagnétique en présence de caustiques de type pli." Paris 6, 2003. http://www.theses.fr/2003PA066590.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Schwalbe, Karsten. "Stochastic Fluctuations in Endoreversible Systems." Doctoral thesis, Universitätsbibliothek Chemnitz, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-219268.

Full text
Abstract:
In dieser Arbeit wird erstmalig der Einfluss stochastischer Schwankungen auf endoreversible Modelle untersucht. Hierfür wird die Novikov-Maschine mit drei verschieden Wärmetransportgesetzen (Newton, Fourier, asymmetrisch) betrachtet. Während die maximale verrichtete Arbeit und der dazugehörige Wirkungsgrad recht einfach im Falle konstanter Wärmebadtemperaturen hergeleitet werden können, ändern sich dies, falls die Temperaturen stochastisch fluktuieren können. Im letzteren Fall muss die stochastische optimale Kontrolltheorie genutzt werden, um das Maximum der zu erwartenden Arbeit und die dazugehörige Kontrollstrategie zu ermitteln. Im Allgemeinen kann die Lösung derartiger Probleme auf eine nichtlineare, partielle Differentialgleichung, welche an eine Optimierung gekoppelt ist, zurückgeführt werden. Diese Gleichung wird stochastische Hamilton-Jacobi-Bellman-Gleichung genannt. Allerdings können, wie in dieser Arbeit dargestellt, die Berechnungen vereinfacht werden, wenn man annimmt, dass die Fluktuationen unabhängig von der betrachteten Kontrollvariablen sind. In diesem Fall zeigen analytische Betrachtungen, dass die Gleichungen für die verrichtete Arbeit and den Wirkungsgrad ihre ursprüngliche Form behalten, aber manche Terme müssen durch entsprechende Zeitmittel bzw. Erwartungswerte ersetzt werden, jeweils abhängig von der betrachteten Art der Kontrolle. Basierend auf einer Analyse der Leistungsparameter im Falle einer Gleichverteilung der heißen Temperatur der Novikov-Maschine können Schlussfolgerungen auf deren Monotonieverhalten gezogen werden. Der Vergleich verschiedener, zeitunabhängiger, symmetrischer Verteilungen führt zu einer bis dato unbekannten Erweiterung des Curzon-Ahlborn-Wirkungsgrades im Falle kleiner Schwankungen. Weiterhin wird eine Analyse einer Novikov-Maschine mit asymmetrischen Wärmetransport, bei der das Verhalten der heißen Temperatur durch einen Ornstein-Uhlenbeck-Prozess beschrieben wird, durchgeführt. Abschließend wird eine Novikov-Maschine mit Fourierscher Wärmeleitung, bei der die Dynamik der heißen Temperatur von der Kontrollvariable abhängt, betrachtet. Durch das Lösen der Hamilton-Jacobi-Bellman-Gleichung können neuartige Schlussfolgerungen gezogen werden, wie derartige Systeme optimal zu steuern sind<br>In this thesis, the influence of stochastic fluctuations on the performance of endoreversible engines is investigated for the first time. For this, a Novikov-engine with three different heat transport laws (Newtonian, Fourier, asymmetric) is considered. While the maximum work output and corresponding efficiency can be deduced easily in the case of constant heat bath temperatures, this changes, if these temperatures are allowed to fluctuate stochastically. In the latter case, stochastic optimal control theory has to be used to find the maximum of the expected work output and the corresponding control policy. In general, solving such problems leads to a non-linear, partial differential equation coupled to an optimization, called the stochastic Hamilton-Jacobi-Bellman equation. However, as presented in this thesis, calculations can be simplified, if one assumes that the fluctuations are independent of the considered control variable. In this case, analytic considerations show that the equations for performance measures like work output and efficiency keep their original form, but terms have to be replaced by appropriate time averages and expectation values, depending on the considered control type. Based on an analysis of the performance measures in the case of a uniform distribution of the hot temperature of the Novikov engine, conclusions on their monotonicity behavior are drawn. The comparison of several, time independent, symmetric distributions reveals a to date unknown extension to the Curzon-Ahlborn efficiency in the case of small fluctuations. Furthermore, an analysis of a Novikov engine with asymmetric heat transport, where the behavior of the hot temperature is described by an Ornstein-Uhlenbeck process, is performed. Finally, a Novikov engine with Fourier heat transport is considered, where the dynamics of the hot temperature depends on the control variable. By solving the corresponding Hamilton-Jacobi-Bellman equation, new conclusions how to optimally control such systems are drawn
APA, Harvard, Vancouver, ISO, and other styles
50

MAININI, ALESSANDRA. "Saggi in economia dell'informazione." Doctoral thesis, Università Cattolica del Sacro Cuore, 2009. http://hdl.handle.net/10280/504.

Full text
Abstract:
Questa tesi è una raccolta di tre articoli riguardanti l’economia dell’informazione. Il primo articolo riguarda i possibili effetti negativi delle elezioni sul benessere degli elettori. Infatti, il controllo ottimo nei confronti di un politico dipende in modo non banale dalla relazione tra effetto disciplinante, effetto di selezione e effetto di riduzione della rendita. Il risultato è che un eccessivo controllo nei confronti di un politico può ridurre il benessere sociale. Il secondo articolo analizza un modello di competizione elettorale nel quale l’abilità del politico è sconosciuta anche al politico stesso oltre che agli elettori. L’analisi è in tempo continuo e sviluppata mediante tecniche di programmazione dinamica e di filtraggio. Le credenze sull’abilità vengono aggiornate secondo la regola di Bayes tramite l’osservazione del processo diffusivo che descrive il valore del settore pubblico. Il politico trae utilità da una rendita che è però inferiore in presenza di una scadenza elettorale. Il terzo articolo descrive una relazione principale-agente in tempo continuo dove l’output è rappresentato da un processo diffusivo il cui drift è determinato dallo sforzo dell’agente, che il principale non osserva, e dall’abilità dell’agente, che non è osservata nemmeno dall’agente stesso. Vengono analizzati sia gli incentivi espliciti dati dal contratto che gli incentivi impliciti legati ai career-concerns. L’analisi è sviluppata in tempo continuo; vengono applicate tecniche di programmazione dinamica e di filtraggio.<br>This thesis is a collection of three essays about information economics. The first essay studies the possible negative effects of elections on voters’ welfare. In fact, the optimal control of politicians depends on the interplay of disciplining, selection and rent-shrinking effects in a non-trivial way. We show that too much control on the politician may reduce social welfare. The second essay studies an agency model of electoral competition where the incumbent’s ability is unknown to the voters as well as to the politician herself. The analysis is developed in a continuous-time stochastic framework using dynamic programming techniques. Competence is unobservable to everyone and learned over time in a Bayesian fashion through the observation of the value of the public sector. Politicians can divert resources being in office thus reducing the economy wealth but this rent is lower (all other things the same) with an electoral constraint. The third essay describes a continuous-time principal-agent model in which the output is a diffusion process whose drift is determined by the agent’s unobserved effort and by manager’s competence (it is assumed symmetric information about it). We study separately both explicit incentives arising from the contract and implicit incentives arising from career concerns.. All the analysis is developed in a continuous-time stochastic framework; we apply dynamic programming and filtering techniques.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography