Academic literature on the topic 'Hamiltonian and Lagrangian dynamics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hamiltonian and Lagrangian dynamics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Hamiltonian and Lagrangian dynamics"
Cheng, Xu-Hui, and Guo-Qing Huang. "A Comparison between Second-Order Post-Newtonian Hamiltonian and Coherent Post-Newtonian Lagrangian in Spinning Compact Binaries." Symmetry 13, no. 4 (April 1, 2021): 584. http://dx.doi.org/10.3390/sym13040584.
Full textRosas-Ortiz, Oscar. "Lagrangian and Hamiltonian dynamics." Contemporary Physics 60, no. 1 (January 2, 2019): 85–86. http://dx.doi.org/10.1080/00107514.2019.1580314.
Full textMALIK, R. P. "HAMILTONIAN AND LAGRANGIAN DYNAMICS IN A NONCOMMUTATIVE SPACE." Modern Physics Letters A 18, no. 39 (December 21, 2003): 2795–806. http://dx.doi.org/10.1142/s0217732303012350.
Full textWheeler, James T. "Not-so-classical mechanics: unexpected symmetries of classical motion." Canadian Journal of Physics 83, no. 2 (February 1, 2005): 91–138. http://dx.doi.org/10.1139/p05-003.
Full textKIJOWSKI, J., G. MAGLI, and D. MALAFARINA. "LAGRANGIAN AND HAMILTONIAN FORMULATION OF SPHERICAL SHELL DYNAMICS." International Journal of Geometric Methods in Modern Physics 02, no. 05 (October 2005): 887–94. http://dx.doi.org/10.1142/s021988780500082x.
Full textEntov, Michael, and Leonid Polterovich. "Lagrangian tetragons and instabilities in Hamiltonian dynamics." Nonlinearity 30, no. 1 (November 17, 2016): 13–34. http://dx.doi.org/10.1088/0951-7715/30/1/13.
Full textBernard, Patrick. "The Lax–Oleinik semi-group: a Hamiltonian point of view." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 142, no. 6 (November 27, 2012): 1131–77. http://dx.doi.org/10.1017/s0308210511000059.
Full textBokhove, Onno, and Marcel Oliver. "Parcel Eulerian–Lagrangian fluid dynamics of rotating geophysical flows." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 462, no. 2073 (March 30, 2006): 2575–92. http://dx.doi.org/10.1098/rspa.2006.1656.
Full textZivieri, Roberto, and Giancarlo Consolo. "Hamiltonian and Lagrangian Dynamical Matrix Approaches Applied to Magnetic Nanostructures." Advances in Condensed Matter Physics 2012 (2012): 1–16. http://dx.doi.org/10.1155/2012/765709.
Full textMUKHANOV, V., and A. WIPF. "ON THE SYMMETRIES OF HAMILTONIAN SYSTEMS." International Journal of Modern Physics A 10, no. 04 (February 10, 1995): 579–610. http://dx.doi.org/10.1142/s0217751x95000267.
Full textDissertations / Theses on the topic "Hamiltonian and Lagrangian dynamics"
Foxman, Jerome Adam. "The Maslov index in Hamiltonian dynamical systems." Thesis, University of Bristol, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326680.
Full textHosein, Falahaty. "Enhanced fully-Lagrangian particle methods for non-linear interaction between incompressible fluid and structure." Kyoto University, 2018. http://hdl.handle.net/2433/235070.
Full textRypina, Irina I. "Lagrangian Coherent Structures and Transport in Two-Dimensional Incompressible Flows with Oceanographic and Atmospheric Applications." Scholarly Repository, 2007. http://scholarlyrepository.miami.edu/oa_dissertations/14.
Full textMehrmann, Volker, and Hongguo Xu. "Lagrangian invariant subspaces of Hamiltonian matrices." Universitätsbibliothek Chemnitz, 2005. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200501133.
Full textSchwingenheuer, Martin. "Hamiltonian unknottedness of certain monotone Lagrangian tori in S2xS2." Diss., lmu, 2010. http://nbn-resolving.de/urn:nbn:de:bvb:19-123969.
Full textFaber, Nicolas Boily Christian M. Portegies Zwart Simon. "Orbital complexity in Hamiltonian dynamics." Strasbourg : Université de Starsbourg, 2009. http://eprints-scd-ulp.u-strasbg.fr:8080/secure/00001111/01/FABER_Nicolas_2008-restrict.pdf.
Full textThèse soutenue sur un ensemble de travaux. Thèse soutenue en co-tutelle. Titre provenant de l'écran-titre. Notes bibliogr.
Faber, Nicolas. "Orbital complexity in Hamiltonian dynamics." Université Louis Pasteur (Strasbourg) (1971-2008), 2008. https://publication-theses.unistra.fr/restreint/theses_doctorat/2008/FABER_Nicolas_2008.pdf.
Full textThe monitoring of physical phenomena (often) rests on a mapping of an observable as a function of time. Such time series encode basic information about the state of the system under study. In this thesis, we build on this concept to explore the intricate evolution of gravitational Hamiltonian systems. We treat the phase-space coordinates of celestial bodies as signals which we then analyze using processing techniques, such as autocorrelation identification and wavelet transforms. We consider in turn the large-scale dynamics of galaxies, and the internal dynamics of dense stellar clusters. [. . . ]
Schöberl, Markus. "Geometry and control of mechanical systems an Eulerian, Lagrangian and Hamiltonian approach." Aachen Shaker, 2007. http://d-nb.info/989019306/04.
Full textSalmon, Daniel. "Dynamics of Systems With Hamiltonian Monodromy." W&M ScholarWorks, 2018. https://scholarworks.wm.edu/etd/1550153890.
Full textPrieto, Martínez Pere Daniel. "Geometrical structures of higher-order dynamical systems and field theories." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/284215.
Full textLa física geomètrica és una branca relativament jove de la matemàtica aplicada que es va iniciar als anys 60 i 70 qua A. Lichnerowicz, W.M. Tulczyjew and J.M. Souriau, entre molts altres, van començar a estudiar diversos problemes en física usant mètodes de geometria diferencial. Aquesta "geometrització" proporciona una manera d'analitzar les característiques dels sistemes físics des d'una perspectiva global, obtenint així propietats qualitatives que faciliten la integració de les equacions que els descriuen. D'ençà s'ha produït un fort desenvolupamewnt en el tractament intrínsic d'una gran varietat de problemes en física teòrica, matemàtica aplicada i teoria de control usant mètodes de geometria diferencial. Gran part del treball realitzat en la física geomètrica des dels seus primers dies s'ha dedicat a l'estudi de teories de primer ordre, és a dir, teories tals que la informació física depèn en, com a molt, derivades de primer ordre de les coordenades de posició generalitzades (velocitats). Tanmateix, hi ha teories en física en les que la informació física depèn de manera explícita en acceleracions o derivades d'ordre superior de les coordenades de posició generalitzades, requerint, per tant, d'eines geomètriques més sofisticades per a modelar-les de manera acurada. En aquesta Tesi Doctoral ens proposem donar una descripció geomètrica d'algunes d'aquestes teories. En particular, estudiarem sistemes dinàmics i teories de camps tals que la seva informació dinàmica ve donada en termes d'una funció lagrangiana, o d'un hamiltonià que prové d'un sitema lagrangià. Per a ser més precisos emprarem la formulació unificada Lagrangiana-Hamiltoniana per tal de desenvolupar marcs geomètrics per a sistemes dinàmics d'ordre superior autònoms i no autònoms, i per a teories de camps de segon ordre. Amb aquest marc geomètric estudiarem alguns exemples físics rellevants i algunes aplicacions, com la teoria de Hamilton-Jacobi per a sistemes mecànics d'ordre superior, partícules relativístiques amb spin i problemes de deformació en mecànica, i l'equació de Korteweg-de Vries i altres sistemes en teories de camps.
Books on the topic "Hamiltonian and Lagrangian dynamics"
Lee, Taeyoung, Melvin Leok, and N. Harris McClamroch. Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-56953-6.
Full textBaldomá, Inmaculada. Exponentially small splitting of invariant manifolds of parabolic points. Providence, RI: American Mathematical Society, 2004.
Find full textDeriglazov, Alexei. Classical mechanics: Hamiltonian and Lagrangian Formalism. Berlin: Springer Verlag, 2010.
Find full textClassical mechanics: Hamiltonian and Lagrangian Formalism. Berlin: Springer Verlag, 2010.
Find full textBennett, Andrew F. Lagrangian fluid dynamics. Cambridge: Cambridge University Press, 2005.
Find full textBountis, Tassos, and Haris Skokos. Complex Hamiltonian Dynamics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27305-6.
Full textGignoux, Claude, and Bernard Silvestre-Brac. Solved Problems in Lagrangian and Hamiltonian Mechanics. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2393-3.
Full textBook chapters on the topic "Hamiltonian and Lagrangian dynamics"
Enns, Richard H., and George C. McGuire. "Lagrangian & Hamiltonian Dynamics." In Computer Algebra Recipes for Classical Mechanics, 211–54. Boston, MA: Birkhäuser Boston, 2003. http://dx.doi.org/10.1007/978-1-4612-0013-0_7.
Full textKulp, Christopher W., and Vasilis Pagonis. "Lagrangian and Hamiltonian Dynamics." In Classical Mechanics, 229–72. Boca Raton : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9781351024389-8.
Full textKelley, J. Daniel, and Jacob J. Leventhal. "Lagrangian and Hamiltonian Dynamics." In Problems in Classical and Quantum Mechanics, 25–66. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46664-4_2.
Full textTrump, M. A., and W. C. Schieve. "The Lagrangian-Hamiltonian Theory." In Classical Relativistic Many-Body Dynamics, 121–86. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-015-9303-8_5.
Full textLewis, Debra. "Linearized Dynamics of Symmetric Lagrangian Systems." In Hamiltonian Dynamical Systems, 195–216. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4613-8448-9_14.
Full textLee, Taeyoung, Melvin Leok, and N. Harris McClamroch. "Classical Lagrangian and Hamiltonian Dynamics." In Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds, 89–129. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56953-6_3.
Full textLee, Taeyoung, Melvin Leok, and N. Harris McClamroch. "Lagrangian and Hamiltonian Dynamics on Manifolds." In Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds, 347–98. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56953-6_8.
Full textLee, Taeyoung, Melvin Leok, and N. Harris McClamroch. "Lagrangian and Hamiltonian Dynamics on $$\mathsf{SO(3)}$$." In Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds, 273–311. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56953-6_6.
Full textLee, Taeyoung, Melvin Leok, and N. Harris McClamroch. "Lagrangian and Hamiltonian Dynamics on $$\mathsf{SE(3)}$$." In Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds, 313–46. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56953-6_7.
Full textLee, Taeyoung, Melvin Leok, and N. Harris McClamroch. "Lagrangian and Hamiltonian Dynamics on $$(\mathsf{S}^{1})^{n}$$." In Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds, 131–206. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56953-6_4.
Full textConference papers on the topic "Hamiltonian and Lagrangian dynamics"
Vontobel, Pascal O. "A factor-graph approach to Lagrangian and Hamiltonian dynamics." In 2011 IEEE International Symposium on Information Theory - ISIT. IEEE, 2011. http://dx.doi.org/10.1109/isit.2011.6033945.
Full textLee, T., M. Leok, and N. Harris McClamroch. "Global Formulations of Lagrangian and Hamiltonian Dynamics on Embedded Manifolds." In IMA Conference on Mathematics of Robotics. Institute of Mathematics and its Applications, 2015. http://dx.doi.org/10.19124/ima.2015.001.19.
Full textBaleanu, Dumitru, Sami I. Muslih, and Eqab M. Rabei. "On Fractional Hamilton Formulation Within Caputo Derivatives." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34812.
Full textGhosh, Bijoy K., Takafumi Oki, Sanath D. Kahagalage, and Indika Wijayasinghe. "Asymptotically Stabilizing Potential Control for the Eye Movement Dynamics." In ASME 2014 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/dscc2014-5864.
Full textRastogi, Vikas, Amalendu Mukherjee, and Anirvan Dasgupta. "Extended Lagrangian Formalism and Invariants of Motion of Dynamical Systems: A Case Study of Electromechanical System." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-79113.
Full textSpyrakos-Papastavridis, Emmanouil, Gustavo Medrano-Cerda, Jian S. Dai, and Darwin G. Caldwell. "Global Stability Study of a Compliant Double-Inverted Pendulum Based on Hamiltonian Modeling." In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-71066.
Full textSHESTAKOVA, TATYANA P. "HAMILTONIAN DYNAMICS IN EXTENDED PHASE SPACE FOR GRAVITY AND ITS CONSISTENCY WITH LAGRANGIAN FORMALISM: A GENERALIZED SPHERICALLY SYMMETRIC MODEL AS AN EXAMPLE." In Proceedings of the MG13 Meeting on General Relativity. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814623995_0305.
Full textDarrall, Bradley T., and Gary F. Dargush. "Mixed Convolved Action Principles for Dynamics of Linear Poroelastic Continua." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-52728.
Full textCHIANG, R. "CONSTRUCTION OF LAGRANGIAN EMBEDDINGS USING HAMILTONIAN ACTIONS." In Proceedings of the COE International Workshop. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812775061_0007.
Full textSymon, Keith. "Applied Hamiltonian dynamics." In The Physics of Particle Accelerators Vol. I (based on the US Particle Accelerator School (USPAS) Seminars and Courses). AIP, 1992. http://dx.doi.org/10.1063/1.41999.
Full textReports on the topic "Hamiltonian and Lagrangian dynamics"
Bernatska, Julia, and Petro Holod. • Harmonic Analysis on Lagrangian Manifolds of Integrable Hamiltonian Systems. GIQ, 2012. http://dx.doi.org/10.7546/giq-14-2013-61-73.
Full textBernatska and Petro Holod, Julia Bernatska and Petro Holod. Harmonic Analysis on Lagrangian Manifolds of Integrable Hamiltonian Systems. Journal of Geometry and Symmetry in Physics, 2013. http://dx.doi.org/10.7546/jgsp-29-2013-39-51.
Full textWong, Michael K. W., and Edward Love. Lagrangian continuum dynamics in ALEGRA. Office of Scientific and Technical Information (OSTI), December 2007. http://dx.doi.org/10.2172/934850.
Full textKyuldjiev, Assen, Vladimir Gerdjikov, and Giuseppe Marmo. Real Forms of Complexified Hamiltonian Dynamics. GIQ, 2012. http://dx.doi.org/10.7546/giq-3-2002-318-327.
Full textHill, Ryan, Mikhail Shashkov, and Andrew Barlow. Interface-aware sub-scale dynamics closure model for multimaterial cells in Lagrangian gas dynamics. Office of Scientific and Technical Information (OSTI), February 2012. http://dx.doi.org/10.2172/1159556.
Full textWang, L. S., P. S. Krishnaprasad, and J. H. Maddocks. Hamiltonian Dynamics of a Rigid Body in a Central Gravitational Field. Fort Belvoir, VA: Defense Technical Information Center, January 1990. http://dx.doi.org/10.21236/ada444554.
Full textVenturini, Marco. Stability Analysis of Longitudinal Beam Dynamics using Noncanonical Hamiltonian Methods and Energy Principles. Office of Scientific and Technical Information (OSTI), August 2002. http://dx.doi.org/10.2172/799993.
Full textKnobloch, Edgar, and Jerrold E. Marsden. Bifurcation, Geometric Phases and Control in Hamiltonian Systems and Fluid Dynamics. Final report. Office of Scientific and Technical Information (OSTI), July 2000. http://dx.doi.org/10.2172/763415.
Full textAbarbanel, Henry D., and Ali Rouhi. Hamiltonian Dynamics of Coupled Potential Vorticity and Internal Wave Motion: 1. Linear Modes. Fort Belvoir, VA: Defense Technical Information Center, February 1993. http://dx.doi.org/10.21236/ada263469.
Full textKadtke, James B. Investigations of Equilibria, Lattices, and Chatoic Dynamics of 2-D hamiltonian Point Vortices. Fort Belvoir, VA: Defense Technical Information Center, August 1990. http://dx.doi.org/10.21236/ada227364.
Full text