To see the other types of publications on this topic, follow the link: Hamiltonian and Lagrangian dynamics.

Books on the topic 'Hamiltonian and Lagrangian dynamics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 books for your research on the topic 'Hamiltonian and Lagrangian dynamics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse books on a wide variety of disciplines and organise your bibliography correctly.

1

Lee, Taeyoung, Melvin Leok, and N. Harris McClamroch. Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-56953-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Baldomá, Inmaculada. Exponentially small splitting of invariant manifolds of parabolic points. Providence, RI: American Mathematical Society, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lagrangian and Hamiltonian mechanics. Singapore: World Scientific, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hamiltonian dynamics. River Edge, NJ: World Scientific, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Deriglazov, Alexei. Classical mechanics: Hamiltonian and Lagrangian Formalism. Berlin: Springer Verlag, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Classical mechanics: Hamiltonian and Lagrangian Formalism. Berlin: Springer Verlag, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bennett, Andrew F. Lagrangian fluid dynamics. Cambridge: Cambridge University Press, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bountis, Tassos, and Haris Skokos. Complex Hamiltonian Dynamics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27305-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Haris, Skokos, ed. Complex Hamiltonian dynamics. Heidelberg: Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gignoux, Claude, and Bernard Silvestre-Brac. Solved Problems in Lagrangian and Hamiltonian Mechanics. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2393-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Mielke, Alexander. Hamiltonian and Lagrangian Flows on Center Manifolds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/bfb0097544.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Bernard, Silvestre-Brac, and SpringerLink (Online service), eds. Solved Problems in Lagrangian and Hamiltonian Mechanics. Dordrecht: Springer Netherlands, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
13

An introduction to Lagrangian mechanics. 2nd ed. Hackensack,] New Jersey: World Scientific, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
14

Brizard, Alain Jean. An introduction to Lagrangian mechanics. Hackensack, NJ: World Scientific, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
15

Brizard, Alain Jean. An introduction to Lagrangian mechanics. Hackensack, NJ: World Scientific, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
16

An introduction to Lagrangian mechanics. Hackensack, NJ: World Scientific, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
17

Pila, Aron Wolf. Introduction To Lagrangian Dynamics. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-22378-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Allgüwer, F., P. Fleming, P. Kokotovic, A. B. Kurzhanski, H. Kwakernaak, A. Rantzer, J. N. Tsitsiklis, Francesco Bullo, and Kenji Fujimoto, eds. Lagrangian and Hamiltonian Methods for Nonlinear Control 2006. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-73890-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Lagrangian and Hamiltonian mechanics: Solutions to the exercises. Singapore: World Scientific, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
20

L, Mangiarotti, and Sardanashvili G. A, eds. New Lagrangian and Hamiltonian methods in field theory. Singapore: World Scientific, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
21

Essentials of Hamiltonian dynamics. Cambridge: Cambridge University Press, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
22

1940-, Zehnder Eduard, ed. Symplectic invariants and Hamiltonian dynamics. Basel: Birkhäuser Verlag, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
23

Benettin, Giancarlo, Jacques Henrard, and Sergei Kuksin. Hamiltonian Dynamics. Theory and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/b104338.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Saari, Donald G., and Zhihong Xia, eds. Hamiltonian Dynamics and Celestial Mechanics. Providence, Rhode Island: American Mathematical Society, 1996. http://dx.doi.org/10.1090/conm/198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Hofer, Helmut, and Eduard Zehnder. Symplectic Invariants and Hamiltonian Dynamics. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0104-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Hofer, Helmut, and Eduard Zehnder. Symplectic Invariants and Hamiltonian Dynamics. Basel: Birkhäuser Basel, 1994. http://dx.doi.org/10.1007/978-3-0348-8540-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Govaerts, Jan. Hamiltonian quantisation and constrained dynamics. Leuven (Belgium): Leuven University Press, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
28

1940-, Zehnder Eduard, and SpringerLink (Online service), eds. Symplectic Invariants and Hamiltonian Dynamics. Basel: Springer Basel AG, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
29

Pletser, Vladimir. Lagrangian and Hamiltonian Analytical Mechanics: Forty Exercises Resolved and Explained. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-3026-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Mušicki, Đorđe. Degenerate systems in generalized mechanics. Beograd: Matematički Institut, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
31

Mušicki, Đorđe. Degenerate systems in generalized mechanics. Beograd: Matematički Institut, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
32

Gans, Roger F. Engineering Dynamics: From the Lagrangian to Simulation. New York, NY: Springer New York, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
33

Ordinary differential equations: Qualitative theory. Providence, R.I: American Mathematical Society, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
34

Farantos, Stavros C. Nonlinear Hamiltonian Mechanics Applied to Molecular Dynamics. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09988-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Dommelen, Leon L. van. On the Lagrangian description of unsteady boundary layer separation. [Washington, D.C.]: National Aeronautics and Space Administration, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
36

Mielke, Alexander. Hamiltonian and Lagrangian flows on center manifolds: With applications to elliptic variational problems. Berlin: Springer-Verlag, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
37

author, Winternitz Pavel, ed. Classification and identification of Lie algebras. Providence, Rhode Island: American Mathematical Society, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
38

Rothe, Heinz J. Classical and quantum dynamics of constrained Hamiltonian systems. New Jersey: World Scientific, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
39

D, Rothe Klaus, ed. Classical and quantum dynamics of constrained Hamiltonian systems. New Jersey: World Scientific, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
40

Greiner, Walter. Classical mechanics: Systems of particles and Hamiltonian dynamics. New York: Springer, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
41

Classical mechanics: Systems of particles and Hamiltonian dynamics. New York: Springer, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
42

Introduction to Hamiltonian fluid dynamics and stability theory. Boca Raton: Chapman & Hall/CRC, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
43

Borisov, Alexey V., Valery V. Kozlov, Ivan S. Mamaev, and Mikhail A. Sokolovskiy, eds. IUTAM Symposium on Hamiltonian Dynamics, Vortex Structures, Turbulence. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6744-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Classical mechanics: Systems of particles and Hamiltonian dynamics. 2nd ed. Heidelberg [Germany]: Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
45

A, Lieberman M., and Lichtenberg Allan J, eds. Regular and chaotic dynamics. 2nd ed. New York: Springer-Verlag, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
46

Griffa, Annalisa, A. D. Jr Kirwan, Arthur J. Mariano, Tamay Ozgokmen, and H. Thomas Rossby, eds. Lagrangian Analysis and Prediction of Coastal and Ocean Dynamics. Cambridge: Cambridge University Press, 2007. http://dx.doi.org/10.1017/cbo9780511535901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Mann, Peter. Lagrangian and Hamiltonian Dynamics. Oxford University Press, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
48

Mann, Peter. Lagrangian and Hamiltonian Dynamics. Oxford University Press, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
49

Mann, Peter. Lagrangian and Hamiltonian Dynamics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.001.0001.

Full text
Abstract:
This book explores the fascinating subject of classical mechanics, which is the pinnacle of nineteenth-century physics, from a fresh and exciting viewpoint. With its foundations laid down in ancient Greece, classical physics was truly born in the 1700s with Sir Isaac Newton’s discoveries and quickly developed into the modern scientific method that is commonplace today. After the Newtonian revolution, others reformulated classical mechanics into different descriptions and new formalisms, each uncovering novel aspects of the mathematical and geometrical laws of nature. Over the last 400 years, classical physics has been used to engineer bridges, railways, engines, antennas, planes and much, much more. Classical mechanics is still a vibrant field of active research in theoretical physics and, to this day, captures the excitement of many physicists. Classical mechanics persists today due to its incredible practicality and as the physical embodiment of many fields of abstract mathematics. In this book, the reader journeys from Newton’s three laws of motion to analytical mechanics and Lagrangian and Hamiltonian dynamics, as well as the formulations of Jacobi and many other hard-working natural philosophers who lend their names to classical mechanics.
APA, Harvard, Vancouver, ISO, and other styles
50

Sorrentino, Alfonso. Tonelli Lagrangians and Hamiltonians on Compact Manifolds. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691164502.003.0001.

Full text
Abstract:
This chapter introduces the basic setting: Tonelli Lagrangians and Hamiltonians on a compact manifold. It discusses their main properties and some examples, and provides the opportunity to recall some basic facts on Lagrangian and Hamiltonian dynamics (and on their mutual relation), which will be of fundamental importance in the discussion thereafter.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography