Dissertations / Theses on the topic 'Hamiltonian and Lagrangian dynamics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Hamiltonian and Lagrangian dynamics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Foxman, Jerome Adam. "The Maslov index in Hamiltonian dynamical systems." Thesis, University of Bristol, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326680.
Full textHosein, Falahaty. "Enhanced fully-Lagrangian particle methods for non-linear interaction between incompressible fluid and structure." Kyoto University, 2018. http://hdl.handle.net/2433/235070.
Full textRypina, Irina I. "Lagrangian Coherent Structures and Transport in Two-Dimensional Incompressible Flows with Oceanographic and Atmospheric Applications." Scholarly Repository, 2007. http://scholarlyrepository.miami.edu/oa_dissertations/14.
Full textMehrmann, Volker, and Hongguo Xu. "Lagrangian invariant subspaces of Hamiltonian matrices." Universitätsbibliothek Chemnitz, 2005. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200501133.
Full textSchwingenheuer, Martin. "Hamiltonian unknottedness of certain monotone Lagrangian tori in S2xS2." Diss., lmu, 2010. http://nbn-resolving.de/urn:nbn:de:bvb:19-123969.
Full textFaber, Nicolas Boily Christian M. Portegies Zwart Simon. "Orbital complexity in Hamiltonian dynamics." Strasbourg : Université de Starsbourg, 2009. http://eprints-scd-ulp.u-strasbg.fr:8080/secure/00001111/01/FABER_Nicolas_2008-restrict.pdf.
Full textThèse soutenue sur un ensemble de travaux. Thèse soutenue en co-tutelle. Titre provenant de l'écran-titre. Notes bibliogr.
Faber, Nicolas. "Orbital complexity in Hamiltonian dynamics." Université Louis Pasteur (Strasbourg) (1971-2008), 2008. https://publication-theses.unistra.fr/restreint/theses_doctorat/2008/FABER_Nicolas_2008.pdf.
Full textThe monitoring of physical phenomena (often) rests on a mapping of an observable as a function of time. Such time series encode basic information about the state of the system under study. In this thesis, we build on this concept to explore the intricate evolution of gravitational Hamiltonian systems. We treat the phase-space coordinates of celestial bodies as signals which we then analyze using processing techniques, such as autocorrelation identification and wavelet transforms. We consider in turn the large-scale dynamics of galaxies, and the internal dynamics of dense stellar clusters. [. . . ]
Schöberl, Markus. "Geometry and control of mechanical systems an Eulerian, Lagrangian and Hamiltonian approach." Aachen Shaker, 2007. http://d-nb.info/989019306/04.
Full textSalmon, Daniel. "Dynamics of Systems With Hamiltonian Monodromy." W&M ScholarWorks, 2018. https://scholarworks.wm.edu/etd/1550153890.
Full textPrieto, Martínez Pere Daniel. "Geometrical structures of higher-order dynamical systems and field theories." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/284215.
Full textLa física geomètrica és una branca relativament jove de la matemàtica aplicada que es va iniciar als anys 60 i 70 qua A. Lichnerowicz, W.M. Tulczyjew and J.M. Souriau, entre molts altres, van començar a estudiar diversos problemes en física usant mètodes de geometria diferencial. Aquesta "geometrització" proporciona una manera d'analitzar les característiques dels sistemes físics des d'una perspectiva global, obtenint així propietats qualitatives que faciliten la integració de les equacions que els descriuen. D'ençà s'ha produït un fort desenvolupamewnt en el tractament intrínsic d'una gran varietat de problemes en física teòrica, matemàtica aplicada i teoria de control usant mètodes de geometria diferencial. Gran part del treball realitzat en la física geomètrica des dels seus primers dies s'ha dedicat a l'estudi de teories de primer ordre, és a dir, teories tals que la informació física depèn en, com a molt, derivades de primer ordre de les coordenades de posició generalitzades (velocitats). Tanmateix, hi ha teories en física en les que la informació física depèn de manera explícita en acceleracions o derivades d'ordre superior de les coordenades de posició generalitzades, requerint, per tant, d'eines geomètriques més sofisticades per a modelar-les de manera acurada. En aquesta Tesi Doctoral ens proposem donar una descripció geomètrica d'algunes d'aquestes teories. En particular, estudiarem sistemes dinàmics i teories de camps tals que la seva informació dinàmica ve donada en termes d'una funció lagrangiana, o d'un hamiltonià que prové d'un sitema lagrangià. Per a ser més precisos emprarem la formulació unificada Lagrangiana-Hamiltoniana per tal de desenvolupar marcs geomètrics per a sistemes dinàmics d'ordre superior autònoms i no autònoms, i per a teories de camps de segon ordre. Amb aquest marc geomètric estudiarem alguns exemples físics rellevants i algunes aplicacions, com la teoria de Hamilton-Jacobi per a sistemes mecànics d'ordre superior, partícules relativístiques amb spin i problemes de deformació en mecànica, i l'equació de Korteweg-de Vries i altres sistemes en teories de camps.
Shchekinova, Elena Y. "Analysis of Multidimensional Phase Space Hamiltonian Dynamics: Methods and Applications." Diss., Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-03172006-083600/.
Full textMustafa Aral, Committee Member ; John Wood, Committee Member ; Kurt Wiesenfeld, Committee Member ; M. Raymond Flannery, Committee Member ; Turgay Uzer, Committee Chair.
Reich, Sebastian. "Smoothed dynamics of highly oscillatory Hamiltonian systems." Universität Potsdam, 1995. http://opus.kobv.de/ubp/volltexte/2007/1563/.
Full textOms, Cédric. "Global Hamiltonian dynamics on singular symplectic manifolds." Doctoral thesis, Universitat Politècnica de Catalunya, 2020. http://hdl.handle.net/10803/669831.
Full textEn esta tesis, estudiamos la dinámica de Reeb y Hamiltoniana en variedades simplécticas y de contacto con singularidades. El estudio de estas variedades está motivado por singularidades que tienen su origen en la mecánica clásica y la dinámica de fluidos. Empezamos estudiando una generalización de las estructuras de contacto, en la cual la condición de no integrabilidad falla en una hipersuperficie, llamada la hipersuperficie crítica. Estas estructuras geométricas, llamadas estructuras de $b$-contacto, surgen de hipersuperficies en variedades $b$-simplécticas, estudiadas en el pasado. Hasta el momento, este equivalente de dimensión impar de la geometría $b$-simpléctica ha sido desatendido en la literatura existente. Después de los primeros ejemplos, probamos la existencia de formas locales. Estudiamos la geometría local de estas variedades usando el lenguaje de variedades de Jacobi, que resultan ser técnicas adecuadas para entender la estructura geométrica en la hipersuperficie crítica. Consideramos también singularidades de orden superior, formas de $b^m$-contacto, y singularidades de tipo folded. Continuamos con el estudio de las obstrucciones a la existencia de estas estructuras y relacionamos la topología de variedades de $b^m$-contacto con la existencia de hipersuperficies convexas. Describimos relaciones entre formas de $b^m$-contacto y formas de contacto diferenciables usando técnicas de desingularización. Examinamos las propiedades del campo de Reeb asociado a una forma de $b^m$-contacto dada. La relación de estas estructuras con la mecánica celeste pone en relieve la importancia del estudio de órbitas periódicas de este campo vectorial. Comprobamos que, en dimensión $3$, el campo de Reeb en la hipersuperficie crítica admite infinitas órbitas periódicas. Sin embargo, describimos ejemplos sin órbitas periódicas fuera de la hipersuperficie crítica en cualquier dimensión. Comprobamos la existencia de traps y discutimos la posible existencia de plugs. En el caso de un disco \emph{overtwisted} fuera de la hipersuperficie se satisface la conjetura de Weinstein: en concreto, o bien existe una órbita periódica de Reeb fuera de la hipersuperficie de contacto o bien existe una familia de órbitas periódicas en un entorno de la hipersuperficie. Estos resultados sugieren una versión singular de dicha conjetura. Aplicamos los resultados obtenidos al caso del problema de los tres cuerpos restringido circular: comprobamos que después del cambio de coordenadas de McGehee, existen infinitas órbitas periódicas en la variedad en el infinito para valores positivos de la energía.
Koch, Christiane. "Quantum dissipative dynamics with a surrogate Hamiltonian." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2002. http://dx.doi.org/10.18452/14816.
Full textThis thesis investigates condensed phase quantum systems which interact with their environment and which are subject to ultrashort laser pulses. For such systems the timescales of the involved processes cannot be separated, and standard approaches to treat open quantum systems fail. The Surrogate Hamiltonian method represents one example of a number of new approaches to address quantum dissipative dynamics. Its further development and application to phenomena under current experimental investigation are presented. The single dissipative processes are classified and discussed in the first part of this thesis. In particular, a model of dephasing is introduced into the Surrogate Hamiltonian method. This is of importance for future work in fields such as coherent control and quantum computing. In regard to these subjects, it is a great advantage of the Surrogate Hamiltonian over other available methods that it relies on a spin, i.e. a fully quantum mechanical description of the bath. The Surrogate Hamiltonian method is applied to a standard model of charge transfer in condensed phase, two nonadiabatically coupled harmonic oscillators immersed in a bath. This model is still an oversimplification of, for example, a molecule in solution, but it serves as testing ground for the theoretical description of a prototypical ultrafast pump-probe experiment. All qualitative features of such an experiment are reproduced and shortcomings of previous treatments are identified. Ultrafast experiments attempt to monitor reaction dynamics on a femtosecond timescale. This can be captured particularly well by the Surrogate Hamiltonian as a method based on a time-dependent picture. The combination of the numerical solution of the time-dependent Schrödinger equation with the phase space visualization given by the Wigner function allows for a step by step following of the sequence of events in a charge transfer cycle in a very intuitive way. The utility of the Surrogate Hamiltonian is furthermore significantly enhanced by the incorporation of the Filter Diagonalization method. This allows to obtain frequency domain results from the dynamics which can be converged within the Surrogate Hamiltonian approach only for comparatively short times. The second part of this thesis is concerned with the theoretical treatment of laser induced desorption of small molecules from oxide surfaces. This is an example which allows for a description of all aspects of the problem with the same level of rigor, i.e. ab initio potential energy surfaces are combined with a microscopic model for the excitation and relaxation processes. This model of the interaction between the excited adsorbate-substrate complex and substrate electron-hole pairs relies on a simplified description of the electron-hole pairs as a bath of dipoles, and a dipole-dipole interaction between system and bath. All parameters are connected to results from electronic structure calculations. The obtained desorption probabilities and desorption velocities are simultaneously found to be in the right range as compared to the experimental results. The Surrogate Hamiltonian approach therefore allows for a complete description of the photodesorption dynamics on an ab initio basis for the first time.
Sweet, Christopher Richard. "Hamiltonian thermostatting techniques for molecular dynamics simulation." Thesis, University of Leicester, 2004. http://hdl.handle.net/2381/30526.
Full textDemir, Ali Sait. "On The Algebraic Structure Of Relative Hamiltonian Diffeomorphism Group." Phd thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/12609301/index.pdf.
Full textFredriksson, Adam. "Visual Comparison of Lagrangian and Semi-Lagrangian fluid simulation." Thesis, Blekinge Tekniska Högskola, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-14838.
Full textKompaneets, Roman. "Complex plasmas: Interaction potentials and non-Hamiltonian dynamics." Diss., lmu, 2007. http://nbn-resolving.de/urn:nbn:de:bvb:19-73804.
Full textHecht, Michael. "Isomorphic chain complexes of Hamiltonian dynamics on tori." Doctoral thesis, Universitätsbibliothek Leipzig, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-123279.
Full textLambert, Paul. "Canonical analysis of double null relativistic Hamiltonian dynamics." Thesis, University of Southampton, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.411862.
Full textYudichak, Thomas William. "Hamiltonian methods in weakly nonlinear Vlasov-Poisson dynamics /." Full text (PDF) from UMI/Dissertation Abstracts International, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3008481.
Full textMašek, Jan. "Modelování postkritických stavů štíhlých konstrukcí." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2016. http://www.nusl.cz/ntk/nusl-239983.
Full textChoo, Kiam. "Learning hyperparameters for neural network models using Hamiltonian dynamics." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0008/MQ53385.pdf.
Full textCamarena, Julian Antolin Oks E. A. "Application of generalized Hamiltonian dynamics to modified Coulomb potential." Auburn, Ala, 2008. http://repo.lib.auburn.edu/EtdRoot/2008/FALL/Physics/Thesis/Camarena_Julian_6.pdf.
Full textMangoubi, Oren (Oren Rami). "Integral geometry, Hamiltonian dynamics, and Markov Chain Monte Carlo." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/104583.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 97-101).
This thesis presents applications of differential geometry and graph theory to the design and analysis of Markov chain Monte Carlo (MCMC) algorithms. MCMC algorithms are used to generate samples from an arbitrary probability density [pi] in computationally demanding situations, since their mixing times need not grow exponentially with the dimension of [pi]. However, if [pi] has many modes, MCMC algorithms may still have very long mixing times. It is therefore crucial to understand and reduce MCMC mixing times, and there is currently a need for global mixing time bounds as well as algorithms that mix quickly for multi-modal densities. In the Gibbs sampling MCMC algorithm, the variance in the size of modes intersected by the algorithm's search-subspaces can grow exponentially in the dimension, greatly increasing the mixing time. We use integral geometry, together with the Hessian of r and the Chern-Gauss-Bonnet theorem, to correct these distortions and avoid this exponential increase in the mixing time. Towards this end, we prove a generalization of the classical Crofton's formula in integral geometry that can allow one to greatly reduce the variance of Crofton's formula without introducing a bias. Hamiltonian Monte Carlo (HMC) algorithms are some the most widely-used MCMC algorithms. We use the symplectic properties of Hamiltonians to prove global Cheeger-type lower bounds for the mixing times of HMC algorithms, including Riemannian Manifold HMC as well as No-U-Turn HMC, the workhorse of the popular Bayesian software package Stan. One consequence of our work is the impossibility of energy-conserving Hamiltonian Markov chains to search for far-apart sub-Gaussian modes in polynomial time. We then prove another generalization of Crofton's formula that applies to Hamiltonian trajectories, and use our generalized Crofton formula to improve the convergence speed of HMC-based integration on manifolds. We also present a generalization of the Hopf fibration acting on arbitrary- ghost-valued random variables. For [beta] = 4, the geometry of the Hopf fibration is encoded by the quaternions; we investigate the extent to which the elegant properties of this encoding are preserved when one replaces quaternions with general [beta] > 0 ghosts.
by Oren Mangoubi.
Ph. D.
Many, Manda Bertin. "Nonlinear dynamics and chaos in multidimensional disordered Hamiltonian systems." Doctoral thesis, Faculty of Science, 2021. http://hdl.handle.net/11427/33780.
Full textLamont, M. J. "Hamiltonian lattice gauge theory : A cluster expansion approach." Thesis, University of Liverpool, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.382063.
Full textLahiri, Sudeep Kumar. "Variationally consistent methods for Lagrangian dynamics in continuum mechanics." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/39597.
Full textIncludes bibliographical references (p. 135-143).
Rapid dynamics are commonly encountered in industrial applications such as forging, crash tests and many others. These problems are typically non-linear due to large deformations and/or non-linear constitutive relations. Such problems are typically modelled from a Lagrangian viewpoint, where the mesh is attached to the body; hence, large deformations lead to large distortions in the mesh. Explicit numerical methods are considered to be efficient in these cases where large meshes and small time-steps are employed for spatial and temporal resolution. However, incompressible and nearly incompressible materials pose a problem as the timestep stability restriction in explicit methods becomes increasingly severe. Most of the numerical methods employed for such simulations, are developed from discretization of the equations of motion. Recently, Variational Integrators have been developed where the numerical time integration scheme is developed from a variational principle based on Hamilton's principle of stationary action. Such methods ensure conservation of linear and angular momentum, which lead to more physically consistent simulations.
(cont.) In this research, numerical methods addressing incompressibility and mesh distortions have been developed under a variational framework. A variational formulation for mesh adaptation procedures, involving local mesh changes for triangular meshes, is presented. Such procedures are very well suited for explicit methods, without significant expense. Conservation properties of such methods are proved and demonstrated. Further, a Fractional Time-Step method is developed, from a variational framework, for incompressible and nearly incompressible problems. Algorithmic details are presented, followed by examples demonstrating the performance of the method.
by Sudeep K. Lahiri.
Ph.D.
Ellis, Truman Everett. "High Order Finite Elements for Lagrangian Computational Fluid Dynamics." DigitalCommons@CalPoly, 2010. https://digitalcommons.calpoly.edu/theses/282.
Full textPiddington, Kyle C. "Eulerian on Lagrangian Cloth Simulation." DigitalCommons@CalPoly, 2017. https://digitalcommons.calpoly.edu/theses/1778.
Full textBremner, Michael J. "Characterizing entangling quantum dynamics /." [St. Lucia, Qld.], 2005. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe19023.pdf.
Full textSantos, Jaime Eduardo Moutinho. "Non-equilibrium dynamics of reaction-diffusion processes." Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.361994.
Full textMcCabe, Ryan Matthew. "Small-scale coastal dynamics and mixing from a Lagrangian perspective /." Thesis, Connect to this title online; UW restricted, 2008. http://hdl.handle.net/1773/10963.
Full textLacey, Scott Michael. "Ray and wave dynamics in three dimensional asymmetric optical resonators /." view abstract or download file of text, 2003. http://wwwlib.umi.com/cr/uoregon/fullcit?p3102173.
Full textTypescript. Includes vita and abstract. Includes bibliographical references (leaves 184-187). Also available for download via the World Wide Web; free to University of Oregon users.
Fletcher, Steven James. "Higher order balance conditions using Hamiltonian dynamics for numerical weather prediction." Thesis, University of Reading, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.398406.
Full textSmale, Jonathan Ross. "Fitting and using model Hamiltonian in non-adiabatic molecular dynamics simulations." Thesis, University of Birmingham, 2012. http://etheses.bham.ac.uk//id/eprint/3764/.
Full textLeonard, Amaury. "Aspects of higher spin Hamiltonian dynamics: Conformal geometry, duality and charges." Doctoral thesis, Universite Libre de Bruxelles, 2017. https://dipot.ulb.ac.be/dspace/bitstream/2013/253872/4/main.pdf.
Full textDoctorat en Sciences
info:eu-repo/semantics/nonPublished
Leonard, Amaury. "Aspects of higher spin Hamiltonian dynamics: Conformal geometry, duality and charges." Doctoral thesis, Universite Libre de Bruxelles, 2007. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/253872.
Full textDoctorat en Sciences
info:eu-repo/semantics/nonPublished
Harter, Braxton Nicholas. "Lagrangian Coherent Structures in Vortex Ring Formation." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1565828293505214.
Full textMaksymczuk, J. "Nonlinear equilibration of fast dynamics." Thesis, University of Essex, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302631.
Full textXu, Danya. "Lagrangian Study of Particle Transport Processes in the Coastal Gulf of Maine." Fogler Library, University of Maine, 2008. http://www.library.umaine.edu/theses/pdf/XuD2008.pdf.
Full textGonzalez, David R. "Development of a Semi-Lagrangian Methodology for Jet Aeroacoustics Analysis." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1467201142.
Full textMartin, Stephan [Verfasser]. "Applied Kinetic PDEs: Collective behavior models and Hamiltonian energy dynamics / Stephan Martin." München : Verlag Dr. Hut, 2012. http://d-nb.info/1025821270/34.
Full textCapoani, Federico. "Adiabatic theory for slowly varying Hamiltonian systems with applications to beam dynamics." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/16855/.
Full textManos, Athanasios. "A study of hamiltonian dynamics with applications to models of barred galaxies." Aix-Marseille 1, 2008. http://www.theses.fr/2008AIX11080.
Full textThis thesis addresses questions and presents results that require the combination of two disciplines : on the one hand, we wish to develop and understand fundamental tools of Hamiltonian systems and, on the other hand, we plan to use them to study the dynamics of certain basic models of barred galaxies. For this reason we shall start by investigating some important dynamical phenomena concerning the stability of periodic oscillations in N degree of freedom Hamiltonian systems and N coupled symplectic maps. Furthermore, we will extend our study to the vicinity of such motions and analyze quasiperiodic orbits aiming to find conditions under which they break down and chaotic behavior settles in. This will be accomplished by computing the GALI indices along every reference orbit. If the central periodic orbit is stable, the GALI method can be used to determine the dimensionality of the tori surrounding this orbit in the 2N–dimensional phase space. Furthermore, it can be applied to detect regimes where such tori cease to exist and most choices of initial conditions lead to chaotic orbits. We shall do this by studying a system of N coupled standard maps, searching for stable periodic motion surrounded by of tori beyond which there is chaos. In order to achieve this goal, we choose two different types of initial conditions: a) localized in real space, exciting a “small” number of particles (called a breather) and studying their regular or chaotic motion and b) localized in Fourier space (called q–breather), exciting a “small” number of normal modes and studying recurrence phenomena. We then turn to the detailed study of orbital star motion in galactic potentials which constitutes a fundamental aspect of dynamical astronomy and is the second major theme of this thesis. Starting with models that describe galaxies and their star motion, it is well–known that the analysis of periodic orbits, and their stability, can provide very useful information about galaxy evolution. Stable periodic orbits are associated with regular motion, since they are surrounded by quasi– periodic tori. A fundamental question that arises therefore is what is the extent of these stability regions? Another recent result in galactic dynamics is that there are also several chaotic orbits that can support galaxy features, like rotating bars. The phenomenon of “stickiness” (“sticky” orbits) is also very common in this kind of Hamiltonian systems, i. E. Orbits that their chaotic nature takes a long time to be revealed. Several new chaos detection methods have been introduced and applied in the last years for the detection of chaotic and regular motion in galaxy models, either by studying the behavior of deviation vectors or by analyzing time series constructed by the coordinates of each orbit. In this thesis, we shall focus on a Ferrers’ barred galaxy model and study not only the distinction between regular, sticky and chaotic solutions but also the significance of these findings over time interval that have a physical meaning, i. E. Roughly a Hubble time. To accomplish this we will use the method Generalized Alignment Indexes (GALI) for the distinction between the chaotic and regular motion as well as new ways of interpreting Fourier spectra and momentum distribution. Combining all these we achieve two goals: First, we are able to detect fast and efficiently the true nature of the orbits and second, we can distinguish between chaotic orbits with different types of orbital diffusion in real space. We find that there are chaotic orbits that behave in a “regular–like” manner for long enough times that their characteristics are not yet revealed from an observational point of view. Finally, we present some results concerning several regular orbits with regard to their orbital complexity, in terms of torus dimensionality
Wang, Yushi Politano Marcela Weber Larry Joseph. "A multidimensional Eulerian-Lagrangian model to predict organism distribution." [Iowa City, Iowa] : University of Iowa, 2009. http://ir.uiowa.edu/etd/447.
Full textZschenderlein, Philipp [Verfasser], and A. H. [Akademischer Betreuer] Fink. "Lagrangian Dynamics of European heat waves / Philipp Zschenderlein ; Betreuer: A. H. Fink." Karlsruhe : KIT-Bibliothek, 2020. http://d-nb.info/1215190565/34.
Full textDe, Sousa Dias Maria Esmeralda Rodrigues. "Local dynamics of symmetric Hamiltonian systems with application to the affine rigid body." Thesis, University of Warwick, 1995. http://wrap.warwick.ac.uk/107563/.
Full textSilverberg, Jon P. "On Lagrangian meshless methods in free-surface flows." Thesis, (1.7 MB), 2005. http://edocs.nps.edu/AR/topic/theses/2005/Jan/05Jan_Silverberg.pdf.
Full text"January 2005." Description based on title screen as viewed on May 25, 2010. DTIC Descriptor(s): Fluid Dynamics, Lagrangian Functions, Equations Of Motion, Acceleration, Formulations, Grids, Continuum Mechanics, Gaussian Quadrature, Derivatives (Mathematics), Compact Disks, Boundary Value Problems, Polynomials, Interpolation, Pressure, Operators (Mathematics). DTIC Identifier(s): Multimedia (CD-Rom), Moving Grids, Meshless Discretization, Lifs (Lagrange Implicit Fraction Step), Lagrangian Dynamics, Meshless Operators, Mlip (Multidimensional Lagrange Interpolating Polynomials), Flux Boundary Conditions, Radial Basis Functions Includes bibliographical references (58-59).
Wong, Brian 1978. "Dynamics of a multi-tethered satellite system near the sun-earth Lagrangian point." Thesis, McGill University, 2003. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=80151.
Full text