Journal articles on the topic 'Hamiltonian equivalence'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Hamiltonian equivalence.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Qian, Jing, Yun Zeng, Li Xiang Zhang, and Tian Mao Xu. "Analysis on Equivalence between Transfer Function and Equivalent Circuit Simulation in General Hamiltonian Modeling." Applied Mechanics and Materials 204-208 (October 2012): 4896–99. http://dx.doi.org/10.4028/www.scientific.net/amm.204-208.4896.
Full textNikitin, A. G., and V. V. Tretynyk. "Parasupersymmetries and Non-Lie Constants of Motion for Two-Particle Equations." International Journal of Modern Physics A 12, no. 24 (1997): 4369–86. http://dx.doi.org/10.1142/s0217751x97002371.
Full textDERIGLAZOV, A. A., W. OLIVEIRA, and G. OLIVEIRA-NETO. "EQUIVALENCE BETWEEN DIFFERENT CLASSICAL TREATMENTS OF THE O(N) NONLINEAR SIGMA MODEL AND THEIR FUNCTIONAL SCHRÖDINGER EQUATIONS." International Journal of Modern Physics A 18, no. 05 (2003): 755–66. http://dx.doi.org/10.1142/s0217751x03013867.
Full textBalajany, Hamideh, and Mohammad Mehrafarin. "Geometric phase of cosmological scalar and tensor perturbations in f(R) gravity." Modern Physics Letters A 33, no. 14 (2018): 1850077. http://dx.doi.org/10.1142/s0217732318500773.
Full textM, Nandakumar, and K. S. Subrahamanian Moosath. "Rough Liouville Equivalence of Integrable Hamiltonian Systems." Advances in Dynamical Systems and Applications 15, no. 2 (2020): 153–69. http://dx.doi.org/10.37622/adsa/15.2.2020.153-169.
Full textNirov, Kh S., and A. V. Razumov. "Equivalence between Lagrangian and Hamiltonian BRST formalisms." Journal of Mathematical Physics 34, no. 9 (1993): 3933–53. http://dx.doi.org/10.1063/1.530410.
Full textMartynchuk, N. N. "Semi-local Liouville equivalence of complex Hamiltonian systems defined by rational Hamiltonian." Topology and its Applications 191 (August 2015): 119–30. http://dx.doi.org/10.1016/j.topol.2015.05.090.
Full textAMICO, LUIGI. "ALGEBRAIC EQUIVALENCE BETWEEN CERTAIN MODELS FOR SUPERFLUID–INSULATOR TRANSITION." Modern Physics Letters B 14, no. 21 (2000): 759–66. http://dx.doi.org/10.1142/s0217984900000963.
Full textCheng, Daizhan, Alessandro Astolfi, and Romeo Ortega. "On feedback equivalence to port controlled Hamiltonian systems." Systems & Control Letters 54, no. 9 (2005): 911–17. http://dx.doi.org/10.1016/j.sysconle.2005.02.005.
Full textSalat, A. "Hamiltonian Approach to Magnetic Fields with Toroidal Surfaces." Zeitschrift für Naturforschung A 40, no. 10 (1985): 959–67. http://dx.doi.org/10.1515/zna-1985-1001.
Full textNIROV, KH S., and A. V. RAZUMOV. "FIELD-ANTIFIELD AND BFV FORMALISMS FOR QUADRATIC SYSTEMS WITH OPEN GAUGE ALGEBRAS." International Journal of Modern Physics A 07, no. 23 (1992): 5719–38. http://dx.doi.org/10.1142/s0217751x9200260x.
Full textBERING, K. "FROM HAMILTONIAN TO LAGRANGIAN Sp(2) BRST QUANTIZATION." Modern Physics Letters A 11, no. 06 (1996): 499–513. http://dx.doi.org/10.1142/s0217732396000540.
Full textZhu, W. Q., T. T. Soong, and Y. Lei. "Equivalent Nonlinear System Method for Stochastically Excited Hamiltonian Systems." Journal of Applied Mechanics 61, no. 3 (1994): 618–23. http://dx.doi.org/10.1115/1.2901504.
Full textYOKOMICHI, Masahiro, and Masasuke SHIMA. "Equivalence and Normal Form for Nonlinear Hamiltonian Control Systems." Transactions of the Society of Instrument and Control Engineers 30, no. 6 (1994): 609–16. http://dx.doi.org/10.9746/sicetr1965.30.609.
Full textChang, Dong Eui, Anthony M. Bloch, Naomi E. Leonard, Jerrold E. Marsden, and Craig A. Woolsey. "The Equivalence of Controlled Lagrangian and Controlled Hamiltonian Systems." ESAIM: Control, Optimisation and Calculus of Variations 8 (2002): 393–422. http://dx.doi.org/10.1051/cocv:2002045.
Full textAhlbrandt, C. D. "Equivalence of Discrete Euler Equations and Discrete Hamiltonian Systems." Journal of Mathematical Analysis and Applications 180, no. 2 (1993): 498–517. http://dx.doi.org/10.1006/jmaa.1993.1413.
Full textWEITZMAN, MARTIN L. "The linearised Hamiltonian as comprehensive NDP." Environment and Development Economics 5, no. 1 (2000): 55–68. http://dx.doi.org/10.1017/s1355770x0000005x.
Full textBATALIN, I. A., and I. V. TYUTIN. "ON THE PERTURBATIVE EQUIVALENCE BETWEEN THE HAMILTONIAN AND LAGRANGIAN QUANTIZATIONS." International Journal of Modern Physics A 11, no. 08 (1996): 1353–66. http://dx.doi.org/10.1142/s0217751x96000626.
Full textZhu, W. Q., and Y. Lei. "Equivalent Nonlinear System Method for Stochastically Excited and Dissipated Integrable Hamiltonian Systems." Journal of Applied Mechanics 64, no. 1 (1997): 209–16. http://dx.doi.org/10.1115/1.2787275.
Full textAccardi, Luigi, and Wided Ayed. "Free white noise flows." Infinite Dimensional Analysis, Quantum Probability and Related Topics 20, no. 03 (2017): 1750014. http://dx.doi.org/10.1142/s021902571750014x.
Full textSk, Nayem, and Abhik Kumar Sanyal. "Why scalar–tensor equivalent theories are not physically equivalent?" International Journal of Modern Physics D 26, no. 14 (2017): 1750162. http://dx.doi.org/10.1142/s0218271817501620.
Full textTAO, R. B., X. HU, and M. SUZUKI. "DISCUSSION ON THE MEAN FIELD APPROXIMATION IN THE RVB THEORY." Modern Physics Letters B 02, no. 10 (1988): 1205–9. http://dx.doi.org/10.1142/s0217984988001144.
Full textGrigoryan, G. V., R. P. Grigoryan, and I. V. Tyutin. "Equivalence of lagrangian and hamiltonian BRST quantizations: the general case." Nuclear Physics B 379, no. 1-2 (1992): 304–18. http://dx.doi.org/10.1016/0550-3213(92)90598-6.
Full textPasserini, A., M. Bregola, G. Callegari, and C. Ferrario. "Infinitesimal transformations and equivalence of the Lagrangian and Hamiltonian descriptions." European Journal of Physics 14, no. 5 (1993): 211–16. http://dx.doi.org/10.1088/0143-0807/14/5/004.
Full textBatlle, C., J. Gomis, J. M. Pons, and N. Roman‐Roy. "Equivalence between the Lagrangian and Hamiltonian formalism for constrained systems." Journal of Mathematical Physics 27, no. 12 (1986): 2953–62. http://dx.doi.org/10.1063/1.527274.
Full textGOVAERTS, JAN. "HAMILTONIAN REDUCTION OF FIRST-ORDER ACTIONS." International Journal of Modern Physics A 05, no. 18 (1990): 3625–40. http://dx.doi.org/10.1142/s0217751x90001574.
Full textSHAFIEE, M. "ON HAMILTONIAN GROUP OF MULTISYMPLECTIC MANIFOLDS." International Journal of Geometric Methods in Modern Physics 08, no. 05 (2011): 929–35. http://dx.doi.org/10.1142/s0219887811005506.
Full textECHEVERRÍA ENRÍQUEZ, A., M. C. MUÑOZ LECANDA, and N. ROMÁN ROY. "GEOMETRICAL SETTING OF TIME-DEPENDENT REGULAR SYSTEMS: ALTERNATIVE MODELS." Reviews in Mathematical Physics 03, no. 03 (1991): 301–30. http://dx.doi.org/10.1142/s0129055x91000114.
Full textBANERJEE, RABIN, BISWAJIT CHAKRABORTY, and TOMY SCARIA. "POLARIZATION VECTORS AND DOUBLET STRUCTURE IN PLANAR FIELD THEORY." International Journal of Modern Physics A 16, no. 24 (2001): 3967–88. http://dx.doi.org/10.1142/s0217751x01005092.
Full textde León, Manuel, and Manuel Lainz Valcázar. "Singular Lagrangians and precontact Hamiltonian systems." International Journal of Geometric Methods in Modern Physics 16, no. 10 (2019): 1950158. http://dx.doi.org/10.1142/s0219887819501585.
Full textPopescu, Liviu. "Dual Structures on the Prolongations of a Lie Algebroid." Annals of the Alexandru Ioan Cuza University - Mathematics 59, no. 2 (2013): 373–90. http://dx.doi.org/10.2478/v10157-012-0037-4.
Full textMartins, Ricardo Miranda. "Formal equivalence between normal forms of reversible and hamiltonian dynamical systems." Communications on Pure and Applied Analysis 13, no. 2 (2013): 703–13. http://dx.doi.org/10.3934/cpaa.2014.13.703.
Full textDresse, Alain, Philippe Gregoire, and Marc Henneaux. "Path-integral equivalence between the extended and non-extended hamiltonian formalisms." Physics Letters B 245, no. 2 (1990): 192–96. http://dx.doi.org/10.1016/0370-2693(90)90132-p.
Full textPedroni, Marco. "Equivalence of the Drinfeld-Sokolov reduction to a bi-Hamiltonian reduction." Letters in Mathematical Physics 35, no. 4 (1995): 291–302. http://dx.doi.org/10.1007/bf00750836.
Full textDresse, Alain, Jean M. L. Fisch, Philippe Gregoire, and Marc Henneaux. "Equivalence of the Hamiltonian and Lagrangian path integrals for gauge theories." Nuclear Physics B 354, no. 1 (1991): 191–217. http://dx.doi.org/10.1016/0550-3213(91)90182-w.
Full textGrosse-Knetter, Carsten. "Equivalence of Hamiltonian and Lagrangian path integral quantization: Effective gauge theories." Physical Review D 49, no. 4 (1994): 1988–95. http://dx.doi.org/10.1103/physrevd.49.1988.
Full textBecker, W. "On the equivalence of the r·E and the p·A interaction hamiltonian." Optics Communications 56, no. 2 (1985): 107–11. http://dx.doi.org/10.1016/0030-4018(85)90211-1.
Full textBahr, Benjamin, and Klaus Liegener. "Towards exploring features of Hamiltonian renormalisation relevant for quantum gravity." Classical and Quantum Gravity 39, no. 7 (2022): 075010. http://dx.doi.org/10.1088/1361-6382/ac5050.
Full textCASTAGNINO, M., M. L. LEVINAS, and N. UMÉREZ. "GRAVITATIONAL AND MATTER ENERGY–MOMENTUM DENSITIES AND EQUIVALENCE PRINCIPLE IN NON-RIEMANNIAN GEOMETRIES." International Journal of Modern Physics A 14, no. 30 (1999): 4721–34. http://dx.doi.org/10.1142/s0217751x99002219.
Full textMuslih, S. I. "The equivalence between the Hamiltonian and Lagrangian formulations for the parametrization-invariant theories." International Journal of Mathematics and Mathematical Sciences 30, no. 1 (2002): 9–14. http://dx.doi.org/10.1155/s016117120201253x.
Full textGolasiński, Marek. "On equivariant disconnected rational homotopy theory." gmj 17, no. 2 (2010): 229–40. http://dx.doi.org/10.1515/gmj.2010.008.
Full textVedyushkina, V. V., and A. T. Fomenko. "Force Evolutionary Billiards and Billiard Equivalence of the Euler and Lagrange Cases." Doklady Mathematics 103, no. 1 (2021): 1–4. http://dx.doi.org/10.1134/s1064562421010154.
Full textAbarbanel, Henry D. I., Paul J. Rozdeba, and Sasha Shirman. "Machine Learning: Deepest Learning as Statistical Data Assimilation Problems." Neural Computation 30, no. 8 (2018): 2025–55. http://dx.doi.org/10.1162/neco_a_01094.
Full textHUQ, M., P. I. OBIAKOR, and S. SINGH. "POINT PARTICLE WITH EXTRINSIC CURVATURE." International Journal of Modern Physics A 05, no. 22 (1990): 4301–10. http://dx.doi.org/10.1142/s0217751x90001793.
Full textCONSTANTINESCU, RADU, and CARMEN IONESCU. "THE EQUIVALENCE BETWEEN THE LAGRANGIAN AND THE HAMILTONIAN FORMALISMS FOR THE EXTENDED BRST SYMMETRY." International Journal of Modern Physics A 21, no. 07 (2006): 1567–75. http://dx.doi.org/10.1142/s0217751x06023949.
Full textChen, Rong-Chao, and Xin Wu. "A Note on the Equivalence of Post-Newtonian Lagrangian and Hamiltonian Formulations." Communications in Theoretical Physics 65, no. 3 (2016): 321–28. http://dx.doi.org/10.1088/0253-6102/65/3/321.
Full textHuveneers, François, and Elias Theil. "Equivalence of Ensembles, Condensation and Glassy Dynamics in the Bose–Hubbard Hamiltonian." Journal of Statistical Physics 177, no. 5 (2019): 917–35. http://dx.doi.org/10.1007/s10955-019-02396-z.
Full textBAYRAKDAR, Tuna, and Abdullah Aziz ERGİN. "Equivalence problem for compatible bi-Hamiltonian structures on three-dimensional orientable manifolds." TURKISH JOURNAL OF MATHEMATICS 42, no. 5 (2018): 2452–65. http://dx.doi.org/10.3906/mat-1708-33.
Full textKorovina, N. V. "Orbital equivalence of integrable Hamiltonian systems in neighborhoods of saddle-center leaves." Doklady Mathematics 73, no. 3 (2006): 399–402. http://dx.doi.org/10.1134/s1064562406030239.
Full textDe Jonghe, Frank. "Schwinger-Dyson BRST symmetry and the equivalence of Hamiltonian and Lagrangian quantisation." Physics Letters B 316, no. 4 (1993): 503–9. http://dx.doi.org/10.1016/0370-2693(93)91035-l.
Full text