Academic literature on the topic 'Hand-crafted'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hand-crafted.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Hand-crafted"
Gray, Katherine. "Hand Crafted: Driftwood Horse." Journal of Hand Surgery 40, no. 5 (May 2015): 1007. http://dx.doi.org/10.1016/j.jhsa.2014.12.033.
Full textTokarczyk, P., J. D. Wegner, S. Walk, and K. Schindler. "BEYOND HAND-CRAFTED FEATURES IN REMOTE SENSING." ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences II-3/W1 (May 16, 2013): 35–40. http://dx.doi.org/10.5194/isprsannals-ii-3-w1-35-2013.
Full textHartshorne, Nikolas J., Donald T. Reay, and Richard C. Harruff. "Accidental Firearm Fatality Involving a Hand-Crafted Pen Gun." American Journal of Forensic Medicine and Pathology 18, no. 1 (March 1997): 92–95. http://dx.doi.org/10.1097/00000433-199703000-00017.
Full textBasirat, Ali, and Heshaam Faili. "Bridge the gap between statistical and hand-crafted grammars." Computer Speech & Language 27, no. 5 (August 2013): 1085–104. http://dx.doi.org/10.1016/j.csl.2013.02.001.
Full textZhang, Tianwen, and Xiaoling Zhang. "Injection of Traditional Hand-Crafted Features into Modern CNN-Based Models for SAR Ship Classification: What, Why, Where, and How." Remote Sensing 13, no. 11 (May 26, 2021): 2091. http://dx.doi.org/10.3390/rs13112091.
Full textSiegel, Dennis, Christian Kraetzer, Stefan Seidlitz, and Jana Dittmann. "Media Forensics Considerations on DeepFake Detection with Hand-Crafted Features." Journal of Imaging 7, no. 7 (July 1, 2021): 108. http://dx.doi.org/10.3390/jimaging7070108.
Full textCahill, Aoife, Michael Burke, Ruth O'Donovan, Stefan Riezler, Josef van Genabith, and Andy Way. "Wide-Coverage Deep Statistical Parsing Using Automatic Dependency Structure Annotation." Computational Linguistics 34, no. 1 (March 2008): 81–124. http://dx.doi.org/10.1162/coli.2008.34.1.81.
Full textTAKAHASHI, KAZUKO, HIROYA TAKAMURA, and MANABU OKUMURA. "Automatic Occupation Coding with Machine Learning and Hand-Crafted Rules." Journal of Natural Language Processing 12, no. 2 (2005): 3–23. http://dx.doi.org/10.5715/jnlp.12.2_3.
Full textCambra‐Fierro, Jesus, Rosario Vazquez‐Carrasco, and Edgar Centeno. "The challenges of internationalising national culture‐based hand‐crafted products." Marketing Intelligence & Planning 27, no. 7 (October 23, 2009): 900–908. http://dx.doi.org/10.1108/02634500911000216.
Full textKeçeli, Ali Seydi, Aydın Kaya, and Seda Uzunçimen Keçeli. "Classification of radiolarian images with hand-crafted and deep features." Computers & Geosciences 109 (December 2017): 67–74. http://dx.doi.org/10.1016/j.cageo.2017.08.011.
Full textDissertations / Theses on the topic "Hand-crafted"
Hague, Andrew Christopher. "Towards deeper learning with hand-crafted courseware." Thesis, University of York, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.362067.
Full textSinger, Ron. "Comparing machine learning and hand-crafted approaches for information extraction from HTML documents." Thesis, McGill University, 2003. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=79127.
Full textTepper, Leslie H. "Hand crafted : creating a market for Canada's Northwest Coast native arts and crafts." Thesis, University of Leicester, 2002. http://hdl.handle.net/2381/31141.
Full textClapés, i. Sintes Albert. "Learning to recognize human actions: from hand-crafted to deep-learning based visual representations." Doctoral thesis, Universitat de Barcelona, 2019. http://hdl.handle.net/10803/666794.
Full textEl reconeixement d’accions és un repte de gran rellevància pel que fa a la visió per computador. Els investigadors que treballen en el camp aspiren a proveir als ordinadors l’habilitat de percebre visualment les accions humanes – és a dir, d’observar, interpretar i comprendre a partir de dades visuals els events que involucren humans i que transcorren en l’entorn físic. Les aplicacions d’aquesta tecnologia són nombroses: interacció home-màquina, e-salut, monitoració/vigilància, indexació de videocontingut, etc. Els mètodes de disseny manual han dominat el camp fins l’aparició dels primers treballs exitosos d’aprenentatge profund, els quals han acabat esdevenint estat de l’art. No obstant, els mètodes de disseny manual resulten útils en certs escenaris, com ara quan no es tenen prou dades per a l’entrenament dels mètodes profunds, així com també aportant coneixement addicional que aquests últims no són capaços d’aprendre fàcilment. És per això que sovint els trobem ambdós combinats, aconseguint una millora general del reconeixement. Aquesta Tesi ha concorregut en el temps amb aquest canvi de paradigma i, per tant, ho reflecteix en dues parts ben distingides. En la primera part, estudiem les possibles millores sobre els mètodes existents de característiques manualment dissenyades per al reconeixement d’accions, i ho fem des de diversos punts de vista. Fent ús de les trajectòries denses com a fonament del nostre treball: primer, explorem l’ús de dades d’entrada de múltiples modalitats i des de múltiples vistes per enriquir els descriptors de les trajectòries. Segon, ens centrem en la part de la classificació del reconeixement d’accions, proposant un assemblat de classificadors d’accions que actuen sobre diversos conjunts de característiques i fusionant-ne les sortides amb una estratégia basada en la Teoria de Dempster-Shaffer. I tercer, proposem un nou mètode de disseny manual d’extracció de característiques que construeix una descripció intermèdia dels videos per tal d’aconseguir un millor modelat de les dinàmiques espai-temporals de llarg termini presents en els vídeos d’accions. Pel que fa a la segona part de la Tesi, comencem amb un estudi exhaustiu els mètodes actuals d’aprenentatge profund pel reconeixement d’accions. En revisem les metodologies més fonamentals i les més avançades darrerament aparegudes i establim una taxonomia que en resumeix els aspectes més importants. Més concretament, analitzem com cadascun dels mètodes tracta la dimensió temporal de les dades de vídeo. Per últim però no menys important, proposem una nova xarxa de neurones recurrent amb connexions residuals que integra de manera implícita les nostres contribucions prèvies en un nou marc d’acoblament potent i que mostra resultats prometedors.
Jabreel, Mohammed Hamood Abdullah. "Sentiment Analysis of Textual Content in Social Networks. From Hand-Crafted to Deep Learning-Based Models." Doctoral thesis, Universitat Rovira i Virgili, 2020. http://hdl.handle.net/10803/669441.
Full textEsta tesis propone varios métodos avanzados para analizar automáticamente el contenido textual compartido en las redes sociales e identificar opiniones, emociones y sentimientos, en diferentes niveles de análisis y en diferentes idiomas. Comenzamos proponiendo un sistema de análisis de sentimientos, llamado SentiRich, que está basado en un conjunto rico de características, que incluyen la información extraída de léxicos de sentimientos y modelos de word embedding previamente entrenados. Luego, proponemos un sistema basado en redes neuronales convolucionales y regresores XGboost para resolver una variedad de tareas de análisis de sentimientos y emociones en Twitter. Estas tareas van desde las típicas tareas de análisis de sentimientos hasta la determinación automática de la intensidad de una emoción (como alegría, miedo, ira, etc.) y la intensidad del sentimiento de los autores de los tweets. También proponemos un novedoso sistema basado en Deep Learning para abordar el problema de clasificación de emociones múltiples en Twitter. Además, consideramos el problema del análisis de sentimientos dependiente del objetivo. Para este propósito, proponemos un sistema basado en Deep Learning que identifica y extrae el objetivo de los tweets. Si bien algunos idiomas, como el inglés, tienen una amplia gama de recursos para permitir el análisis de sentimientos, la mayoría de los idiomas carecen de ellos. Por lo tanto, utilizamos la técnica de Análisis de Sentimiento Inter-lingual para desarrollar un sistema novedoso, multilingüe y basado en Deep Learning para los lenguajes con pocos recursos lingüísticos. Proponemos combinar la Ayuda a la Toma de Decisiones Multi-criterio y el análisis de sentimientos para desarrollar un sistema que brinde a los usuarios la capacidad de explotar las opiniones junto con sus preferencias en el proceso de clasificación de alternativas. Finalmente, aplicamos los sistemas desarrollados al campo de la comunicación de las marcas de destino a través de las redes sociales. Con este fin, recopilamos tweets de personas locales, visitantes, y gabinetes oficiales de Turismo de diferentes destinos turísticos y analizamos las opiniones y las emociones compartidas en ellos. En general, los métodos propuestos en esta tesis mejoran el rendimiento de los enfoques de vanguardia y muestran hallazgos interesa.
This thesis proposes several advanced methods to automatically analyse textual content shared on social networks and identify people’ opinions, emotions and feelings at a different level of analysis and in different languages. We start by proposing a sentiment analysis system, called SentiRich, based on a set of rich features, including the information extracted from sentiment lexicons and pre-trained word embedding models. Then, we propose an ensemble system based on Convolutional Neural Networks and XGboost regressors to solve an array of sentiment and emotion analysis tasks on Twitter. These tasks range from the typical sentiment analysis tasks, to automatically determining the intensity of an emotion (such as joy, fear, anger, etc.) and the intensity of sentiment (aka valence) of the authors from their tweets. We also propose a novel Deep Learning-based system to address the multiple emotion classification problem on Twitter. Moreover, we considered the problem of target-dependent sentiment analysis. For this purpose, we propose a Deep Learning-based system that identifies and extracts the target of the tweets. While some languages, such as English, have a vast array of resources to enable sentiment analysis, most low-resource languages lack them. So, we utilise the Cross-lingual Sentiment Analysis technique to develop a novel, multi-lingual and Deep Learning-based system for low resource languages. We propose to combine Multi-Criteria Decision Aid and sentiment analysis to develop a system that gives users the ability to exploit reviews alongside their preferences in the process of alternatives ranking. Finally, we applied the developed systems to the field of communication of destination brands through social networks. To this end, we collected tweets of local people, visitors, and official brand destination offices from different tourist destinations and analysed the opinions and the emotions shared in these tweets.
Gurisik, Selcuk Halil. "The paradox and contradictions in cultural value and exchange worth of Anatolian hand-crafted wool felted textiles." Thesis, University of the Arts London, 2006. http://ualresearchonline.arts.ac.uk/5213/.
Full textCosulich, Roberta Daniela de Marchis. "Lina Bo Bardi: do pré-artesanato ao design." Universidade Presbiteriana Mackenzie, 2007. http://tede.mackenzie.br/jspui/handle/tede/2606.
Full textThe research is the consequence of seeking for the understanding of art and design in Brazil. This work met (found) in the experience and the creations of the architect Lina Bo Bardi, a possible way to an answer. Coming from Italy to Brazil in 1946, the architect used her foreign look to analyze the popular art of Bahia s sertão (north-east of Brazil) with an anthropologic method and, having absorbed the information she transformed it in exhibitions, architecture and products, which are one of the possibilities to understand the evolution (story) of the design product in Brazil.
Conseqüência de uma busca para o entendimento da arte e, mais especificamente, do projeto de produtos no Brasil; este trabalho encontrou na experiência da produção da arquiteta Lina Bo Bardi (1914-1992) um caminho possível para uma resposta. Tendo vindo da Itália para o Brasil em 1946 a arquiteta utilizou seu olhar estrangeiro para interpretar a arte popular do sertão da Bahia como uma metodologia antropológica e, tendo absorvido estas informações as transformou em exposições, arquiteturas e produtos que são uma das tantas possibilidades para o entendimento da história do produto no Brasil.
CHI, TAI-TING, and 紀岱廷. "Analysis of Integrating Deep and Hand-Crafted Features for Thermal Obstacle Detection." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/74br35.
Full text國立高雄科技大學
電腦與通訊工程系
107
Recently, the use of Convolutional Neural Network (CNN) automatically extracts effective features from raw data. CNN is different from the hand-crafted features which is designed by human being for solving the specific image processing problems. In order to investigate the complement relation between CNN features (or called deep feature) and hand-crafted features, this work integrates two kinds of features for thermal obstacle detection. Deep feature is based on the YOLO detector; hand-crafted features used are HLID and LBP which are the two widely used features in thermal images. The way for investigating the integration effect is by respectively impose the hand-crafted features to different CNN layers. In order to achieve this, we change the concatenation way of the above-mentioned hand-crafted features and integrate it into the convolutional neural network to observe the effect of hand-crafted features on detection performance. In the experimental, we use the self-labeled thermal image dataset for verification, and integrate the hand-crafted features into some layers of the neural network. The metric used for evaluation is mAP.
溫祐昇. "The study of hand-crafted animation creation which is performed by Montage Technique." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/w7d94h.
Full text國立臺灣師範大學
設計研究所
97
This paper is written by following creators’ concepts. “Montage Technique” and “Hand-crafted Animation” are two main subject matters of this study. To outline the montage theory and technique on the one part, and also coordinate the development of animation on the other part among this study. To adopt Montage technique, in film editing in which a series of short shots, as major creation syle of this study. And choosing the most discussed topic: global warming as the main theme. In the process of animaton composing, to set up one story content and to use passages changing method (Montage Technique, zoom in & zoom out) with whole seriers circumstances connecting to suprise audiences.The animation which contained Montage technique normally carry humorous and outstanding character.Hope in this way to arouse society to aware global warming damages and respect worldwide environmental protection. Study results are as follows: 1.Creat the Montage style works needs more than one story happenings to make them connection. Two individual and conflict, opposite stories would be even better. 2.Using close-up shots and landscape shots (zoom in & zoom out) to bring to a frame of conflict. Also can make the audiences to feel the continuous of the story. 3.Animation is an unlimited, vitality ,drawing close to life performance intermediary material.
Chen, Sheng-Fang, and 陳聖方. "LSTM with Hand-crafted View-Invariant and Differential Cues (HVDC) for 3D Human Action Recognition." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/58p787.
Full text國立臺灣科技大學
電機工程系
105
Good action recognition relies on correct interpretation of two critical attributes related to action: the spatial attribute on the detected person’s posture, and the temporal attribute on the detected person’s body movement. Whereas deep learning has greatly improved image recognition, we have not found a similar progress for action recognition. One of the main reasons is due to the complexity caused by the additional temporal dimension; another, to the fact that there are less annotated training data samples for action recognition than that for image recognition. In this regard, this paper proposes a handcrafted cued LSTM model for human action recognition based on RGB-D data, as a collection of 25 skeleton joints in 3D coordinates, found in NTU-RGB-D, currently the most comprehensive dataset for action recognition. As opposed to the raw data of skeleton joints, handcrafted cues, pre-processed results geared to facilitate focused learning, are proposed as input to the LSTM structure. In particular, pertaining to the spatial cue, the SVIT cue derived by Skeleton View-invariant Transformation is adopted; pertaining to the temporal cue, the Diff cue computed by taking the displacements of all joint across down-sampled raw data is utilized. Based on the train/test protocol, the experiment we conducted on NTU-RGB-D shows that the recognition result based on either of the proposed handcrafted cues is better than that based on the raw data. In addition, by our proposed techniques of feature fusion and/or decision fusion of these two handcrafted cues, the recognition performance is better than that of the state-of-the-art approaches conducting on the same dataset by same train/test protocol.
Books on the topic "Hand-crafted"
Wood, Jonathan. Coachbuilding: The hand-crafted car body. Oxford: Shire Publications, 2008.
Find full text1945-, Sandfield Norman L., ed. Native American bolo ties: Hand-crafted vintage and contemporary. Santa Fe: Museum of New Mexico Press, 2011.
Find full textFreeman, Sue. Felt craft: Hand crafted felt from fleece to finished projects. Newton Abbot, Devon: David & Charles, 1988.
Find full textThe commonsense kitchen: 500 recipes + lessons for a hand-crafted life. San Francisco: Chronicle Books, 2010.
Find full textKauffman, Henry J. Early American copper, tin & brass: Hand-crafted metalware from colonial times. Mendham, N.J: Astragal Press, 1995.
Find full textSusan, Heeger, ed. Hand-crafted candy bars: From-scratch, all-natural, gloriously grown-up confections. San Francisco, Calif: Chronicle Books, 2013.
Find full textHand-crafted boats of old Currituck: Fishing and boating on the Carolina coast. Charleston, SC: The History Press, 2014.
Find full textO'Leary, Jer. Jer O'Leary's banners of unity: Hand-crafted banners of the Labour and Progressive Movement. Dublin: North Inner City Folklore Project, 1994.
Find full textYear-round paper crafts: Celebrate the seasons with hand-crafted cards, tags, decorations and more. [Place of publication not identified]: Arena Books Associates, 2010.
Find full textStarr, Sadie. Sadie Starr presents beading with seed beads, gem stones & cabochons: Easy step by step instructions so you can create your own unique, hand-crafted wearable art. [Camp Verde, Ariz.]: Shooting Starr Gallery Publications, 1993.
Find full textBook chapters on the topic "Hand-crafted"
Voutilainen, Atro. "Hand-Crafted Rules." In Text, Speech and Language Technology, 217–46. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-015-9273-4_14.
Full textWang, Shaolei, Wanxiang Che, Yijia Liu, and Ting Liu. "Enhancing Neural Disfluency Detection with Hand-Crafted Features." In Lecture Notes in Computer Science, 336–47. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47674-2_28.
Full textChuquimia, Orlando, Bertrand Granado, Xavier Dray, and Andrea Pinna. "Hand Crafted Method: ROI Selection and Texture Description." In Computer-Aided Analysis of Gastrointestinal Videos, 49–58. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64340-9_6.
Full textNapoletano, Paolo. "Hand-Crafted vs Learned Descriptors for Color Texture Classification." In Lecture Notes in Computer Science, 259–71. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56010-6_22.
Full textDevassy, Binu Melit, Sule Yildirim-Yayilgan, and Jon Yngve Hardeberg. "The Impact of Replacing Complex Hand-Crafted Features with Standard Features for Melanoma Classification Using Both Hand-Crafted and Deep Features." In Advances in Intelligent Systems and Computing, 150–59. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01054-6_10.
Full textCelona, Luigi, and Luca Manoni. "Neonatal Facial Pain Assessment Combining Hand-Crafted and Deep Features." In New Trends in Image Analysis and Processing – ICIAP 2017, 197–204. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70742-6_19.
Full textMahato, Shyam Janam, Debapriya Banik, and Debotosh Bhattacharjee. "Exploring Hand-Crafted Features and Transfer Learning for Polyp Segmentation." In Communications in Computer and Information Science, 68–76. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75529-4_6.
Full textSusmitha, A., Sanjay Jain, and Mihir Narayan Mohanty. "Random Forest Classification-Based Video Event Detection Utilizing Hand Crafted Features." In Lecture Notes in Networks and Systems, 645–51. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0695-3_60.
Full textBouchemha, Amel, Abdallah Meraoumia, Lakhdar Laimeche, and Lotfi Houam. "Learning Hand-Crafted Palm-Features for a High-Performance Biometric Systems." In Lecture Notes in Electrical Engineering, 855–66. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6893-4_77.
Full textAnnunziata, Roberto, Ahmad Kheirkhah, Pedram Hamrah, and Emanuele Trucco. "Boosting Hand-Crafted Features for Curvilinear Structure Segmentation by Learning Context Filters." In Lecture Notes in Computer Science, 596–603. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24574-4_71.
Full textConference papers on the topic "Hand-crafted"
Preston, William, Steve Benford, Emily-Clare Thorn, Boriana Koleva, Stefan Rennick-Egglestone, Richard Mortier, Anthony Quinn, John Stell, and Michael Worboys. "Enabling Hand-Crafted Visual Markers at Scale." In DIS '17: Designing Interactive Systems Conference 2017. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3064663.3064746.
Full textPosch, Irene, and Ebru Kurbak. "CRAFTED LOGIC Towards Hand-Crafting a Computer." In CHI'16: CHI Conference on Human Factors in Computing Systems. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2851581.2891101.
Full textJin, Guoqing, Shiwei Shen, Dongming Zhang, Wenjing Duan, and Yongdong Zhang. "Deep saliency map estimation of hand-crafted features." In 2017 IEEE International Conference on Image Processing (ICIP). IEEE, 2017. http://dx.doi.org/10.1109/icip.2017.8297086.
Full textVyas, Ritesh. "Towards adept hand-crafted features for ocular biometrics." In 2020 8th International Workshop on Biometrics and Forensics (IWBF). IEEE, 2020. http://dx.doi.org/10.1109/iwbf49977.2020.9107952.
Full textMillan Arias, Pablo Andres, and Julian Armando Quiroga Sepulveda. "Deep Learned vs. Hand-Crafted Features for Action Classification." In 2018 IEEE First International Conference on Artificial Intelligence and Knowledge Engineering (AIKE). IEEE, 2018. http://dx.doi.org/10.1109/aike.2018.00039.
Full textSchonberger, Johannes L., Hans Hardmeier, Torsten Sattler, and Marc Pollefeys. "Comparative Evaluation of Hand-Crafted and Learned Local Features." In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017. http://dx.doi.org/10.1109/cvpr.2017.736.
Full textGonzalez-Sosa, Ester, Ruben Vera-Rodriguez, Julian Fierrez, and Vishal M. Patel. "Millimetre wave person recognition: Hand-crafted vs learned features." In 2017 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA). IEEE, 2017. http://dx.doi.org/10.1109/isba.2017.7947692.
Full textTianyu, Zhou, Miao Zhenjiang, and Zhang Jianhu. "Combining CNN with Hand-Crafted Features for Image Classification." In 2018 14th IEEE International Conference on Signal Processing (ICSP). IEEE, 2018. http://dx.doi.org/10.1109/icsp.2018.8652428.
Full textAntipov, Grigory, Sid-Ahmed Berrani, Natacha Ruchaud, and Jean-Luc Dugelay. "Learned vs. Hand-Crafted Features for Pedestrian Gender Recognition." In MM '15: ACM Multimedia Conference. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2733373.2806332.
Full textDai, Zhuang, Xinghong Huang, Weinan Chen, Li He, and Hong Zhang. "A Comparison of CNN-Based and Hand-Crafted Keypoint Descriptors." In 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019. http://dx.doi.org/10.1109/icra.2019.8793701.
Full text