Academic literature on the topic 'Hardenability'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hardenability.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Hardenability"
Yu, Zhi Gang, Li Na Wang, and Jia Liu. "A General Steel Hardenability Calculation Method." Advanced Materials Research 816-817 (September 2013): 140–43. http://dx.doi.org/10.4028/www.scientific.net/amr.816-817.140.
Full textSmoljan, B., Dario Iljkic, N. Tomasic, Imre Felde, G. E. Totten, and Tamás Réti. "Evaluation of Steel Hardenability by JM®-Test." Materials Science Forum 537-538 (February 2007): 607–14. http://dx.doi.org/10.4028/www.scientific.net/msf.537-538.607.
Full textGao, Chang, Xin Liu, Dong Zhao, Yiming Guo, Shaohua Chen, Fantao Gao, Tianle Liu, Zhenyang Cai, Danyang Liu, and Jinfeng Li. "Recent Progress in Testing and Characterization of Hardenability of Aluminum Alloys: A Review." Materials 16, no. 13 (June 30, 2023): 4736. http://dx.doi.org/10.3390/ma16134736.
Full textGeng, Xiaoxiao, Shuize Wang, Asad Ullah, Guilin Wu, and Hao Wang. "Prediction of Hardenability Curves for Non-Boron Steels via a Combined Machine Learning Model." Materials 15, no. 9 (April 26, 2022): 3127. http://dx.doi.org/10.3390/ma15093127.
Full textLi, Dongyuan, Shupeng Song, Wenbin Xia, Yong Zhou, Ze Lu, and Run Wu. "Study on the effect of microstructure change of 20CrNiV5 high strength and toughness steel on hardenability." Journal of Physics: Conference Series 2720, no. 1 (March 1, 2024): 012041. http://dx.doi.org/10.1088/1742-6596/2720/1/012041.
Full textGong, Wei, Zhou Hua Jiang, and Dong Ping Zhan. "A Calculation Model of Gear Steel Hardenability Modeling of Nonlinear Equation." Advanced Materials Research 233-235 (May 2011): 2352–55. http://dx.doi.org/10.4028/www.scientific.net/amr.233-235.2352.
Full textZakharevich, S. V., and N. A. Hlazunova. "Factors influencing hardenability of steels on the example of grade 42Cr MoS4. Convergence of the results of calculation and experimental methods." Litiyo i Metallurgiya (FOUNDRY PRODUCTION AND METALLURGY), no. 1 (April 10, 2019): 66–69. http://dx.doi.org/10.21122/1683-6065-2019-1-66-69.
Full textSitek, Wojciech, Jacek Trzaska, and Leszek Adam Dobrzański. "Modified Tartagli Method for Calculation of Jominy Hardenability Curve." Materials Science Forum 575-578 (April 2008): 892–97. http://dx.doi.org/10.4028/www.scientific.net/msf.575-578.892.
Full textSitek, W., and A. Irla. "The Use of Fuzzy Systems for Forecasting the Hardenability of Steel." Archives of Metallurgy and Materials 61, no. 2 (June 1, 2016): 797–802. http://dx.doi.org/10.1515/amm-2016-0134.
Full textBiałobrzeska, Beata. "Effect of Alloying Additives and Microadditives on Hardenability Increase Caused by Action of Boron." Metals 11, no. 4 (April 4, 2021): 589. http://dx.doi.org/10.3390/met11040589.
Full textDissertations / Theses on the topic "Hardenability"
Lu, Yuan. "A Study on Gas Quench Steel Hardenability." Digital WPI, 2015. https://digitalcommons.wpi.edu/etd-theses/125.
Full textCaraher, Sally Kate 1974. "Clustering and precipitation processes in age-hardened Al-Zn-Mg-(Ag, Cu) alloys." Monash University, School of Physics and Materials Engineering, 2002. http://arrow.monash.edu.au/hdl/1959.1/7803.
Full textGlawing, Stefan. "The modelling of hardenability using mixture density networks." Thesis, Linköping University, Department of Electrical Engineering, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2211.
Full textIn this thesis a mixture density network has been constructed to predict steel hardenability for a given alloy composition. Throughout the work hardenability is expressed in terms of jominy profiles according to the standard jominy test. A piecewise linear description of the jominy profile has been developed to solve the problem of missing data, model identification from data based on different units and measurement uncertainty. When the underlying physical processes are complex and not well understood, as the case with hardenability modelling, mixture density networks, which are an extension of neural networks, offer a strong non-linear modelling alternative. Mixture density networks model conditional probability densities, from which it is possible to determine any statistical property. Here the model output is presented in terms of expectation values along with confidence interval. This statistical output facilitates future extension of the model towards optimisation of alloy cost. A good agreement has been obtained between the experimental and the calculated data. In order to ensure the reliability of the model in service, novelty detection of the input data is performed.
Platt, Geoffrey K. "Hardenability, transformation and precipitation effects in vanadium steels." Thesis, Sheffield Hallam University, 1988. http://shura.shu.ac.uk/20235/.
Full textLu, Yuan. "Heat Transfer, Hardenability and Steel Phase Transformations during Gas Quenching." Digital WPI, 2017. https://digitalcommons.wpi.edu/etd-dissertations/399.
Full textAjmal, Mohammed. "Thermomechanically processed dual-phase steel : effects on hardenability and mechanical properties." Thesis, University of Manchester, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.328761.
Full textBannister, S. R. "The effect of inclusions and matrix hardenability upon the microstructural development of carbon manganese steel weld metals." Thesis, University of Southampton, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378675.
Full textChan, Hang-ting, and 陳杏婷. "Deformation and recrystallisation of Cu-2%Fe." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2000. http://hub.hku.hk/bib/B31223990.
Full textBarbosa, Aldo Henrique de Almeida. "Efeito do tratamento térmico na formação de revestimentos GA sobre aços com características de bake hardenability." Universidade Federal de Minas Gerais, 2010. http://hdl.handle.net/1843/BUOS-8DMHBF.
Full textO tratamento térmico de galvanneling exerce efeito significativo na qualidade do revestimento galvannealed, por afetar diretamente a constituição dos compostos intermetálicos Fe-Zn. Pequenos desajustes na temperatura e tempo desse processo produzem conseqüências que vão desde a má formação do revestimento, por insuficiência de aporte térmico, até o desplacamento, por excesso. Essa influência do tratamento térmico é ainda mais pronunciada em aços de alta resistência mecânica, contendo fósforo e boro, em função desses elementos reduzirem a reatividade do substrato, aumentando a necessidade de maior controle do aporte térmico para a continuidade do processo e para compensar perdas de produtividade. Assim, foi proposto um estudo no sentido de determinar o efeito das condições de tratamento térmico de galvannealing na formação do revestimento galvanizado a quente galvannealed (GA) formado sobre aços de alta resistência contendo fósforo e B, com características de bake hardenability. Para a condução desse estudo foram realizadas, em escala de laboratório, simulações do processo de galvannealing, variando-se a temperatura de aquecimento entre 530°C e 580°C. Em todas as simulações, além dos ciclos completos (amostras totalmente processadas), foram realizadas, também, interrupções do tratamento ao longo da etapa de encharque, através de resfriamentos bruscos das amostras, com o objetivo de se avaliar a microestrutura do revestimento ao longo de todo o tratamento. Para a caracterização dos revestimentos produzidos foram realizadas análises por espectrometria de plasma, microscopia eletrônica de varredura, espectrometria Auger, dissolução eletroquímica da camada de zinco, difração de raios X, e difração de elétrons retroespalhados (EBSD). Os resultados do presente estudo permitiram estabelecer uma metodologia para o desenvolvimento de modelos de tratamento térmico de galvannealing e determinar o efeito das condições de galvannealing na formação do revestimento GA, de maneira a se estabelecer condições otimizadas para o processamento do aço bake hardenable. Além disso, as metodologias desenvolvidas nesse estudo, tanto de simulação do tratamento térmico quanto de caracterização do revestimento, poderão ser aplicadas a outros aços, principalmente os de mais elevada resistência mecânica, e para os quais os tratamentos de galvannealing não estão otimizados, com benefícios substanciais às suas qualidades.
Costa, João Paulo Gomes Antunes. "Produção e caracterização de barras laminadas do aço ao boro DIN 39MnCrB6-2." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/97/97134/tde-24032015-151133/.
Full textBoron added steels in quenched and tempered condition have been used in a large number of applications with mechanical properties and low cost requirements, i.e., automotive, petrochemical and O&G industries. For its great use and increasing demand for new applications with more severe requirements for mechanical properties, it is important to study the influence of process parameters and subsequent heat treatment on the mechanical behavior. In order to characterize the boron steel DIN 39MnCrB6-2, the metastable phase diagram and the hot ductility curve were built. The influence of tempering temperature on the microstructure and mechanical properties of tensile and impact strength was studied. For this study, DIN 39MnCrB6-2 rolled steel bars samples were used. They were provided by Gerdau - Specialty Steel Brazil Pindamonhangaba - SP. The samples could be divided into two different diameters and cross sections: square 155 mm (G1) and round 34.93 mm (G2), from sequential steps of manufacturing process. These samples were quenched and tempered and the tensile mechanical properties, impact resistance (Charpy V-notch) and hardness were analyzed. These samples were also characterized by optical microscopy and scanning electron microscopy. Samples from the first step of rolling mill (square 155 mm) were used for chemical analysis to identify the segregation pattern and also to hot ductility tests. In samples G1 it was observed inverse segregation of carbon and no abnormal ductility loss in hot ductility test. Impact resistance results showed low absorbed energy for all tempering temperatures. Microscopy observation showed coarse borocarbides. Samples G2 showed significant differences in tensile properties and hardness related to tempering temperature. However, no significant differences in impact resistance (CVN) at low test temperatures (-40 ° C) were observed. Microscopy observation showed thin borocarbides. It was concluded that the formation of borocarbides is inherent in boron steels and their coarse morphology should be avoided in order to reduce embrittlement. Borocarbide morphology control is more effective to improve impact resistance than reduction ratio.
Books on the topic "Hardenability"
Stitzelberger-Jakob, Peter. Härtevorherbestimmung mit Hilfe des Benetzungsablaufes beim Tauchen von Stählen. Regensburg: S. Roderer, 1991.
Find full textC, Santos, U.S. Nuclear Regulatory Commission. Office of Nuclear Regulatory Research. Division of Engineering Technology, University of California, Santa Barbara. Dept. of Mechanical Engineering, and Tōhoku Daigaku. Kinzoku Zairyō Kenkyūjo, eds. The characterization of Vicker's microhardness indentations and pile-up profiles as a strain-hardening microprobe. Washington, DC: Division of Engineering Technology, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1998.
Find full textNorman, Bailey, and Welding Institute, eds. Hardenability of steels: Select conference, Derby, UK, 17 May 1990. Cambridge: Abington, 1990.
Find full textInternational, Conference on Quenching and Control of Distortion (2nd 1996 Cleveland Ohio). Quenching and the control of distortion: Proceedings of the 2nd International Conference on Quenching and the Control of Distortion, 4-7 November 1996, Cleveland Marriott Society Center, Cleveland, Ohio. [Materials Park, OH]: ASM International, 1996.
Find full textE, Boyer Howard, and Cary Philip R, eds. Quenching and control of distortion. Metals Park, Ohio: ASM International, 1988.
Find full textInternational Conference on Quenching and Control of Distortion (1st 1992 Chicago, Ill.). Quenching and distortion control: Proceedings of the First International Conference on Quenching and Control of Distortion, 22-25 September 1992, Chicago, Illinois. Materials Park, OH: ASM International, 1992.
Find full texteditor, MacKenzie D. Scott, ASM International, International Federation for Heat Treatment and Surface Engineering, and International Conference on Distortion Engineering (4th : 2012 : Chicago, Ill.), eds. Quenching control and distortion: Proceedings of the 6th International Quenching and Control of Distortion Conference, including the 4th International Distortion Engineering Conference, September 9-13, 2012, Radisson Blu Aqua Hotel, Chicago, IL, USA. Materials Park, Ohio: ASM International, 2012.
Find full textKulke, Wilhelm. Scherenhärterei Angermund: Historische Handwerkstätten der Solinger Schneidwarenindustrie. Köln: Rheinland-Verlag in Kommission bei R. Habelt, Bonn, 1998.
Find full textTitorov, D. B., and E. S. Makhnev. Strukturno-fazovye prevrashchenii͡a v metallakh: Problemy prochnosti i plastichnosti : sbornik nauchnykh trudov. Sverdlovsk: UNT͡S AN SSSR, 1987.
Find full textOak Ridge National Laboratory. Metals and Ceramics Division., ed. Modeling the influence of irradiation temperature and displacement rate on hardening due to point defect clusters in ferritic steels. Oak Ridge, TN: Metals and Ceramics Division, Oak Ridge National Laboratory, 1992.
Find full textBook chapters on the topic "Hardenability"
Zendron, Marianna, Alberto Molinari, and Luca Girardini. "Hardenability of Low Alloy Sintered Mn Steels." In Progress in Powder Metallurgy, 625–28. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-419-7.625.
Full textSherif, Mohamed Y., Urszula Sachadel, Aidan Kerrigan, Boris Minov, Hanzheng Huang, Ilona Paape, and Rene Gerritzen. "Novel Tough Micro-Alloyed Bearing Steel with High Hardenability." In Bearing Steel Technologies: 11th Volume, Advances in Steel Technologies for Rolling Bearings, 296–322. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2017. http://dx.doi.org/10.1520/stp160020160160.
Full textAl Shalfan, W. A., John G. Speer, and David K. Matlock. "Parameters Influencing the Bake Hardenability of Microalloyed ULC Steels." In Materials Science Forum, 779–86. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-981-4.779.
Full textHuhtala, Kyösti. "A Quasi-likelihood Markov model for the hardenability of steel." In European Consortium for Mathematics in Industry, 191–94. Wiesbaden: Vieweg+Teubner Verlag, 1992. http://dx.doi.org/10.1007/978-3-663-09834-8_36.
Full textSmoljan, B., Dario Iljkic, N. Tomasic, Imre Felde, G. E. Totten, and Tamás Reti. "Evaluation of Steel Hardenability by JM®-Test." In Materials Science Forum, 607–14. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-426-x.607.
Full textSong, Yue Peng, Xiao Zhang, and Guo Quan Liu. "Computer-Aided Optimized Design for Multi-Alloyed Steels Specifying Hardenability Requirements." In Key Engineering Materials, 3112–15. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-456-1.3112.
Full textHuhtala, K. "Modelling the hardenability of steel by using the generalized linear hypothesis." In Proceedings of the Fifth European Conference on Mathematics in Industry, 255–58. Wiesbaden: Vieweg+Teubner Verlag, 1991. http://dx.doi.org/10.1007/978-3-663-01312-9_44.
Full textIshikawa, Kyohei, Hirofumi Nakamura, Ryuichi Homma, Masaaki Fujioka, and Manabu Hoshino. "Effect of Molybdenum Content on Hardenability of Boron and Molybdenum Combined Added Steels." In Proceedings of the International Conference on Martensitic Transformations: Chicago, 25–28. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76968-4_4.
Full textZheng, Yaxu, Fuming Wang, Changrong Li, Dan Wu, Xi Chen, and Shuai Liu. "The Effect of Austenitizing Temperature on Hardenability, Precipitation and Mechanical Properties of Boron Bearing Cr–Mo Alloy Steel." In The Minerals, Metals & Materials Series, 401–10. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72138-5_40.
Full text"Hardenability." In Steel Heat Treatment, 225–88. CRC Press, 2006. http://dx.doi.org/10.1201/nof0849384523-9.
Full textConference papers on the topic "Hardenability"
Lu, Yuan, R. D. Sisson, Yiming (Kevin) Rong, and Jeffrey Mocsari. "Critical Heat Transfer Coefficient Test for Gas Quench Steel Hardenability." In HT 2015. ASM International, 2015. http://dx.doi.org/10.31399/asm.cp.ht2015p0490.
Full textSponzilli, John T., Gordon H. Walter, and Douglas V. Doane. "Development of Restricted Hardenability Band Steels." In 38th Annual Earthmoving Industry Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1987. http://dx.doi.org/10.4271/870800.
Full textSmith, Natasha L., and Brandon S. Field. "Integrated Thermal Conduction and Hardenability Laboratory Activity." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-63211.
Full textLin Ping, Wang Fu-li, and Liu Liu. "Hardenability prediction of gear steel in refining process." In 2009 Chinese Control and Decision Conference (CCDC). IEEE, 2009. http://dx.doi.org/10.1109/ccdc.2009.5195316.
Full textManiruzzaman, Mohammed, Rob J. Pickerill, and Michael A. Pershing. "Prediction of Tempering Effect on Jominy Hardenability Curve." In HT2019. ASM International, 2019. http://dx.doi.org/10.31399/asm.cp.ht2019p0087.
Full textWang, Yong-Yi, and Steve Rapp. "Weldability of High Strength and Enhanced Hardenability Steels." In 2004 International Pipeline Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ipc2004-0526.
Full textFerguson, B. Lynn, Justin Sims, Z. Charlie Li, Valentin Nemkov, Robert Goldstein, and John Jackowski. "Effect of Steel Hardenability on Stress Formation in an Induction Hardened Axle Shaft." In HT 2015. ASM International, 2015. http://dx.doi.org/10.31399/asm.cp.ht2015p0123.
Full textCateni, Silvia, Valentina Colla, Marco Vannucci, and Marco Vannocci. "Prediction of Steel Hardenability and Related Reliability through Neural Networks." In Artificial Intelligence and Applications. Calgary,AB,Canada: ACTAPRESS, 2013. http://dx.doi.org/10.2316/p.2013.793-013.
Full textMohri, Taizo, Shun-ichi Tsugawa, Shigeru Kobayashi, Toshio Ichida, and Mitsumasa Kurosawa. "Newly Developed Organic Composite-Coated Steel Sheet with Bake-Hardenability." In 1986 SAE Automotive Corrosion and Prevention Conference and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1986. http://dx.doi.org/10.4271/862030.
Full textSimons, R. W. "Process Prediction and Control by an Empirical Model Based on Equivalent Diffusion for Carburizing or Carbonitriding Processes." In HT 2017. ASM International, 2017. http://dx.doi.org/10.31399/asm.cp.ht2017p0087.
Full textReports on the topic "Hardenability"
Wang, Yong-Yi, Zhili Feng, Wentao Cheng, and Sudarsanam Suresh Babu. L51939 Weldability of High-Strength Enhanced Hardenability Steels. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), September 2003. http://dx.doi.org/10.55274/r0010384.
Full textAnthony J. DeArdo and C. Isaac Garcia. Conservation Research and Development/ New Ultra-Low Carbon High Strength Steels with Improved Bake Hardenability for Enhanced Stretch Formability and Dent Resistance. Office of Scientific and Technical Information (OSTI), December 2003. http://dx.doi.org/10.2172/820518.
Full textL51744 Quality Assurance of MSS SP-75 Fittings. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), September 1996. http://dx.doi.org/10.55274/r0010123.
Full text