Academic literature on the topic 'Hardy-Sobolev Inequality'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hardy-Sobolev Inequality.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Hardy-Sobolev Inequality"
Ruzhansky, Michael, Durvudkhan Suragan, and Nurgissa Yessirkegenov. "Euler semigroup, Hardy–Sobolev and Gagliardo–Nirenberg type inequalities on homogeneous groups." Semigroup Forum 101, no. 1 (June 10, 2020): 162–91. http://dx.doi.org/10.1007/s00233-020-10110-9.
Full textLiu, Min, Fengli Jiang, and Zhenyu Guo. "Fractional Hardy–Sobolev Inequalities with Magnetic Fields." Advances in Mathematical Physics 2019 (December 12, 2019): 1–5. http://dx.doi.org/10.1155/2019/6595961.
Full textDou, Jingbo. "Weighted Hardy–Littlewood–Sobolev inequalities on the upper half space." Communications in Contemporary Mathematics 18, no. 05 (July 18, 2016): 1550067. http://dx.doi.org/10.1142/s0219199715500674.
Full textDou, Jingbo, and Meijun Zhu. "Reversed Hardy–Littewood–Sobolev Inequality." International Mathematics Research Notices 2015, no. 19 (December 4, 2014): 9696–726. http://dx.doi.org/10.1093/imrn/rnu241.
Full textRuzhansky, Michael, Bolys Sabitbek, and Durvudkhan Suragan. "Geometric Hardy and Hardy–Sobolev inequalities on Heisenberg groups." Bulletin of Mathematical Sciences 10, no. 03 (July 4, 2020): 2050016. http://dx.doi.org/10.1142/s1664360720500162.
Full textYang, Ying, and Zhi-ying Deng. "Existence of Solutions for Quasilinear Coupled Systemswith Multiple Critical Nonlinearities." Journal of Mathematics and Informatics 23 (2022): 23–39. http://dx.doi.org/10.22457/jmi.v23a03212.
Full textADIMURTHI. "HARDY-SOBOLEV INEQUALITY IN H1(Ω) AND ITS APPLICATIONS." Communications in Contemporary Mathematics 04, no. 03 (August 2002): 409–34. http://dx.doi.org/10.1142/s0219199702000713.
Full textSecchi, Simone, Didier Smets, and Michel Willem. "Remarks on a Hardy–Sobolev inequality." Comptes Rendus Mathematique 336, no. 10 (May 2003): 811–15. http://dx.doi.org/10.1016/s1631-073x(03)00202-4.
Full textYang, Jianfu. "Fractional Sobolev–Hardy inequality in RN." Nonlinear Analysis: Theory, Methods & Applications 119 (June 2015): 179–85. http://dx.doi.org/10.1016/j.na.2014.09.009.
Full textdo Ó, João Marcos, Abiel Costa Macedo, and José Francisco de Oliveira. "A Sharp Adams-Type Inequality for Weighted Sobolev Spaces." Quarterly Journal of Mathematics 71, no. 2 (February 7, 2020): 517–38. http://dx.doi.org/10.1093/qmathj/haz051.
Full textDissertations / Theses on the topic "Hardy-Sobolev Inequality"
Cheikh, Ali Hussein. "Analyse asymptotique des équations de Hardy-Sobolev dans des espaces singuliers." Electronic Thesis or Diss., Université de Lorraine, 2019. http://www.theses.fr/2019LORR0174.
Full textIn this manuscript, divided into 3 parts, we study the existence of extremal for Hardy-Sobolev inequalities. Part 1: We obtain the (non-)existence of singulars solutions for the perturbative Hardy-Schrödinger equation on a non-smooth domain with the singular point 0 on the boundary of the domain. In particular, we introduce a geometric quantity G which generalizes the mean curvature for ”Large dimensions” and the new notion of the mass in ”Small dimensions”. Our main result is that, in the case of a subcritical perturbation, an interaction appears between the perturbation and G at 0 (resp. m) for large dimensions (resp. small dimensions). In addition, the negativity of the curvature G (resp. the positivity of the mass m) for the large dimensions (resp. small dimensions) is sufficient when the perturbation has no effect. Part 2: In this part, we perform a blow-up analysis of solutions for the Hardy-Sobolev equation of minimizing type. First, we obtain an optimal control of the family of solutions. After, we get specific informations about the blowup point using a Pohozaev identity. Part 3: We consider the best constant in a critical Sobolev inequality of second order. We show non-rigidity for the optimizers above a certain threshold, namely, we prove that the best constant is achieved by a nonconstant solution of the associated fourth order elliptic problem under Neumann boundary conditions. Our arguments rely on asymptotic estimates of the Rayleigh quotient. We also show rigidity below another threshold
Jaber, Hassan. "Équations de Hardy-Sobolev sur les variétés Riemanniennes compactes : influence de la géométrie." Thesis, Université de Lorraine, 2014. http://www.theses.fr/2014LORR0062/document.
Full textIn this Manuscript, we investigate the influence of geometry on the Hardy-Sobolev equations on the compact Riemannian manifolds without boundary of dimension greateror equal to 3. More precisely, we prove in the non perturbative case that the existence of solutions depends only on the local geometry around the singularity when the dimension is greater or equal to 4 while it is the global geometry of the manifold when the dimension is equal to 3 that matters. In the presence of a perturbative subcritical term, we prove that the existence of solutions depends only on the perturbation when the dimension is greater or equal to 4 while an interaction between the perturbation and the global geometry appears in dimension 3. Finally, we establish an Optimal Hardy-Sobolev inequality for all compact Riemannian manifolds, with or without boundary, where we prove that the Riemannian sharp constant is the one for the Euclidean inequality and is achieved
Jaber, Hassan. "Équations de Hardy-Sobolev sur les variétés Riemanniennes compactes : influence de la géométrie." Electronic Thesis or Diss., Université de Lorraine, 2014. http://www.theses.fr/2014LORR0062.
Full textIn this Manuscript, we investigate the influence of geometry on the Hardy-Sobolev equations on the compact Riemannian manifolds without boundary of dimension greateror equal to 3. More precisely, we prove in the non perturbative case that the existence of solutions depends only on the local geometry around the singularity when the dimension is greater or equal to 4 while it is the global geometry of the manifold when the dimension is equal to 3 that matters. In the presence of a perturbative subcritical term, we prove that the existence of solutions depends only on the perturbation when the dimension is greater or equal to 4 while an interaction between the perturbation and the global geometry appears in dimension 3. Finally, we establish an Optimal Hardy-Sobolev inequality for all compact Riemannian manifolds, with or without boundary, where we prove that the Riemannian sharp constant is the one for the Euclidean inequality and is achieved
Miraglio, Pietro. "Estimates and rigidity for stable solutions to some nonlinear elliptic problems." Doctoral thesis, Universitat Politècnica de Catalunya, 2020. http://hdl.handle.net/10803/668832.
Full textMi tesis se encaja en el estudio de las EDPs elípticas. Está dividida en dos partes: la primera trata una ecuación no-lineal con el p-Laplaciano, la segunda de un problema no-local. En la primera parte, estudiamos la regularidad de las soluciones estables de una ecuación no lineal con el p-Laplaciano en un dominio acotado. Esta ecuacion es la versión no-lineal de la ámpliamente estudiada ecuacion semilineal con el Laplaciano. Cabré, Figalli, Ros-Oton, y Serra han demostrado recientemente que las soluciones estables de las ecuaciones semilineales son acotadas, y por tanto regulares, hasta la dimensión 9. Este resultado es optimal. En el caso del p-Laplaciano, la regularidad de las soluciones estables se conjetura de ser cierta hasta una dimension critica y, de hecho, se conocen ejemplos de soluciones no acotadas cuando la dimension llega al valor critico. Además, se ha demostrado que en el caso radial o assumiendo hipótesis fuertes sobre la no-linealidad las soluciones estables son acotadas hasta la dimension critica. En el primer capítulo, demostramos que las soluciones estables son acotadas, bajo una nueva condición en n y p, que es optimal en el caso radial, y más restrictiva en el caso general. Esta investigación mejora conocidos resultados del tema y es el primer ejemplo, para el p-Laplaciano, de un método que produce un resultado para el caso general y un resultado optimal en el caso radial. En la primera parte, nos ocupamos también de las desigualdades funcionales del tipo Hardy y Sobolev sobre hipersuperfícies del espacio Euclideo, todas conteniendo un término de curvatura media. Nuestra motivación proviene de varias apliaciones que tienen estas desigualdades en el estudio de estimaciones para las soluciones estables. En detalle, damos una demostración simple de la conocida desigualdad de Michael-Simon y Allard, obtenemos dos formas nuevas de la desigualdad de Hardy sobre hipersuperfícies, y otra desigualdad de Hardy-Poincaré. En la segunda parte, nos ocupamos de un problema de Dirichlet-Neumann que emerge de un modelo para las ondas en el agua. El sistema se describe con una ecuación de difusión en una tira de altura fija, que contiene un parámetro a en (-1,1). La parte superior de la tira es dotada de una condicion 0 de Neumann, mientras en la parte inferior tenemos un dato de Dirichlet y una ecuación con una nonlinearidad regular. Este problema puede ser reformulado como una ecuación no-local sobre la componente dotada del dato de Dirichlet, definiendo un operador de Dirichlet-Neumann apropiado. Primero, demostramos un teorema del tipo Liouville, que garantiza la simetría unidimensional de las soluciones monótonas, asumiendo un control sobre el crecimiento de la energía asociada. Como consecuencia, obtenemos la simetría 1D de las soluciones estables en dimension 2. Para n=3, obtenemos estimaciónes optimales de la energía para las soluciones que minimizan la energía y para las soluciones monótonas. Estas estimaciones nos conducen a la simetría 1D de estas clases de soluciones, aplicando nuestro teorema del tipo Liouville. Relativo a este problema, estudiamos también la naturaleza del operador de Dirichlet-Neumann. Primero, deducimos su expresión como operador de Fourier, que anteriormente solo se conocía para a=0. Este resultado evidencia la naturaleza del operador, que es no-local pero no puramente fraccionaria. Estudiamos en profundidad este comportamiento mixto del operador a través del estudio de la G-convergencia de un funcional energía asociado al operador. Demostramos la G-convergencia de nuestro funcional a un límite que corresponde a una energía de interacción pura cuando a en (0,1) y al perímetro clásico cuando a en (-1,0]. El límite a=0, así como el G-límite para el régimen a en (-1,0], es común a otros problemas no-locales tratados en la literatura. Al contrario, el funcional límite en el régimen puramente no-local es nuevo y diferente a otros funciona
Questa tesi si occupa di equazioni differenziali alle derivate parziali di tipo ellittico. È divisa in due parti: la prima riguarda un’equazione nonlineare per il p-Laplaciano, mentre la seconda è incentrata su un problema nonlocale, che può essere formulato per mezzo di un operatore di Dirichlet-Neumann collegato con il Laplaciano frazionario. Nella prima parte, studiamo la regolarità delle soluzioni stabili dell’equazione nonlineare per il p-Laplaciano dove W è un dominio limitato, p 2 (1,+¥) e f è una nonlinearità C1. Questa equazione è la versione nonlineare dell’equazione semilineare ������������Du = f (u) in un dominio limitato W Rn, che è stata ampiamente studiata in letteratura. Molto recentemente, Cabré, Figalli, Ros-Oton, e Serra [38] hanno dimostrato che le soluzioni stabili delle equazioni semilineari sono limitate, e quindi regolari, in dimensione n 9. Questo risultato è ottimale, dato che esempi di soluzioni illimitate e stabili sono noti in dimensione n 10. Inoltre, i risultati in [38] forniscono una risposta completa ad un annoso problema aperto, proposto da Brezis e Vázquez [25], sulla regolarità delle soluzioni estremali dell’equazione ������������Du = l f (u). Queste ultime sono infatti esempi non banali di soluzioni stabili di equazioni semilineari, che possono essere limitate o illimitate in dipendenza della dimensione n, del dominio W, e della nonlinearità f . In questa tesi studiamo la limitatezza delle soluzioni stabili di (0.4), che si congettura essere vera fino alla dimensione n < p + 4p/(p ������������ 1). Sono infatti noti esempi di soluzioni stabili e illimitate quando n p + 4p/(p ������������ 1), anche quando il dominio è la palla unitaria. Inoltre, nel caso radiale o assumendo ipotesi forti sulla nonlinearità, è stato dimostrato che le soluzioni stabili di (0.4) sono limitate quando n < p + 4p/(p ������������ 1). Nel Capitolo 1 della tesi dimostriamo una nuova stima L¥ a priori per le soluzioni stabili di (0.4), assumendo una nuova condizione su n e p, che è ottimale nel caso radiale e più restrittiva nel caso generale. Il nostro risultato migliora ciò che è noto in letteratura e ed è il primo esempio di tecnica che produce sia un risultato nel caso non radiale sia il risultato ottimale nel caso radiale. Per ottenere questo risultato estendiamo al caso del p-Laplaciano una tecnica sviluppata da Cabré [30] per il caso classico del problema, con p = 2. La strategia si basa su una disuguaglianza di Hardy sugli insiemi di livello della soluzione, combinata con una disuguaglianza di tipo geometrico per le soluzioni stabili di (0.4). Nella prima parte della tesi ci occupiamo anche di disuguaglianze funzionali di tipo Hardy e Sobolev, su ipersuperfici dello spazio euclideo. Nel fare ciò siamo motivati dalle varie applicazioni di questo tipo di risultati allo studio di stime a priori per le soluzioni stabili, sia nel caso semilineare che nel caso nonlineare ...
MIRAGLIO, PIETRO. "ESTIMATES AND RIGIDITY FOR STABLE SOLUTIONS TO SOME NONLINEAR ELLIPTIC PROBLEMS." Doctoral thesis, Università degli Studi di Milano, 2020. http://hdl.handle.net/2434/704717.
Full textThis thesis deals with the study of elliptic PDEs. The first part of the thesis is focused on the regularity of stable solutions to a nonlinear equation involving the p-Laplacian, in a bounded domain of the Euclidean space. The technique is based on Hardy-Sobolev inequalities in hypersurfaces involving the mean curvature, which are also investigated in the thesis. The second part concerns, instead, a nonlocal problem of Dirichlet-to-Neumann type. We study the one-dimensional symmetry of some subclasses of stable solutions, obtaining new results in dimensions n=2, 3. In addition, we carry out the study of the asymptotic behaviour of the operator associated with this nonlocal problem, using Γ-convergence techniques.
Campos, Serrano Juan. "Modèles attractifs en astrophysique et biologie : points critiques et comportement en temps grand des solutions." Phd thesis, Université Paris Dauphine - Paris IX, 2012. http://tel.archives-ouvertes.fr/tel-00861568.
Full text"The Best constant for a general Sobolev-Hardy inequality." Chinese University of Hong Kong, 1991. http://library.cuhk.edu.hk/record=b5886942.
Full textThesis (M.Phil.)--Chinese University of Hong Kong, 1991.
Bibliography: leaves 31-32.
Introduction
Chapter Section 1. --- A Minimization Problem
Chapter Section 2. --- Radial Symmetry of The Solution
Chapter Section 3. --- Proof of The Main Theorem
References
Book chapters on the topic "Hardy-Sobolev Inequality"
Balinsky, Alexander A., W. Desmond Evans, and Roger T. Lewis. "Hardy, Sobolev, and CLR Inequalities." In The Analysis and Geometry of Hardy's Inequality, 1–48. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22870-9_1.
Full textBalinsky, Alexander A., W. Desmond Evans, and Roger T. Lewis. "Hardy, Sobolev, Maz’ya (HSM) Inequalities." In The Analysis and Geometry of Hardy's Inequality, 135–64. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22870-9_4.
Full textApplebaum, David, and Rodrigo Bañuelos. "Probabilistic Approach to Fractional Integrals and the Hardy-Littlewood-Sobolev Inequality." In Springer Proceedings in Mathematics & Statistics, 17–40. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12148-2_2.
Full textFrank, Rupert L., and Elliott H. Lieb. "A New, Rearrangement-free Proof of the Sharp Hardy–Littlewood–Sobolev Inequality." In Spectral Theory, Function Spaces and Inequalities, 55–67. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0263-5_4.
Full textThiam, El Hadji Abdoulaye. "The Role of the Mean Curvature in a Mixed Hardy-Sobolev Trace Inequality." In Trends in Mathematics, 339–57. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57336-2_12.
Full textTzirakis, Konstantinos. "Stability Estimates for Fractional Hardy-Schrödinger Operators." In Fixed Point Theory and Chaos [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.109606.
Full textChrist, Michael. "Extremizers of a Radon Transform Inequality." In Advances in Analysis, edited by Charles Fefferman, Alexandru D. Ionescu, D. H. Phong, and Stephen Wainger. Princeton University Press, 2014. http://dx.doi.org/10.23943/princeton/9780691159416.003.0005.
Full text