Academic literature on the topic 'Hardy-Sobolev Inequality'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hardy-Sobolev Inequality.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Hardy-Sobolev Inequality"

1

Ruzhansky, Michael, Durvudkhan Suragan, and Nurgissa Yessirkegenov. "Euler semigroup, Hardy–Sobolev and Gagliardo–Nirenberg type inequalities on homogeneous groups." Semigroup Forum 101, no. 1 (June 10, 2020): 162–91. http://dx.doi.org/10.1007/s00233-020-10110-9.

Full text
Abstract:
Abstract In this paper we describe the Euler semigroup $$\{e^{-t\mathbb {E}^{*}\mathbb {E}}\}_{t>0}$$ { e - t E ∗ E } t > 0 on homogeneous Lie groups, which allows us to obtain various types of the Hardy–Sobolev and Gagliardo–Nirenberg type inequalities for the Euler operator $$\mathbb {E}$$ E . Moreover, the sharp remainder terms of the Sobolev type inequality, maximal Hardy inequality and $$|\cdot |$$ | · | -radial weighted Hardy–Sobolev type inequality are established.
APA, Harvard, Vancouver, ISO, and other styles
2

Liu, Min, Fengli Jiang, and Zhenyu Guo. "Fractional Hardy–Sobolev Inequalities with Magnetic Fields." Advances in Mathematical Physics 2019 (December 12, 2019): 1–5. http://dx.doi.org/10.1155/2019/6595961.

Full text
Abstract:
A fractional Hardy–Sobolev inequality with a magnetic field is studied in the present paper. Under appropriate conditions, the achievement of the best constant of the fractional magnetic Hardy–Sobolev inequality is established.
APA, Harvard, Vancouver, ISO, and other styles
3

Dou, Jingbo. "Weighted Hardy–Littlewood–Sobolev inequalities on the upper half space." Communications in Contemporary Mathematics 18, no. 05 (July 18, 2016): 1550067. http://dx.doi.org/10.1142/s0219199715500674.

Full text
Abstract:
In this paper, we establish a weighted Hardy–Littlewood–Sobolev (HLS) inequality on the upper half space using a weighted Hardy type inequality on the upper half space with boundary term, and discuss the existence of extremal functions based on symmetrization argument. As an application, we can show a weighted Sobolev–Hardy trace inequality with [Formula: see text]-biharmonic operator.
APA, Harvard, Vancouver, ISO, and other styles
4

Dou, Jingbo, and Meijun Zhu. "Reversed Hardy–Littewood–Sobolev Inequality." International Mathematics Research Notices 2015, no. 19 (December 4, 2014): 9696–726. http://dx.doi.org/10.1093/imrn/rnu241.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ruzhansky, Michael, Bolys Sabitbek, and Durvudkhan Suragan. "Geometric Hardy and Hardy–Sobolev inequalities on Heisenberg groups." Bulletin of Mathematical Sciences 10, no. 03 (July 4, 2020): 2050016. http://dx.doi.org/10.1142/s1664360720500162.

Full text
Abstract:
In this paper, we present geometric Hardy inequalities for the sub-Laplacian in half-spaces of stratified groups. As a consequence, we obtain the following geometric Hardy inequality in a half-space of the Heisenberg group with a sharp constant: [Formula: see text] which solves a conjecture in the paper [S. Larson, Geometric Hardy inequalities for the sub-elliptic Laplacian on convex domain in the Heisenberg group, Bull. Math. Sci. 6 (2016) 335–352]. Here, [Formula: see text] is the angle function. Also, we obtain a version of the Hardy–Sobolev inequality in a half-space of the Heisenberg group: [Formula: see text] where [Formula: see text] is the Euclidean distance to the boundary, [Formula: see text], and [Formula: see text]. For [Formula: see text], this gives the Hardy–Sobolev–Maz’ya inequality on the Heisenberg group.
APA, Harvard, Vancouver, ISO, and other styles
6

Yang, Ying, and Zhi-ying Deng. "Existence of Solutions for Quasilinear Coupled Systemswith Multiple Critical Nonlinearities." Journal of Mathematics and Informatics 23 (2022): 23–39. http://dx.doi.org/10.22457/jmi.v23a03212.

Full text
Abstract:
This paper is dedicated to investigating a quasilinear elliptic systemwith p- Laplacian in R N , which involves critical Hardy-Littlewood-Sobolev nonlinearities and critical Sobolev nonlinearities. Based upon the Hardy-Littlewood-Sobolev inequality and variational methods, we obtain the attainability of the corresponding best constants and the existence of nontrivial solutions.
APA, Harvard, Vancouver, ISO, and other styles
7

ADIMURTHI. "HARDY-SOBOLEV INEQUALITY IN H1(Ω) AND ITS APPLICATIONS." Communications in Contemporary Mathematics 04, no. 03 (August 2002): 409–34. http://dx.doi.org/10.1142/s0219199702000713.

Full text
Abstract:
In this article, we have determined the remainder term for Hardy–Sobolev inequality in H1(Ω) for Ω a bounded smooth domain and studied the existence, non existence and blow up of first eigen value and eigen function for the corresponding Hardy–Sobolev operator with Neumann boundary condition.
APA, Harvard, Vancouver, ISO, and other styles
8

Secchi, Simone, Didier Smets, and Michel Willem. "Remarks on a Hardy–Sobolev inequality." Comptes Rendus Mathematique 336, no. 10 (May 2003): 811–15. http://dx.doi.org/10.1016/s1631-073x(03)00202-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yang, Jianfu. "Fractional Sobolev–Hardy inequality in RN." Nonlinear Analysis: Theory, Methods & Applications 119 (June 2015): 179–85. http://dx.doi.org/10.1016/j.na.2014.09.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

do Ó, João Marcos, Abiel Costa Macedo, and José Francisco de Oliveira. "A Sharp Adams-Type Inequality for Weighted Sobolev Spaces." Quarterly Journal of Mathematics 71, no. 2 (February 7, 2020): 517–38. http://dx.doi.org/10.1093/qmathj/haz051.

Full text
Abstract:
Abstract In a classical work (Ann. Math.128, (1988) 385–398), D. R. Adams proved a sharp Trudinger–Moser inequality for higher-order derivatives. We derive a sharp Adams-type inequality and Sobolev-type inequalities associated with a class of weighted Sobolev spaces that is related to a Hardy-type inequality.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Hardy-Sobolev Inequality"

1

Cheikh, Ali Hussein. "Analyse asymptotique des équations de Hardy-Sobolev dans des espaces singuliers." Electronic Thesis or Diss., Université de Lorraine, 2019. http://www.theses.fr/2019LORR0174.

Full text
Abstract:
Dans ce manuscrit, divisé en 3 parties, nous étudions des extrémales d’inégalités de Hardy-Sobolev. Partie 1 : Nous obtenons l’existence de solutions singulières pour l’équation de Hardy-Schrödinger perturbée ou non sur un domaine non régulier avec le point singulier 0 de l’équation se trouvant sur le bord du domaine. En particulier, nous introduisons une courbure géométrique G qui généralise la courbure moyenne pour les ”grandes dimensions” et une notion nouvelle de masse m pour les ”petites dimensions”. Notre résultat principal est que dans le cas d’un potentiel variable du terme perturbatif sous-critique, une interaction entre perturbation et G en 0 (resp. m) dans le cas grandes dimensions (resp. petites dimensions) apparait. En plus, la négativité de la courbure G (resp. la positivité de la masse m) pour les grandes dimensions (resp. petites dimensions) est suffisant lorsque la perturbation n’a aucun effet. Partie 2 : Dans cette partie, nous travaillons sur l’analyse asymptotique des sous-extrémales explosives. Nous effectuons une analyse de blow-up pour une équation de Hardy-Sobolev. Dans un premier temps, nous obtenons un contrôle ponctuel optimal de la suite de solutions. Dans un second temps, nous obtenons des informations précises sur le point d’explosion en utilisant une identité de Pohozaev. Partie 3 : Nous considérons la meilleure constante dans une inégalité critique de second ordre de Sobolev. Nous montrons la non-rigidité pour les optimiseurs au-dessus d’un certain seuil, à savoir nous prouvons que la meilleure constante est atteinte par une solution non constante du problème elliptique de quatrième ordre sous des conditions limites de type Neumann. Nos arguments reposent sur des estimations asymptotiques du quotient de Rayleigh. Nous montrons également la rigidité en dessous d’un autre seuil pour les solutions de moindre énergie
In this manuscript, divided into 3 parts, we study the existence of extremal for Hardy-Sobolev inequalities. Part 1: We obtain the (non-)existence of singulars solutions for the perturbative Hardy-Schrödinger equation on a non-smooth domain with the singular point 0 on the boundary of the domain. In particular, we introduce a geometric quantity G which generalizes the mean curvature for ”Large dimensions” and the new notion of the mass in ”Small dimensions”. Our main result is that, in the case of a subcritical perturbation, an interaction appears between the perturbation and G at 0 (resp. m) for large dimensions (resp. small dimensions). In addition, the negativity of the curvature G (resp. the positivity of the mass m) for the large dimensions (resp. small dimensions) is sufficient when the perturbation has no effect. Part 2: In this part, we perform a blow-up analysis of solutions for the Hardy-Sobolev equation of minimizing type. First, we obtain an optimal control of the family of solutions. After, we get specific informations about the blowup point using a Pohozaev identity. Part 3: We consider the best constant in a critical Sobolev inequality of second order. We show non-rigidity for the optimizers above a certain threshold, namely, we prove that the best constant is achieved by a nonconstant solution of the associated fourth order elliptic problem under Neumann boundary conditions. Our arguments rely on asymptotic estimates of the Rayleigh quotient. We also show rigidity below another threshold
APA, Harvard, Vancouver, ISO, and other styles
2

Jaber, Hassan. "Équations de Hardy-Sobolev sur les variétés Riemanniennes compactes : influence de la géométrie." Thesis, Université de Lorraine, 2014. http://www.theses.fr/2014LORR0062/document.

Full text
Abstract:
Dans ce Manuscrit, nous étudions l'influence de la géométrie sur les équations de Hardy-Sobolev perturbées ou non sur toute variété Riemannienne compacte sans bord de dimension supérieure ou égale à 3. Plus précisément, dans le cas non perturbé nous démontrons que pour toute dimension de la variété strictement supérieure à, l'existence d'une solution (ou plutôt une condition suffisante d'existence) dépendra de la géométrie locale autour de la singularité. En revanche, dans le cas où la dimension est égale à 3, c'est la géométrie globale (particulièrement, la masse de la fonction de Green) de la variété qui comptera. Dans le cas d'une équation à terme perturbatif sous-critique, nous démontrons que l'existence d'une solution dépendra uniquement de la perturbation pour les grandes dimensions et qu'une interaction entre la géométrie globale de la variété et la perturbation apparaîtra en dimension 3. Enfin, nous établissons une inégalité optimale de Hardy-Sobolev Riemannienne, la variété étant avec ou sans bord, où nous démontrons que la première meilleure constante est celle des inégalités Euclidiennes et est atteinte
In this Manuscript, we investigate the influence of geometry on the Hardy-Sobolev equations on the compact Riemannian manifolds without boundary of dimension greateror equal to 3. More precisely, we prove in the non perturbative case that the existence of solutions depends only on the local geometry around the singularity when the dimension is greater or equal to 4 while it is the global geometry of the manifold when the dimension is equal to 3 that matters. In the presence of a perturbative subcritical term, we prove that the existence of solutions depends only on the perturbation when the dimension is greater or equal to 4 while an interaction between the perturbation and the global geometry appears in dimension 3. Finally, we establish an Optimal Hardy-Sobolev inequality for all compact Riemannian manifolds, with or without boundary, where we prove that the Riemannian sharp constant is the one for the Euclidean inequality and is achieved
APA, Harvard, Vancouver, ISO, and other styles
3

Jaber, Hassan. "Équations de Hardy-Sobolev sur les variétés Riemanniennes compactes : influence de la géométrie." Electronic Thesis or Diss., Université de Lorraine, 2014. http://www.theses.fr/2014LORR0062.

Full text
Abstract:
Dans ce Manuscrit, nous étudions l'influence de la géométrie sur les équations de Hardy-Sobolev perturbées ou non sur toute variété Riemannienne compacte sans bord de dimension supérieure ou égale à 3. Plus précisément, dans le cas non perturbé nous démontrons que pour toute dimension de la variété strictement supérieure à, l'existence d'une solution (ou plutôt une condition suffisante d'existence) dépendra de la géométrie locale autour de la singularité. En revanche, dans le cas où la dimension est égale à 3, c'est la géométrie globale (particulièrement, la masse de la fonction de Green) de la variété qui comptera. Dans le cas d'une équation à terme perturbatif sous-critique, nous démontrons que l'existence d'une solution dépendra uniquement de la perturbation pour les grandes dimensions et qu'une interaction entre la géométrie globale de la variété et la perturbation apparaîtra en dimension 3. Enfin, nous établissons une inégalité optimale de Hardy-Sobolev Riemannienne, la variété étant avec ou sans bord, où nous démontrons que la première meilleure constante est celle des inégalités Euclidiennes et est atteinte
In this Manuscript, we investigate the influence of geometry on the Hardy-Sobolev equations on the compact Riemannian manifolds without boundary of dimension greateror equal to 3. More precisely, we prove in the non perturbative case that the existence of solutions depends only on the local geometry around the singularity when the dimension is greater or equal to 4 while it is the global geometry of the manifold when the dimension is equal to 3 that matters. In the presence of a perturbative subcritical term, we prove that the existence of solutions depends only on the perturbation when the dimension is greater or equal to 4 while an interaction between the perturbation and the global geometry appears in dimension 3. Finally, we establish an Optimal Hardy-Sobolev inequality for all compact Riemannian manifolds, with or without boundary, where we prove that the Riemannian sharp constant is the one for the Euclidean inequality and is achieved
APA, Harvard, Vancouver, ISO, and other styles
4

Miraglio, Pietro. "Estimates and rigidity for stable solutions to some nonlinear elliptic problems." Doctoral thesis, Universitat Politècnica de Catalunya, 2020. http://hdl.handle.net/10803/668832.

Full text
Abstract:
My thesis deals with the study of elliptic PDE. It is divided into two parts, the first one concerning a nonlinear equation involving the p-Laplacian, and the second one focused on a nonlocal problem. In the first part, we study the regularity of stable solutions to a nonlinear equation involving the p-Laplacian in a bounded domain. This is the nonlinear version of the widely studied semilinear equation involving the classical Laplacian. Stable solutions to semilinear equations have been very recently proved to be bounded, and therefore smooth, up to dimension n=9 by Cabré, Figalli, Ros-Oton, and Serra. This result is known to be optimal by counterexamples in higher dimensions. In the case of the p-Laplacian, the boundedness of stable solutions is conjectured to hold up to a critical dimension depending on p. Examples of unbounded stable solutions are known if the dimension exceeds the critical one. Moreover, in the radial case or under strong assumptions on the nonlinearity, stable solutions are proved to be bounded in the optimal dimension range. We prove the boundedness of stable solutions under a new condition on n and p, which is optimal in the radial case, and more restrictive in the general one. It improves the known results in the field, and it is the first example, concerning the p-Laplacian, of a technique providing both a result in the nonradial case and the optimal result in the radial case. In the first part, we also investigate Hardy-Sobolev inequalities on hypersurfaces of Euclidean space, all containing a mean curvature term. Our motivation comes from several applications of these inequalities to the study of a priori estimates for stable solutions. Specifically, we give a simplified proof of the celebrated Michael-Simon and Allard inequality, we obtain two new forms of the Hardy inequality on hypersurfaces, and an improved Hardy inequality in the Poincaré sense. In the second part of this thesis, we deal with a Dirichlet to Neumann problem arising in a model for water waves. The system is described by a diffusion equation in a slab of fixed height, containing a weight that depends on a parameter a belonging to (-1,1). The top of the slab is endowed with a 0-Neumann condition, while on the bottom we have a Dirichlet datum and an equation involving a smooth nonlinearity. The system can also be reformulated as a nonlocal problem on the component endowed with the Dirichlet datum, by defining a suitable Dirichlet to Neumann operator. First, we prove a Liouville theorem that establishes the one dimensional symmetry of stable solutions, provided that a control on the growth of the energy associated with the problem is satisfied. As a consequence, we obtain the 1D symmetry of stable solutions to our problem in dimension 2. For n=3, we establish sharp energy estimates for both the energy minimizers and the monotone solutions, deducing the 1D symmetry of these classes of solutions, by an application of our Liouville theorem. Concerning this problem, we also investigate the nature of the associated Dirichlet to Neumann operator. First, we deduce its expression as a Fourier operator, which was known only in the case a=0. This result highlights the mixed nature of the operator, which is nonlocal, but not purely fractional. To better understand the dual behaviour of the operator, we provide a G-convergence result for an energy functional associated with the operator. Specifically, as a G-limit of our energy functional we find a mere interaction energy when a is greater than 0, and the classical perimeter when a is smaller or equal than 0. We point out that the threshold a=0 that we obtain here, as well as the G-limit behaviour for nonpositive values of a, is common to other nonlocal problems treated in the literature. On the contrary, the limit functional that we obtain in the other case appears to be new and structurally different from other nonlocal energy functionals that have been investigated in the literature.
Mi tesis se encaja en el estudio de las EDPs elípticas. Está dividida en dos partes: la primera trata una ecuación no-lineal con el p-Laplaciano, la segunda de un problema no-local. En la primera parte, estudiamos la regularidad de las soluciones estables de una ecuación no lineal con el p-Laplaciano en un dominio acotado. Esta ecuacion es la versión no-lineal de la ámpliamente estudiada ecuacion semilineal con el Laplaciano. Cabré, Figalli, Ros-Oton, y Serra han demostrado recientemente que las soluciones estables de las ecuaciones semilineales son acotadas, y por tanto regulares, hasta la dimensión 9. Este resultado es optimal. En el caso del p-Laplaciano, la regularidad de las soluciones estables se conjetura de ser cierta hasta una dimension critica y, de hecho, se conocen ejemplos de soluciones no acotadas cuando la dimension llega al valor critico. Además, se ha demostrado que en el caso radial o assumiendo hipótesis fuertes sobre la no-linealidad las soluciones estables son acotadas hasta la dimension critica. En el primer capítulo, demostramos que las soluciones estables son acotadas, bajo una nueva condición en n y p, que es optimal en el caso radial, y más restrictiva en el caso general. Esta investigación mejora conocidos resultados del tema y es el primer ejemplo, para el p-Laplaciano, de un método que produce un resultado para el caso general y un resultado optimal en el caso radial. En la primera parte, nos ocupamos también de las desigualdades funcionales del tipo Hardy y Sobolev sobre hipersuperfícies del espacio Euclideo, todas conteniendo un término de curvatura media. Nuestra motivación proviene de varias apliaciones que tienen estas desigualdades en el estudio de estimaciones para las soluciones estables. En detalle, damos una demostración simple de la conocida desigualdad de Michael-Simon y Allard, obtenemos dos formas nuevas de la desigualdad de Hardy sobre hipersuperfícies, y otra desigualdad de Hardy-Poincaré. En la segunda parte, nos ocupamos de un problema de Dirichlet-Neumann que emerge de un modelo para las ondas en el agua. El sistema se describe con una ecuación de difusión en una tira de altura fija, que contiene un parámetro a en (-1,1). La parte superior de la tira es dotada de una condicion 0 de Neumann, mientras en la parte inferior tenemos un dato de Dirichlet y una ecuación con una nonlinearidad regular. Este problema puede ser reformulado como una ecuación no-local sobre la componente dotada del dato de Dirichlet, definiendo un operador de Dirichlet-Neumann apropiado. Primero, demostramos un teorema del tipo Liouville, que garantiza la simetría unidimensional de las soluciones monótonas, asumiendo un control sobre el crecimiento de la energía asociada. Como consecuencia, obtenemos la simetría 1D de las soluciones estables en dimension 2. Para n=3, obtenemos estimaciónes optimales de la energía para las soluciones que minimizan la energía y para las soluciones monótonas. Estas estimaciones nos conducen a la simetría 1D de estas clases de soluciones, aplicando nuestro teorema del tipo Liouville. Relativo a este problema, estudiamos también la naturaleza del operador de Dirichlet-Neumann. Primero, deducimos su expresión como operador de Fourier, que anteriormente solo se conocía para a=0. Este resultado evidencia la naturaleza del operador, que es no-local pero no puramente fraccionaria. Estudiamos en profundidad este comportamiento mixto del operador a través del estudio de la G-convergencia de un funcional energía asociado al operador. Demostramos la G-convergencia de nuestro funcional a un límite que corresponde a una energía de interacción pura cuando a en (0,1) y al perímetro clásico cuando a en (-1,0]. El límite a=0, así como el G-límite para el régimen a en (-1,0], es común a otros problemas no-locales tratados en la literatura. Al contrario, el funcional límite en el régimen puramente no-local es nuevo y diferente a otros funciona
Questa tesi si occupa di equazioni differenziali alle derivate parziali di tipo ellittico. È divisa in due parti: la prima riguarda un’equazione nonlineare per il p-Laplaciano, mentre la seconda è incentrata su un problema nonlocale, che può essere formulato per mezzo di un operatore di Dirichlet-Neumann collegato con il Laplaciano frazionario. Nella prima parte, studiamo la regolarità delle soluzioni stabili dell’equazione nonlineare per il p-Laplaciano dove W è un dominio limitato, p 2 (1,+¥) e f è una nonlinearità C1. Questa equazione è la versione nonlineare dell’equazione semilineare 􀀀������������Du = f (u) in un dominio limitato W Rn, che è stata ampiamente studiata in letteratura. Molto recentemente, Cabré, Figalli, Ros-Oton, e Serra [38] hanno dimostrato che le soluzioni stabili delle equazioni semilineari sono limitate, e quindi regolari, in dimensione n 9. Questo risultato è ottimale, dato che esempi di soluzioni illimitate e stabili sono noti in dimensione n 10. Inoltre, i risultati in [38] forniscono una risposta completa ad un annoso problema aperto, proposto da Brezis e Vázquez [25], sulla regolarità delle soluzioni estremali dell’equazione 􀀀������������Du = l f (u). Queste ultime sono infatti esempi non banali di soluzioni stabili di equazioni semilineari, che possono essere limitate o illimitate in dipendenza della dimensione n, del dominio W, e della nonlinearità f . In questa tesi studiamo la limitatezza delle soluzioni stabili di (0.4), che si congettura essere vera fino alla dimensione n < p + 4p/(p 􀀀������������ 1). Sono infatti noti esempi di soluzioni stabili e illimitate quando n p + 4p/(p 􀀀������������ 1), anche quando il dominio è la palla unitaria. Inoltre, nel caso radiale o assumendo ipotesi forti sulla nonlinearità, è stato dimostrato che le soluzioni stabili di (0.4) sono limitate quando n < p + 4p/(p 􀀀������������ 1). Nel Capitolo 1 della tesi dimostriamo una nuova stima L¥ a priori per le soluzioni stabili di (0.4), assumendo una nuova condizione su n e p, che è ottimale nel caso radiale e più restrittiva nel caso generale. Il nostro risultato migliora ciò che è noto in letteratura e ed è il primo esempio di tecnica che produce sia un risultato nel caso non radiale sia il risultato ottimale nel caso radiale. Per ottenere questo risultato estendiamo al caso del p-Laplaciano una tecnica sviluppata da Cabré [30] per il caso classico del problema, con p = 2. La strategia si basa su una disuguaglianza di Hardy sugli insiemi di livello della soluzione, combinata con una disuguaglianza di tipo geometrico per le soluzioni stabili di (0.4). Nella prima parte della tesi ci occupiamo anche di disuguaglianze funzionali di tipo Hardy e Sobolev, su ipersuperfici dello spazio euclideo. Nel fare ciò siamo motivati dalle varie applicazioni di questo tipo di risultati allo studio di stime a priori per le soluzioni stabili, sia nel caso semilineare che nel caso nonlineare ...
APA, Harvard, Vancouver, ISO, and other styles
5

MIRAGLIO, PIETRO. "ESTIMATES AND RIGIDITY FOR STABLE SOLUTIONS TO SOME NONLINEAR ELLIPTIC PROBLEMS." Doctoral thesis, Università degli Studi di Milano, 2020. http://hdl.handle.net/2434/704717.

Full text
Abstract:
Questa tesi è incentrata sullo studio di equazioni differenziali alle derivate parziali di tipo ellittico. La prima parte della tesi riguarda la regolarità delle soluzioni stabili per un'equazione nonlineare con il p-Laplaciano, in un dominio limitato dello spazio Euclideo. La tecnica è basata sull'uso di disuguaglianze di tipo Hardy-Sobolev su ipersuperfici, del quale viene approfondito lo studio. Nella seconda parte viene preso in esame un problema nonlocale di tipo Dirichlet-Neumann. Studiamo la simmetria unidimensionale di alcune sottoclassi di soluzioni stabili, ottenendo risultati in dimensione n=2, 3. Inoltre, studiamo il comportamento asintotico dell'operatore associato a questo problema nonlocale, usando tecniche di Γ-convergenza.
This thesis deals with the study of elliptic PDEs. The first part of the thesis is focused on the regularity of stable solutions to a nonlinear equation involving the p-Laplacian, in a bounded domain of the Euclidean space. The technique is based on Hardy-Sobolev inequalities in hypersurfaces involving the mean curvature, which are also investigated in the thesis. The second part concerns, instead, a nonlocal problem of Dirichlet-to-Neumann type. We study the one-dimensional symmetry of some subclasses of stable solutions, obtaining new results in dimensions n=2, 3. In addition, we carry out the study of the asymptotic behaviour of the operator associated with this nonlocal problem, using Γ-convergence techniques.
APA, Harvard, Vancouver, ISO, and other styles
6

Campos, Serrano Juan. "Modèles attractifs en astrophysique et biologie : points critiques et comportement en temps grand des solutions." Phd thesis, Université Paris Dauphine - Paris IX, 2012. http://tel.archives-ouvertes.fr/tel-00861568.

Full text
Abstract:
Dans cette thèse, nous étudions l'ensemble des solutions d'équations aux dérivées partielles résultant de modèles d'astrophysique et de biologie. Nous répondons aux questions de l'existence, mais aussi nous essayons de décrire le comportement de certaines familles de solutions lorsque les paramètres varient. Tout d'abord, nous étudions deux problèmes issus de l'astrophysique, pour lesquels nous montrons l'existence d'ensembles particuliers de solutions dépendant d'un paramètre à l'aide de la méthode de réduction de Lyapunov-Schmidt. Ensuite un argument de perturbation et le théorème du Point xe de Banach réduisent le problème original à un problème de dimension finie, et qui peut être résolu, habituellement, par des techniques variationnelles. Le reste de la thèse est consacré à l'étude du modèle Keller-Segel, qui décrit le mouvement d'amibes unicellulaires. Dans sa version plus simple, le modèle de Keller-Segel est un système parabolique-elliptique qui partage avec certains modèles gravitationnels la propriété que l'interaction est calculée au moyen d'une équation de Poisson / Newton attractive. Une différence majeure réside dans le fait que le modèle est défini dans un espace bidimensionnel, qui est expérimentalement consistant, tandis que les modèles de gravitationnels sont ordinairement posés en trois dimensions. Pour ce problème, les questions de l'existence sont bien connues, mais le comportement des solutions au cours de l'évolution dans le temps est encore un domaine actif de recherche. Ici nous étendre les propriétés déjà connues dans des régimes particuliers à un intervalle plus large du paramètre de masse, et nous donnons une estimation précise de la vitesse de convergence de la solution vers un profil donné quand le temps tend vers l'infini. Ce résultat est obtenu à l'aide de divers outils tels que des techniques de symétrisation et des inégalités fonctionnelles optimales. Les derniers chapitres traitent de résultats numériques et de calculs formels liés au modèle Keller-Segel
APA, Harvard, Vancouver, ISO, and other styles
7

"The Best constant for a general Sobolev-Hardy inequality." Chinese University of Hong Kong, 1991. http://library.cuhk.edu.hk/record=b5886942.

Full text
Abstract:
by Chu Chiu Wing.
Thesis (M.Phil.)--Chinese University of Hong Kong, 1991.
Bibliography: leaves 31-32.
Introduction
Chapter Section 1. --- A Minimization Problem
Chapter Section 2. --- Radial Symmetry of The Solution
Chapter Section 3. --- Proof of The Main Theorem
References
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Hardy-Sobolev Inequality"

1

Balinsky, Alexander A., W. Desmond Evans, and Roger T. Lewis. "Hardy, Sobolev, and CLR Inequalities." In The Analysis and Geometry of Hardy's Inequality, 1–48. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22870-9_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Balinsky, Alexander A., W. Desmond Evans, and Roger T. Lewis. "Hardy, Sobolev, Maz’ya (HSM) Inequalities." In The Analysis and Geometry of Hardy's Inequality, 135–64. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22870-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Applebaum, David, and Rodrigo Bañuelos. "Probabilistic Approach to Fractional Integrals and the Hardy-Littlewood-Sobolev Inequality." In Springer Proceedings in Mathematics & Statistics, 17–40. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12148-2_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Frank, Rupert L., and Elliott H. Lieb. "A New, Rearrangement-free Proof of the Sharp Hardy–Littlewood–Sobolev Inequality." In Spectral Theory, Function Spaces and Inequalities, 55–67. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0263-5_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Thiam, El Hadji Abdoulaye. "The Role of the Mean Curvature in a Mixed Hardy-Sobolev Trace Inequality." In Trends in Mathematics, 339–57. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57336-2_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tzirakis, Konstantinos. "Stability Estimates for Fractional Hardy-Schrödinger Operators." In Fixed Point Theory and Chaos [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.109606.

Full text
Abstract:
In this chapter, we derive optimal Hardy-Sobolev type improvements of fractional Hardy inequalities, formally written as Lsu≥wxxθu2∗−1, for the fractional Schrödinger operator Lsu=−Δsu−kn,sux2s associated with s-th powers of the Laplacian for s∈01, on bounded domains in Rn. Here, kn,s denotes the optimal constant in the fractional Hardy inequality, and 2∗=2n−θn−2s, for 0≤θ≤2s<n. The optimality refers to the singularity of the logarithmic correction w that has to be involved so that an improvement of this type is possible. It is interesting to note that Hardy inequalities related to two distinct fractional Laplacians on bounded domains admit the same optimal remainder terms of Hardy-Sobolev type. For deriving our results, we also discuss refined trace Hardy inequalities in the upper half space which are rather of independent interest.
APA, Harvard, Vancouver, ISO, and other styles
7

Christ, Michael. "Extremizers of a Radon Transform Inequality." In Advances in Analysis, edited by Charles Fefferman, Alexandru D. Ionescu, D. H. Phong, and Stephen Wainger. Princeton University Press, 2014. http://dx.doi.org/10.23943/princeton/9780691159416.003.0005.

Full text
Abstract:
This chapter discusses the extremizers of a Radon transform inequality. The model for this analysis is Lieb's characterization of extremizers for the Hardy–Littlewood–Sobolev inequality for certain pairs of exponents. The chapter first introduces the four main steps of this model and sets up an endpoint inequality, before developing the identities to be used for the analysis in the remainder of this chapter. It then discusses some preliminary facts concerning extremizers and brings up direct and inverse Steiner symmetrization. Finally, the chapter returns to the inequality described in the first part of the chapter and begins the process of identifying extremizers for it. It concludes with further discussion on compact subgroups of the affine group as well as critical points.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography