Dissertations / Theses on the topic 'Harmonic function'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Harmonic function.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Alhwaitiy, Hebah Sulaiman. "POTENTIAL THEORY AND HARMONIC FUNCTIONS." Kent State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=kent1448671803.
Full textAbrahamson, Krista. "History, Implementation, and Pedagogical Implications of an Updated System of Functional Analysis." Thesis, University of Oregon, 2016. http://hdl.handle.net/1794/20480.
Full textNie, Guangqi. "Quasi-Harmonic Function Approach to Human-Following Robots." Thesis, Université d'Ottawa / University of Ottawa, 2014. http://hdl.handle.net/10393/31465.
Full textPetersen, Willis L. "The Lie Symmetries of a Few Classes of Harmonic Functions." Diss., CLICK HERE for online access, 2005. http://contentdm.lib.byu.edu/ETD/image/etd837.pdf.
Full textCandy, Timothy Lars. "A study of Besov-Lipschitz and Triebel-Lizorkin spaces using non-smooth kernels." Thesis, University of Canterbury. Mathematics and Statistics, 2008. http://hdl.handle.net/10092/2854.
Full textIakovlev, Alexander. "On estimates of constants for maximal functions." Doctoral thesis, KTH, Matematik (Avd.), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-145704.
Full textQC 20140527
Byrne, David A. "The Harmonic Theories of Sigfrid Karg-Elert: Acoustics, Function, Transformation, Perception." University of Cincinnati / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1522417315389199.
Full textCavina, Michelangelo. "Bellman functions and their method in harmonic analysis." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19214/.
Full textRehding, Alexander. "Nature and nationhood in Hugo Riemann's dualistic theory of harmony." Thesis, University of Cambridge, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.343248.
Full textHoffmann, Mark. "Topics in complex analysis and function spaces /." free to MU campus, to others for purchase, 2003. http://wwwlib.umi.com/cr/mo/fullcit?p3091931.
Full text陳偉樂 and Wai-lok Chan. "Multi-function monitoring system for harmonic and transient study of power networks." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1992. http://hub.hku.hk/bib/B31210727.
Full textChan, Wai-lok. "Multi-function monitoring system for harmonic and transient study of power networks /." [Hong Kong : University of Hong Kong], 1992. http://sunzi.lib.hku.hk/hkuto/record.jsp?B13418051.
Full textMurphy, Barbara Ann. "The effects of task order and function pattern on learning harmonic dictation /." The Ohio State University, 1989. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487672245901309.
Full textRiaz, Muhammad. "Novel miniature microwave quasi-elliptical function bandpass filters with wideband harmonic suppression." Thesis, London Metropolitan University, 2017. http://repository.londonmet.ac.uk/1262/.
Full textCankaya, Ilyas. "Investigation of jump phenomenon on ship roll motion by generalized harmonic balance method." Thesis, University of Sussex, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.263151.
Full textSabree, Aqeeb A. "Positive definite kernels, harmonic analysis, and boundary spaces: Drury-Arveson theory, and related." Diss., University of Iowa, 2019. https://ir.uiowa.edu/etd/7023.
Full textfr, kaimanov@univ-rennes1. "Boundaries and Harmonic Functions for Random Walks with Random Transition Probabilities." ESI preprints, 2001. ftp://ftp.esi.ac.at/pub/Preprints/esi1085.ps.
Full textMohammed, Ali Hjaji. "Steady State Response of Thin-walled Members Under Harmonic Forces." Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/24013.
Full textMiller, John Gabriel. "The Death and Resurrection of Function." The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1217299779.
Full textZhang, Wenhao. "The Boundedness of the Hardy-Littlewood Maximal Function and the Strong Maximal Function on the Space BMO." Scholarship @ Claremont, 2018. http://scholarship.claremont.edu/cmc_theses/1907.
Full textAbat, Diren. "Harmonic Vibration Analysis Of Large Structures With Local Nonlinearity." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/2/12610475/index.pdf.
Full texts technology, reliability and performance requirements on components of various mechanical systems, which tend to be much lighter and work under much more severe working conditions, dramatically increased. In general, analysis techniques based on simplified model of structural components with linearity assumption may provide time saving for solutions with reasonable accuracy. However, since most engineering structures are often very complex and intrinsically nonlinear, in some cases they may behave in a different manner which cannot be fully described by linear mathematical models, or linear treatments may not be applicable at all. In fact, some studies revealed that deviations in the modal properties of dynamic structures gathered from measured data are due to nonlinearities in the structure. Hence, in problems where accuracy is the primary concern, taking the nonlinear effects into account becomes inevitable. In this thesis, it is aimed to analyze the harmonic response characteristics of multi degree of freedom nonlinear structures having different type of nonlinearities. The amplitude dependencies of nonlinearities are modelled by using describing function method. To increase the accuracy of the results, effect of the higher order harmonic terms will be considered by using multi harmonic describing function theory. Mathematical formulations are embedded in a computer program developed in MATLAB®
with graphical user interface. The program gets the system matricies from the file which is obtained by using substructuring analysis in ANSYS®
, and nonlinearities in the system can easily be defined through the graphical user interface of the MATLAB®
program.
Shreekrishna. "Response mechanisms of attached premixed flames to harmonic forcing." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42759.
Full textFurby, Victoria J. "The Effects of Learning Tonal Harmonic Function on the Sight Singing Skill of High School Students." The Ohio State University, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=osu1377257565.
Full textFooladi, Samaneh, and Samaneh Fooladi. "Numerical Implementation of Elastodynamic Green's Function for Anisotropic Media." Thesis, The University of Arizona, 2016. http://hdl.handle.net/10150/623144.
Full textAndersson, Tomas. "An iterative solution method for p-harmonic functions on finite graphs with an implementation." Thesis, Linköping University, Department of Mathematics, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-18162.
Full textIn this paper I give a description and derivation of Dirichlet's problem, a boundary value problem, for p-harmonic functions on graphs and study an iterative method for solving it.The method's convergence is proved and some preliminary results about its speed of convergence are presented.There is an implementation accompanying this thesis and a short description of the implementation is included. The implementation will be made available on the internet at http://www.mai.liu.se/~anbjo/pharmgraph/ for as long as possible.
Omenyi, Louis Okechukwu. "On the second variation of the spectral zeta function of the Laplacian on homogeneous Riemanniann manifolds." Thesis, Loughborough University, 2014. https://dspace.lboro.ac.uk/2134/16167.
Full textUthama, Ashish. "3D spherical harmonic invariant features for sensitive and robust quantitative shape and function analysis in brain MRI." Thesis, University of British Columbia, 2007. http://hdl.handle.net/2429/438.
Full textYoerger, Edward J. Jr. "Vertical Acoustic Propagation in the Non-Homogeneous Layered Atmosphere for a Time-Harmonic, Compact Source." ScholarWorks@UNO, 2019. https://scholarworks.uno.edu/td/2709.
Full textParkinson, James William. "Buildings and Hecke Algebras." University of Sydney. Mathematics and Statistics, 2005. http://hdl.handle.net/2123/642.
Full textTwinem-Rosser, Elizabeth Anne. "The key complex system and multiple degree function : a guide to harmonic analysis in the transitional compositions of Arnold Schoenberg." Thesis, University of Aberdeen, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240389.
Full textBerry, Robert D. "A New Approach to Lie Symmetry Groups of Minimal Surfaces." BYU ScholarsArchive, 2004. https://scholarsarchive.byu.edu/etd/321.
Full textMcLean, Kathleen Ann. "Transformation of a finite-element model of a piezoelectric spherical shell transducer from a nodal to a spherical Harmonic function representation." Thesis, Monterey, California. Naval Postgraduate School, 1990. http://hdl.handle.net/10945/30658.
Full textA new method of array modeling which will be used to predict the performance of low frequency active sonar arrays is being investigated. In support of this effort, a network representation of a spherical shell piezoelectric transducer was developed. The transducer was modeled using the finite-element code MARTSAM, from which a nodal description of the transducer was obtained. A procedure was developed to reduce and transform the nodal description of the transducer into a spherical harmonic description. The spherical harmonic description of the transducer was computed at two frequencies, 112.5 Hz and 1125.3 Hz, corresponding to values of ka of 0.1 and 1. 0, respectively where a is the radius of the sphere.
Almér, Stefan. "Control and Analysis of Pulse-Modulated Systems." Doctoral thesis, KTH, Optimeringslära och systemteori, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4713.
Full textQC 20100628
Zhong, Jia. "Exploring the Three-Dimensional Regional Myocardial Function in Transgenic Mouse Models of Cardiac Diseases using Novel MR Tissue Tracking Techniques." Case Western Reserve University School of Graduate Studies / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=case1247260314.
Full textHomeili, Saeid. "Metrological characterisation of Low Power Voltage Transformers by using impulse response analysis." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20998/.
Full textLundström, Niklas L. P. "p-harmonic functions near the boundary." Doctoral thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-47942.
Full textZhang, Xun 1959. "Harmonic functions and sets of determination." Thesis, McGill University, 1996. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=40297.
Full textAldred, Michael P. "Inequalities for harmonic functions, with applications." Thesis, Queen's University Belfast, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387974.
Full textJehring, Kristin Elizabeth. "Harmonic functions on Walsh's Brownian motion." Diss., [La Jolla] : University of California, San Diego, 2009. http://wwwlib.umi.com/cr/ucsd/fullcit?p3355766.
Full textTitle from first page of PDF file (viewed June 25, 2009). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 82-83).
Zarco, García Ana María. "Weighted Banach spaces of harmonic functions." Doctoral thesis, Universitat Politècnica de València, 2015. http://hdl.handle.net/10251/56461.
Full text[ES] La presente memoria, "Espacios de Banach ponderados de funciones armónicas ", trata diversos tópicos del análisis funcional, como son las funciones peso, los operadores de composición, la diferenciabilidad Fréchet y Gâteaux de la norma y las clases de isomorfismos. El trabajo está dividido en cuatro capítulos precedidos de uno inicial en el que introducimos la notación y las propiedades conocidas que usamos en las demostraciones del resto de capítulos. En el primer capítulo estudiamos espacios de Banach de funciones armónicas en conjuntos abiertos de R^d dotados de normas del supremo ponderadas. Definimos el peso asociado armónico, explicamos sus propiedades, lo comparamos con el peso asociado holomorfo introducido por Bierstedt, Bonet y Taskinen, y encontramos diferencias y condiciones para que sean exactamente iguales y condiciones para que sean equivalentes. El capítulo segundo está dedicado al análisis de los operadores de composición con símbolo holomorfo entre espacios de Banach ponderados de funciones pluriarmónicas. Caracterizamos la continuidad, la compacidad y la norma esencial de operadores de composición entre estos espacios en términos de los pesos, extendiendo los resultados de Bonet, Taskinen, Lindström, Wolf, Contreras, Montes y otros para operadores de composición entre espacios de funciones holomorfas. Probamos que para todo valor del intervalo [0,1] existe un operador de composición sobre espacios ponderados de funciones armónicas tal que su norma esencial alcanza dicho valor. La mayoría de los contenidos de los capítulos 1 y 2 han sido publicados por E. Jordá y la autora en [48]. El capítulo tercero está relacionado con el estudio de la diferenciabilidad Gâteaux y Fréchet de la norma. El criterio de \v{S}mulyan establece que la norma de un espacio de Banach real X es Gâteaux diferenciable en x\in X si y sólo si existe x^* en la bola unidad del dual de X débil expuesto por x y la norma es Fréchet diferenciable en x si y sólo si x^*es débil fuertemente expuesto en la bola unidad del dual de X por x. Mostramos que en este criterio la bola del dual de X puede ser reemplazada por un conjunto conveniente más pequeño, y aplicamos este criterio extendido para caracterizar los puntos de diferenciabilidad Gâteaux y Fréchet de la norma de algunos espacios de funciones armónicas y continuas con valores vectoriales. A partir de estos resultados conseguimos una prueba sencilla del teorema sobre la diferenciabilidad Gâteaux de la norma de espacios de operadores lineales compactos enunciado por Heinrich y publicado sin la prueba. Además, éstos nos permiten obtener aplicaciones para espacios de Banach clásicos como H^\infty de funciones holomorfas acotadas en el disco y A(\overline{\D}) de funciones continuas en \overline{\D} que son holomorfas en \D. Los contenidos de este capítulo han sido incluidos por E. Jordá y la autora en [47]. Finalmente, en el capítulo cuarto mostramos que para cualquier abierto U contenido en R^d y cualquier peso v en U, el espacio hv0(U), de funciones armónicas tales que multiplicadas por el peso desaparecen en el infinito de U, es casi isométrico a un subespacio cerrado de c0, extendiendo un teorema debido a Bonet y Wolf para los espacios de funciones holomorfas Hv0(U) en abiertos U de C^d. Así mismo, inspirados por un trabajo de Boyd y Rueda también estudiamos la geometría de estos espacios ponderados examinando tópicos como la v-frontera y los puntos v-peak y damos las condiciones que proporcionan ejemplos donde hv0(U) no puede ser isométrico a c0. Para un conjunto abierto equilibrado U de R^d, algunas condiciones geométricas en U y sobre convexidad en el peso v aseguran que hv0(U) no es rotundo. Estos resultados han sido publicados por E. Jordá y la autora en [46].
[CAT] La present memòria, "Espais de Banach ponderats de funcions harmòniques", tracta diversos tòpics de l'anàlisi funcional, com són les funcions pes, els operadors de composició, la diferenciabilitat Fréchet i Gâteaux de la norma i les clases d'isomorfismes. El treball està dividit en quatre capítols precedits d'un d'inicial en què introduïm la notació i les propietats conegudes que fem servir en les demostracions de la resta de capítols. En el primer capítol estudiem espais de Banach de funcions harmòniques en conjunts oberts de R^d dotats de normes del suprem ponderades. Definim el pes associat harmònic, expliquem les seues propietats, el comparem amb el pes associat holomorf introduït per Bierstedt, Bonet i Taskinen, i trobem diferències i condicions perquè siguen exactament iguals i condicions perquè siguen equivalents. El capítol segon està dedicat a l'anàlisi dels operadors de composició amb símbol holomorf entre espais de Banach ponderats de funcions pluriharmòniques. Caracteritzem la continuïtat, la compacitat i la norma essencial d'operadors de composició entre aquests espais en termes dels pesos, estenent els resultats de Bonet, Taskinen, Lindström, Wolf, Contreras, Montes i altres per a operadors de composició entre espais de funcions holomorfes. Provem que per a tot valor de l'interval [0,1] hi ha un operador de composició sobre espais ponderats de funcions harmòniques tal que la seua norma essencial arriba aquest valor. La majoria dels continguts dels capítols 1 i 2 han estat publicats per E. Jordá i l'autora en [48]. El capítol tercer està relacionat amb l'estudi de la diferenciabilitat Gâteaux y Fréchet de la norma. El criteri de \v{S}mulyan estableix que la norma d'un espai de Banach real X és Gâteaux diferenciable en x\inX si i només si existeix x^* a la bola unitat del dual de X feble exposat per x i la norma és Fréchet diferenciable en x si i només si x^* és feble fortament exposat a la bola unitat del dual de X per x. Mostrem que en aquest criteri la bola del dual de X pot ser substituïda per un conjunt convenient més petit, i apliquem aquest criteri estès per caracteritzar els punts de diferenciabilitat Gâteaux i Fréchet de la norma d'alguns espais de funcions harmòniques i contínues amb valors vectorials. A partir d'aquests resultats aconseguim una prova senzilla del teorema sobre la diferenciabilitat Gâteaux de la norma d'espais d'operadors lineals compactes enunciat per Heinrich i publicat sense la prova. A més, aquests ens permeten obtenir aplicacions per a espais de Banach clàssics com l'espai H^\infty de funcions holomorfes acotades en el disc i l'àlgebra A(\overline{\D}) de funcions contínues en \overline{\D} que són holomorfes en \D. Els continguts d'aquest capítol han estat inclosos per E. Jordá i l'autora en [47]. Finalment, en el capítol quart mostrem que per a qualsevol conjunt obert U de R^d i qualsevol pes v en U, l'espai hv0(U), de funcions harmòniques tals que multiplicades pel pes desapareixen en el infinit d'U, és gairebé isomètric a un subespai tancat de c0, estenent un teorema degut a Bonet y Wolf per als espais de funcions holomorfes Hv0(U) en oberts U de C^d. Així mateix, inspirats per un treball de Boyd i Rueda també estudiem la geometria d'aquests espais ponderats examinant tòpics com la v-frontera i els punts v-peak i donem les condicions que proporcionen exemples on hv0(U) no pot ser isomètric a c0. Per a un conjunt obert equilibrat U de R^d, algunes condicions geomètriques en U i sobre convexitat en el pes v asseguren que hv0(U) no és rotund. Aquests resultats han estat publicats per E. Jordá i l'autora en [46].
Zarco García, AM. (2015). Weighted Banach spaces of harmonic functions [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/56461
TESIS
Marletta, G. "Curvilinear maximal functions." Thesis, University of Sussex, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.283003.
Full textLoukrati, Hicham. "Tail Empirical Processes: Limit Theorems and Bootstrap Techniques, with Applications to Risk Measures." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/37594.
Full textWei, Ang. "Random harmonic functions and multivariate Gaussian estimates." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 82 p, 2009. http://proquest.umi.com/pqdweb?did=1833647371&sid=2&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Full textRenz, Adrian Daniel. "A Comparison Of Harmonic And Holomorphic Functions." Thesis, Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-48865.
Full textRavisankar, Sivaguru. "Lipschitz Properties of Harmonic and Holomorphic Functions." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1308299030.
Full textKou, Kit Ian. "Paley-Wiener theorem and Shannon sampling with the Clifford analysis setting." Thesis, University of Macau, 2005. http://umaclib3.umac.mo/record=b2492153.
Full textZaru, Luna. "On the mean value property of harmonic functions." Thesis, McGill University, 1992. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=56683.
Full textQuite a number of research papers starting with the work of Kuran (1972) to the present with an, as yet, unpublished work of Armitage and Goldstein have been devoted to different aspects of the inverse mean value property. This thesis contains a unified exposition of results concerning the inverse mean value characterization.
Oliveira, Fernanda Moura de. "Analise harmonica na esfera unitaria d-dimensional real." [s.n.], 2005. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306564.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-04T21:23:04Z (GMT). No. of bitstreams: 1 Oliveira_FernandaMourade_M.pdf: 1054228 bytes, checksum: 75fe14a8c8e718328bbee826a80d14ae (MD5) Previous issue date: 2005
Resumo: O objetivo da dissertação e desenvolver um texto em português sobre Análise Harmônica na esfera d-dimensional real e aplicar os resultados deste texto no estudo de um teorema de multiplicadores. Nos dois primeiros capítulos e realizado um estudo sobre funções harmônicas em um domínio do espaço euclidiano Rd+1, harmônicos esféricos, representações de SO(d+1), harmônicos zonais, polinômios ultraesféricos e sobre o operador de Laplace Beltrami para a esfera. Finalmente, no terceiro capítulo é estudado um teorema de multiplicadores recente, o qual fornece condições suficientes para que um operador multiplicador seja limitado de Lp(Sd) em Lq(Sd), para quaisquer p e q, 1=p, q=8. Como aplicação deste teorema são obtidas estimativas superiores para n-larguras de Kolmogorov de classes de Sobolev nos espaços Lq(Sd), 1=p, q= 8, g > 0
Abstract: The purpose of this work is to develop a text in Portuguese about Harmonic Analysis on the d-dimensional real sphere Sd and to apply the results of the text to study a multiplier theorem. In the first two chapters it is made a study about harmonic functions in a domain of the euclidian space Rd+1, spherics harmonics, representations of SO(d+1), zonal harmonics, ultraspherics polynomials and about the Laplace Beltrami operator on the sphere. Finally, in the third chapter it is studied a recent multiplier theorem which gives sufficient conditions for a multiplier operator be bounded from Lp(Sd) to Lq(Sd), for 1=p, q=8. As application of this theorem are obtained upper bounds for n-widths of Kolmogorov type of Sobolev classes in the spaces Lq(Sd), 1=p, q= 8, g > 0
Mestrado
Matematica
Mestre em Matemática
Eyring, Nicholas J. "Development and Validation of an Automated Directivity Acquisition System Used in the Acquisition, Processing, and Presentation of the Acoustic Far-Field Directivity of Musical Instruments in an Anechoic Space." BYU ScholarsArchive, 2013. https://scholarsarchive.byu.edu/etd/4004.
Full textTaylor, Stephen M. "On Connections Between Univalent Harmonic Functions, Symmetry Groups, and Minimal Surfaces." Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd1851.pdf.
Full text