Academic literature on the topic 'Harmonic functions'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Harmonic functions.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Harmonic functions"

1

Mustafa, M. T. "Harmonic Morphisms Projecting Harmonic Functions to Harmonic Functions." Abstract and Applied Analysis 2012 (2012): 1–8. http://dx.doi.org/10.1155/2012/315757.

Full text
Abstract:
For Riemannian manifoldsMandN, admitting a submersionϕwith compact fibres, we introduce the projection of a function via its decomposition into horizontal and vertical components. By comparing the Laplacians onMandN, we determine conditions under which a harmonic function onU=ϕ−1(V)⊂Mprojects down, via its horizontal component, to a harmonic function onV⊂N.
APA, Harvard, Vancouver, ISO, and other styles
2

Wu, Shan-He, Imran Abbas Baloch, and İmdat İşcan. "On Harmonically(p,h,m)-Preinvex Functions." Journal of Function Spaces 2017 (2017): 1–9. http://dx.doi.org/10.1155/2017/2148529.

Full text
Abstract:
We define a new generalized class of harmonically preinvex functions named harmonically(p,h,m)-preinvex functions, which includes harmonic(p,h)-preinvex functions, harmonicp-preinvex functions, harmonich-preinvex functions, andm-convex functions as special cases. We also investigate the properties and characterizations of harmonically(p,h,m)-preinvex functions. Finally, we establish some integral inequalities to show the applications of harmonically(p,h,m)-preinvex functions.
APA, Harvard, Vancouver, ISO, and other styles
3

Ba�uelos, R., I. Kleme?, and C. Moore. "harmonic functions." Duke Mathematical Journal 60, no. 3 (June 1990): 689–715. http://dx.doi.org/10.1215/s0012-7094-90-06028-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wu, Pengcheng. "Increasing functions, harmonic bloch and harmonic normal functions." Complex Variables, Theory and Application: An International Journal 40, no. 2 (December 1999): 133–37. http://dx.doi.org/10.1080/17476939908815212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gillespie, Mark, Denise Yang, Mario Botsch, and Keenan Crane. "Ray Tracing Harmonic Functions." ACM Transactions on Graphics 43, no. 4 (July 19, 2024): 1–18. http://dx.doi.org/10.1145/3658201.

Full text
Abstract:
Sphere tracing is a fast and high-quality method for visualizing surfaces encoded by signed distance functions (SDFs). We introduce a similar method for a completely different class of surfaces encoded by harmonic functions , opening up rich new possibilities for visual computing. Our starting point is similar in spirit to sphere tracing: using conservative Harnack bounds on the growth of harmonic functions, we develop a Harnack tracing algorithm for visualizing level sets of harmonic functions, including those that are angle-valued and exhibit singularities. The method takes much larger steps than naïve ray marching, avoids numerical issues common to generic root finding methods and, like sphere tracing, needs only perform pointwise evaluation of the function at each step. For many use cases, the method is fast enough to run real time in a shader program. We use it to visualize smooth surfaces directly from point clouds (via Poisson surface reconstruction) or polygon soup (via generalized winding numbers) without linear solves or mesh extraction. We also use it to visualize nonplanar polygons (possibly with holes), surfaces from architectural geometry, mesh "exoskeletons", and key mathematical objects including knots, links, spherical harmonics, and Riemann surfaces. Finally we show that, at least in theory, Harnack tracing provides an alternative mechanism for visualizing arbitrary implicit surfaces.
APA, Harvard, Vancouver, ISO, and other styles
6

Khoroshchak, Vasylyna Stepanivna. "Stationary harmonic functions on homogeneous spaces." Ufimskii Matematicheskii Zhurnal 7, no. 4 (2015): 155–59. http://dx.doi.org/10.13108/2015-7-4-149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hayman, W. K., Tewodros Amdeberhan, and Irl C. Bivens. "Harmonic Products of Harmonic Functions: 10651." American Mathematical Monthly 106, no. 8 (October 1999): 782. http://dx.doi.org/10.2307/2589039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bonilla, A. "Universal harmonic functions." Quaestiones Mathematicae 25, no. 4 (December 2002): 527–30. http://dx.doi.org/10.2989/16073600209486036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hengartner, W., and G. Schober. "Univalent harmonic functions." Transactions of the American Mathematical Society 299, no. 1 (January 1, 1987): 1. http://dx.doi.org/10.1090/s0002-9947-1987-0869396-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gindikin, S. "Holomorphic harmonic functions." Russian Journal of Mathematical Physics 15, no. 2 (June 2008): 243–45. http://dx.doi.org/10.1134/s1061920808020088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Harmonic functions"

1

Alhwaitiy, Hebah Sulaiman. "POTENTIAL THEORY AND HARMONIC FUNCTIONS." Kent State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=kent1448671803.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lundström, Niklas L. P. "p-harmonic functions near the boundary." Doctoral thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-47942.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Xun 1959. "Harmonic functions and sets of determination." Thesis, McGill University, 1996. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=40297.

Full text
Abstract:
We introduce the notion of harmonic thin sets and establish a refinement of the Fatou-Naim-Doob theorem in the axiomatic system of Brelot. We also introduce in a Brelot harmonic space several notions of sets of determination for harmonic functions which were introduced by Bonsall (5), Hayman and Lyons (18), and Aikawa (1) for the classical Laplace operator on $ IR sp{n}.$ We then discuss the relation between our results on harmonic thinness in such an abstract setting and certain recent results of Bonsall (5), Hayman and Lyons (18), Gardiner (12), Essen (11), and Aikawa (1). We consider in particular the potential theory and the above problems for the Laplace-Beltrami operator associated with the Bergman metric on the unit ball of the n-dimensional complex space, i.e., in the context of Poisson-Szego integrals.
APA, Harvard, Vancouver, ISO, and other styles
4

Aldred, Michael P. "Inequalities for harmonic functions, with applications." Thesis, Queen's University Belfast, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387974.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zarco, García Ana María. "Weighted Banach spaces of harmonic functions." Doctoral thesis, Universitat Politècnica de València, 2015. http://hdl.handle.net/10251/56461.

Full text
Abstract:
[EN] The Ph.D. thesis "Weighted Banach Spaces of harmonic functions" presented here, treats several topics of functional analysis such as weights, composition operators, Fréchet and Gâteaux differentiability of the norm and isomorphism classes. The work is divided into four chapters that are preceded by one in which we introduce the notation and the well-known properties that we use in the proofs in the rest of the chapters. In the first chapter we study Banach spaces of harmonic functions on open sets of R^d endowed with weighted supremun norms. We define the harmonic associated weight, we explain its properties, we compare it with the holomorphic associated weight introduced by Bierstedt, Bonet and Taskinen, and we find differences and conditions under which they are exactly the same and conditions under which they are equivalent. The second chapter is devoted to the analysis of composition operators with holomorphic symbol between weighted Banach spaces of pluriharmonic functions. We characterize the continuity, the compactness and the essential norm of composition operators among these spaces in terms of their weights, thus extending the results of Bonet, Taskinen, Lindström, Wolf, Contreras, Montes and others for composition operators between spaces of holomorphic functions. We prove that for each value of the interval [0,1] there is a composition operator between weighted spaces of harmonic functions such that its essential norm attains this value. Most of the contents of Chapters 1 and 2 have been published by E. Jordá and the author in [48]. The third chapter is related with the study of Gâteaux and Fréchet differentiability of the norm. The \v{S}mulyan criterion states that the norm of a real Banach space X is Gâteaux differentiable at x\inX if and only if there exists x^* in the unit ball of the dual of X weak^* exposed by x and the norm is Fréchet differentiable at x if and only if x^* is weak^* strongly exposed in the unit ball of the dual of X by x. We show that in this criterion the unit ball of the dual of X can be replaced by a smaller convenient set, and we apply this extended criterion to characterize the points of Gâteaux and Fréchet differentiability of the norm of some spaces of harmonic functions and continuous functions with vector values. Starting from these results we get an easy proof of the theorem about the Gâteaux differentiability of the norm for spaces of compact linear operators announced by Heinrich and published without proof. Moreover, these results allow us to obtain applications to classical Banach spaces as the space H^\infty of bounded holomorphic functions in the disc and the algebra A(\overline{\D}) of continuous functions on \overline{\D} which are holomorphic on \D. The content of this chapter has been included by E. Jordá and the author in [47]. Finally, in the forth chapter we show that for any open set U of R^d and weight v on U, the space hv0(U) of harmonic functions such that multiplied by the weight vanishes at the boundary on U is almost isometric to a closed subspace of c0, extending a theorem due to Bonet and Wolf for the spaces of holomorphic functions Hv0(U) on open sets U of C^d. Likewise, we also study the geometry of these weighted spaces inspired by a work of Boyd and Rueda, examining topics such as the v-boundary and v-peak points and we give the conditions that provide examples where hv0(U) cannot be isometric to c0. For a balanced open set U of R^d, some geometrical conditions in U and convexity in the weight v ensure that hv0(U) is not rotund. These results have been published by E. Jordá and the author [46].
[ES] La presente memoria, "Espacios de Banach ponderados de funciones armónicas ", trata diversos tópicos del análisis funcional, como son las funciones peso, los operadores de composición, la diferenciabilidad Fréchet y Gâteaux de la norma y las clases de isomorfismos. El trabajo está dividido en cuatro capítulos precedidos de uno inicial en el que introducimos la notación y las propiedades conocidas que usamos en las demostraciones del resto de capítulos. En el primer capítulo estudiamos espacios de Banach de funciones armónicas en conjuntos abiertos de R^d dotados de normas del supremo ponderadas. Definimos el peso asociado armónico, explicamos sus propiedades, lo comparamos con el peso asociado holomorfo introducido por Bierstedt, Bonet y Taskinen, y encontramos diferencias y condiciones para que sean exactamente iguales y condiciones para que sean equivalentes. El capítulo segundo está dedicado al análisis de los operadores de composición con símbolo holomorfo entre espacios de Banach ponderados de funciones pluriarmónicas. Caracterizamos la continuidad, la compacidad y la norma esencial de operadores de composición entre estos espacios en términos de los pesos, extendiendo los resultados de Bonet, Taskinen, Lindström, Wolf, Contreras, Montes y otros para operadores de composición entre espacios de funciones holomorfas. Probamos que para todo valor del intervalo [0,1] existe un operador de composición sobre espacios ponderados de funciones armónicas tal que su norma esencial alcanza dicho valor. La mayoría de los contenidos de los capítulos 1 y 2 han sido publicados por E. Jordá y la autora en [48]. El capítulo tercero está relacionado con el estudio de la diferenciabilidad Gâteaux y Fréchet de la norma. El criterio de \v{S}mulyan establece que la norma de un espacio de Banach real X es Gâteaux diferenciable en x\in X si y sólo si existe x^* en la bola unidad del dual de X débil expuesto por x y la norma es Fréchet diferenciable en x si y sólo si x^*es débil fuertemente expuesto en la bola unidad del dual de X por x. Mostramos que en este criterio la bola del dual de X puede ser reemplazada por un conjunto conveniente más pequeño, y aplicamos este criterio extendido para caracterizar los puntos de diferenciabilidad Gâteaux y Fréchet de la norma de algunos espacios de funciones armónicas y continuas con valores vectoriales. A partir de estos resultados conseguimos una prueba sencilla del teorema sobre la diferenciabilidad Gâteaux de la norma de espacios de operadores lineales compactos enunciado por Heinrich y publicado sin la prueba. Además, éstos nos permiten obtener aplicaciones para espacios de Banach clásicos como H^\infty de funciones holomorfas acotadas en el disco y A(\overline{\D}) de funciones continuas en \overline{\D} que son holomorfas en \D. Los contenidos de este capítulo han sido incluidos por E. Jordá y la autora en [47]. Finalmente, en el capítulo cuarto mostramos que para cualquier abierto U contenido en R^d y cualquier peso v en U, el espacio hv0(U), de funciones armónicas tales que multiplicadas por el peso desaparecen en el infinito de U, es casi isométrico a un subespacio cerrado de c0, extendiendo un teorema debido a Bonet y Wolf para los espacios de funciones holomorfas Hv0(U) en abiertos U de C^d. Así mismo, inspirados por un trabajo de Boyd y Rueda también estudiamos la geometría de estos espacios ponderados examinando tópicos como la v-frontera y los puntos v-peak y damos las condiciones que proporcionan ejemplos donde hv0(U) no puede ser isométrico a c0. Para un conjunto abierto equilibrado U de R^d, algunas condiciones geométricas en U y sobre convexidad en el peso v aseguran que hv0(U) no es rotundo. Estos resultados han sido publicados por E. Jordá y la autora en [46].
[CAT] La present memòria, "Espais de Banach ponderats de funcions harmòniques", tracta diversos tòpics de l'anàlisi funcional, com són les funcions pes, els operadors de composició, la diferenciabilitat Fréchet i Gâteaux de la norma i les clases d'isomorfismes. El treball està dividit en quatre capítols precedits d'un d'inicial en què introduïm la notació i les propietats conegudes que fem servir en les demostracions de la resta de capítols. En el primer capítol estudiem espais de Banach de funcions harmòniques en conjunts oberts de R^d dotats de normes del suprem ponderades. Definim el pes associat harmònic, expliquem les seues propietats, el comparem amb el pes associat holomorf introduït per Bierstedt, Bonet i Taskinen, i trobem diferències i condicions perquè siguen exactament iguals i condicions perquè siguen equivalents. El capítol segon està dedicat a l'anàlisi dels operadors de composició amb símbol holomorf entre espais de Banach ponderats de funcions pluriharmòniques. Caracteritzem la continuïtat, la compacitat i la norma essencial d'operadors de composició entre aquests espais en termes dels pesos, estenent els resultats de Bonet, Taskinen, Lindström, Wolf, Contreras, Montes i altres per a operadors de composició entre espais de funcions holomorfes. Provem que per a tot valor de l'interval [0,1] hi ha un operador de composició sobre espais ponderats de funcions harmòniques tal que la seua norma essencial arriba aquest valor. La majoria dels continguts dels capítols 1 i 2 han estat publicats per E. Jordá i l'autora en [48]. El capítol tercer està relacionat amb l'estudi de la diferenciabilitat Gâteaux y Fréchet de la norma. El criteri de \v{S}mulyan estableix que la norma d'un espai de Banach real X és Gâteaux diferenciable en x\inX si i només si existeix x^* a la bola unitat del dual de X feble exposat per x i la norma és Fréchet diferenciable en x si i només si x^* és feble fortament exposat a la bola unitat del dual de X per x. Mostrem que en aquest criteri la bola del dual de X pot ser substituïda per un conjunt convenient més petit, i apliquem aquest criteri estès per caracteritzar els punts de diferenciabilitat Gâteaux i Fréchet de la norma d'alguns espais de funcions harmòniques i contínues amb valors vectorials. A partir d'aquests resultats aconseguim una prova senzilla del teorema sobre la diferenciabilitat Gâteaux de la norma d'espais d'operadors lineals compactes enunciat per Heinrich i publicat sense la prova. A més, aquests ens permeten obtenir aplicacions per a espais de Banach clàssics com l'espai H^\infty de funcions holomorfes acotades en el disc i l'àlgebra A(\overline{\D}) de funcions contínues en \overline{\D} que són holomorfes en \D. Els continguts d'aquest capítol han estat inclosos per E. Jordá i l'autora en [47]. Finalment, en el capítol quart mostrem que per a qualsevol conjunt obert U de R^d i qualsevol pes v en U, l'espai hv0(U), de funcions harmòniques tals que multiplicades pel pes desapareixen en el infinit d'U, és gairebé isomètric a un subespai tancat de c0, estenent un teorema degut a Bonet y Wolf per als espais de funcions holomorfes Hv0(U) en oberts U de C^d. Així mateix, inspirats per un treball de Boyd i Rueda també estudiem la geometria d'aquests espais ponderats examinant tòpics com la v-frontera i els punts v-peak i donem les condicions que proporcionen exemples on hv0(U) no pot ser isomètric a c0. Per a un conjunt obert equilibrat U de R^d, algunes condicions geomètriques en U i sobre convexitat en el pes v asseguren que hv0(U) no és rotund. Aquests resultats han estat publicats per E. Jordá i l'autora en [46].
Zarco García, AM. (2015). Weighted Banach spaces of harmonic functions [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/56461
TESIS
APA, Harvard, Vancouver, ISO, and other styles
6

Jehring, Kristin Elizabeth. "Harmonic functions on Walsh's Brownian motion." Diss., [La Jolla] : University of California, San Diego, 2009. http://wwwlib.umi.com/cr/ucsd/fullcit?p3355766.

Full text
Abstract:
Thesis (Ph. D.)--University of California, San Diego, 2009.
Title from first page of PDF file (viewed June 25, 2009). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 82-83).
APA, Harvard, Vancouver, ISO, and other styles
7

Marletta, G. "Curvilinear maximal functions." Thesis, University of Sussex, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.283003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Petersen, Willis L. "The Lie Symmetries of a Few Classes of Harmonic Functions." Diss., CLICK HERE for online access, 2005. http://contentdm.lib.byu.edu/ETD/image/etd837.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Renz, Adrian Daniel. "A Comparison Of Harmonic And Holomorphic Functions." Thesis, Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-48865.

Full text
Abstract:
Many results in real and complex analysis are the consequence of mean value properties and theorems. This is the case for harmonic and holomorphic functions as well. The mean value property builds the foundation for several properties of each set of functions. Using this property one can derive more properties like the maximum principle for harmonic functions and the maximum modulus principle for holomorphic functions. These results are then used to show other properties. The goal is to compare the theorems and proofs for harmonic and holomorphic functions and to understand why the results seem to be similar.
APA, Harvard, Vancouver, ISO, and other styles
10

Ravisankar, Sivaguru. "Lipschitz Properties of Harmonic and Holomorphic Functions." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1308299030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Harmonic functions"

1

Bañuelos, Rodrigo, and Charles N. Moore. Probabilistic Behavior of Harmonic Functions. Basel: Birkhäuser Basel, 1999. http://dx.doi.org/10.1007/978-3-0348-8728-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

1956-, Moore Charles N., ed. Probabilistic behavior of harmonic functions. Basel: Birkhäuser Verlag, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

G, Pinsky Ross. Positive harmonic functions and diffusion. New York: Cambridge University Press, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bañuelos, Rodrigo. Probabilistic behaviour of harmonic functions. Basel: Birkhauser, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bañuelos, Rodrigo. Probabilistic Behavior of Harmonic Functions. Basel: Birkhäuser Basel, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

K, Anand Christopher, ed. Harmonic morphisms, harmonic maps, and related topics. Boca Raton, Fla: Chapman & Hall/CRC, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Simon, Barry. Harmonic analysis. Providence, Rhode Island: American Mathematical Society, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Axler, Sheldon Jay. Harmonic function theory. 2nd ed. New York: Springer, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Axler, Sheldon Jay. Harmonic function theory. New York: Springer-Verlag, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Korányi, Adam, ed. Harmonic Functions on Trees and Buildings. Providence, Rhode Island: American Mathematical Society, 1997. http://dx.doi.org/10.1090/conm/206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Harmonic functions"

1

Rosenblum, Marvin, and James Rovnyak. "Harmonic Functions." In Topics in Hardy Classes and Univalent Functions, 1–22. Basel: Birkhäuser Basel, 1994. http://dx.doi.org/10.1007/978-3-0348-8520-1_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Armitage, David H., and Stephen J. Gardiner. "Harmonic Functions." In Springer Monographs in Mathematics, 1–32. London: Springer London, 2001. http://dx.doi.org/10.1007/978-1-4471-0233-5_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Krantz, Steven G. "Harmonic Functions." In Handbook of Complex Variables, 89–101. Boston, MA: Birkhäuser Boston, 1999. http://dx.doi.org/10.1007/978-1-4612-1588-2_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bak, Joseph, and Donald J. Newman. "Harmonic Functions." In Undergraduate Texts in Mathematics, 225–39. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7288-0_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rodríguez, Rubí E., Irwin Kra, and Jane P. Gilman. "Harmonic Functions." In Graduate Texts in Mathematics, 229–65. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-7323-8_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lang, Serge. "Harmonic Functions." In Graduate Texts in Mathematics, 241–90. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4757-3083-8_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shorey, Tarlok Nath. "Harmonic Functions." In Infosys Science Foundation Series, 99–116. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9097-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lang, Serge. "Harmonic Functions." In Monographs in Computer Science, 237–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-59273-7_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Giaquinta, Mariano, and Luca Martinazzi. "Harmonic functions." In An Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs, 1–16. Pisa: Scuola Normale Superiore, 2012. http://dx.doi.org/10.1007/978-88-7642-443-4_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Beals, Richard, and Roderick S. C. Wong. "Harmonic functions." In Explorations in Complex Functions, 41–49. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-54533-8_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Harmonic functions"

1

Belfiore, Jean-Claude, Yi Hong, and Emanuele Viterbo. "Harmonic analysis of binary functions." In 2015 IEEE Information Theory Workshop (ITW). IEEE, 2015. http://dx.doi.org/10.1109/itw.2015.7133147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Alakhrass, Mohammad. "Harmonic functions on compact sets." In THE 4TH INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES: Mathematical Sciences: Championing the Way in a Problem Based and Data Driven Society. Author(s), 2017. http://dx.doi.org/10.1063/1.4980966.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Barnsley, Michael F., and Uta Freiberg. "Fractal transformations of harmonic functions." In Smart Materials, Nano- and Micro-Smart Systems, edited by Axel Bender. SPIE, 2006. http://dx.doi.org/10.1117/12.696052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Boini, Ravindar. "Certain subfamilies of harmonic functions." In 7TH INTERNATIONAL CONFERENCE ON NANOSCIENCE AND NANOTECHNOLOGY. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0195762.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Connolly, C. I., J. B. Burns, and R. Weiss. "Harmonic Functions for Robot Path Construction." In 1989 Symposium on Visual Communications, Image Processing, and Intelligent Robotics Systems, edited by Guillermo Rodriguez. SPIE, 1990. http://dx.doi.org/10.1117/12.969910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Omlor, Lars, and Michael Leinert. "On a translation property of positive definite functions." In Noncommutative Harmonic Analysis with Applications to Probability II. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2010. http://dx.doi.org/10.4064/bc89-0-15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

HAN, BIN. "THE INITIAL FUNCTIONS IN A CASCADE ALGORITHM." In Proceedings of the International Conference of Computational Harmonic Analysis. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776679_0009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

SUN, WENCHANG, DEYUN YANG, and XINGWEI ZHOU. "A SPECIAL CLASS OF WAVELET FRAME FUNCTIONS." In Proceedings of the International Conference of Computational Harmonic Analysis. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776679_0015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Valko, Michal, Branislav Kveton, Hamed Valizadegan, Gregory F. Cooper, and Milos Hauskrecht. "Conditional Anomaly Detection with Soft Harmonic Functions." In 2011 IEEE 11th International Conference on Data Mining (ICDM). IEEE, 2011. http://dx.doi.org/10.1109/icdm.2011.40.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Colonnese, Stefania, Roberto Randi, Stefano Rinauro, and Gaetano Scarano. "Fast image interpolation using Circular Harmonic Functions." In 2010 2nd European Workshop on Visual Information Processing (EUVIP). IEEE, 2010. http://dx.doi.org/10.1109/euvip.2010.5699119.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Harmonic functions"

1

Oh, H. G., H. R. Lee, Thomas F. George, and C. I. Um. Exact Wave Functions and Coherent States of a Damped Driven Harmonic Oscillator. Fort Belvoir, VA: Defense Technical Information Center, February 1989. http://dx.doi.org/10.21236/ada205785.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Braga, María Isabel J. Integrating Freshwater Ecosystem Function and Services with Water Development Projects. Inter-American Development Bank, June 1999. http://dx.doi.org/10.18235/0008800.

Full text
Abstract:
This paper describes the conditions necessary to harmonize project objectives with the conservation of freshwater ecosystems. It also provides information on how to incorporate freshwater ecosystem biodiversity, function, and services with water development projects. One sections of the papers presents a description of biodiversity in the context of freshwater ecosystems, including a short description of those ecosystems. Subsequent parts of the paper describe the recommended approach to harmonize water development projects and the freshwater ecosystem function, as well as the role of the Environmental Impact Assessments in this process, and potential impacts of different categories of water related projects.
APA, Harvard, Vancouver, ISO, and other styles
3

Kokurina, Olga Yu. STATE SOVEREIGNTY AND PUBLIC RESPONSIBILITY OF GOVERNMENT IN THE LIGHT OF A SYSTEMIC-ORGANIC APPROACH: INTERDISCIPLINARY RESEARCH. SIB-Expertise, December 2023. http://dx.doi.org/10.12731/er0755.18122023.

Full text
Abstract:
This electronic resource contains a critical summary of the problems of sovereign statehood and the responsibility of public authority in the light of an interdisciplinary systemic organic approach. The author reveals the essence and content of the categories “sovereign statehood” and “responsibility of public authority” as key factors of the state legal system for ensuring the life of the Russian Federation in the conditions of the emergence of a new world order. It is shown that the multi-valued category of “statehood” (statehood, stateness, nationhood, nationness) reflects the complexity of the concept, which characterizes the status and ability of the state to carry out its functions, and on the other hand, reflects the cultural-historical and spiritual-ideological unity of society, which is the deepest internal semantic content both preceding the state and completing its sociohistorical formation in the course of state development and historical transformations. Based on the systemic-organic approach and within the framework of the structure of the Aristotelian tetrad, the author reveals an integral model of the political and legal phenomenon of “statehood”, in which the final cause (ethion) is determined by “sovereign statehood”, which presupposes unity, integrity, actual autonomy, independence, independence and self-sufficiency states in making decisions that ensure the historical existence and development of the country. The work presents a theoretical understanding of social (public) solidarity as a legal construct and instrument of social harmony and integrity of the state-legal body of the Russian Federation. It is shown that public solidarity, as a constitutional and administrative-legal phenomenon in its positive and negative forms, creates the necessary basis for the implementation of the principle of mutual responsibility of the individual, society and state. An idea of the responsibilities of the state, its bodies and officials to the individual and society is given, the role and place of public legal responsibility of holders of power in the solidary social mechanism is outlined. In general, the results of interdisciplinary research are aimed at identifying key factors in social theory and practice that contribute to the acquisition of true independence and self-sufficiency of Russian statehood and the preservation of the civilizational foundations of a multinational Russian society. The manual will be useful to undergraduate and graduate students studying social and political sciences, and anyone interested in the theory and practice of government.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography