Dissertations / Theses on the topic 'Harmonic functions on Riemann surfaces'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 26 dissertations / theses for your research on the topic 'Harmonic functions on Riemann surfaces.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Vanni, Ismaele. "Meromorphic functions on compact Riemann surfaces." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2018.
Find full textValli, Giorgio. "Some aspects of the theory of harmonic gauges over Riemann surfaces." Thesis, University of Warwick, 1988. http://wrap.warwick.ac.uk/109833/.
Full textAryasomayajula, Naga Venkata Anilatmaja. "Bounds for Green's functions on hyperbolic Riemann surfaces of finite volume." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2013. http://dx.doi.org/10.18452/16828.
Full textIn 2006, in a paper in Compositio titled "Bounds on canonical Green''s functions", J. Jorgenson and J. Kramer have derived optimal bounds for the hyperbolic and canonical Green''s functions defined on a compact hyperbolic Riemann surface. These estimates were derived in terms of invariants coming from hyperbolic geometry of the Riemann surface. As an application, they deduced bounds for the canonical Green''s functions through covers and for families of modular curves. In this thesis, we extend their methods to noncompact hyperbolic Riemann surfaces and derive similar bounds for the hyperbolic and canonical Green''s functions defined on a noncompact hyperbolic Riemann surface.
Sumi, Ken. "Tropical Theta Functions and Riemann-Roch Inequality for Tropical Abelian Surfaces." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263432.
Full textHandfield, Francis Gerald. "Adiabatic limits of the anti-self-dual equation /." Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.
Full textTaylor, Stephen M. "On Connections Between Univalent Harmonic Functions, Symmetry Groups, and Minimal Surfaces." Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd1851.pdf.
Full textReyes, Ernesto Oscar. "The Riemann zeta function." CSUSB ScholarWorks, 2004. https://scholarworks.lib.csusb.edu/etd-project/2648.
Full textBoes, Felix Jonathan [Verfasser]. "On moduli spaces of Riemann surfaces : new generators in their unstable homology and the homotopy type of their harmonic compactification / Felix Jonathan Boes." Bonn : Universitäts- und Landesbibliothek Bonn, 2018. http://d-nb.info/1170778070/34.
Full textOstermayr, Dominik [Verfasser], Alexander [Gutachter] Alldridge, George [Gutachter] Marinescu, and Tilmann [Gutachter] Wurzbacher. "Some results in supergeometry: Harmonic maps from super Riemann surfaces and Automorphism supergroups of supermanifolds / Dominik Ostermayr ; Gutachter: Alexander Alldridge, George Marinescu, Tilmann Wurzbacher." Köln : Universitäts- und Stadtbibliothek Köln, 2017. http://d-nb.info/1129872475/34.
Full textAryasomayajula, Naga Venkata Anilatmaja [Verfasser], Jürg [Akademischer Betreuer] Kramer, Robin de [Akademischer Betreuer] Jong, and Jay [Akademischer Betreuer] Jorgenson. "Bounds for Green's functions on hyperbolic Riemann surfaces of finite volume / Naga Venkata Anilatmaja Aryasomayajula. Gutachter: Jürg Kramer ; Robin de Jong ; Jay Jorgenson." Berlin : Humboldt Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2013. http://d-nb.info/1043593225/34.
Full textMakki, Ali. "Morphismes harmoniques et déformation de surfaces minimales dans des variétés de dimension 4." Thesis, Tours, 2014. http://www.theses.fr/2014TOUR4013/document.
Full textIn this thesis, we are interested in harmonic morphisms between Riemannian manifolds (Mm, g) and (Nn, h) for m > n. Such a smooth map is a harmonic morphism if it pulls back local harmonic functions to local harmonic functions: if ƒ : V → ℝ is a harmonic function on an open subset V on N and Φ-1(V) is non-Empty, then the composition ƒ ∘ Φ : Φ-1(V) → ℝ is harmonic. The conformal transformations of the complex plane are harmonic morphisms. In the late 1970's Fuglede and Ishihara published two papers ([Fu]) and ([Is]), where they discuss their results on harmonic morphisms or mappings preserving harmonic functions. They characterize non-Constant harmonic morphisms F : (M,g) → (N,h) between Riemannian manifolds as those harmonic maps, which are horizontally conformal, where F horizontally conformal means : for any x ∈ M with dF(x) ≠ 0, the restriction of dF(x) to the orthogonal complement of kerdF(x) in TxM is conformal and surjective. This means that we are dealing with a special class of harmonic maps
Javan, Peykar Ariyan. "Explicit polynomial bounds for Arakelov invariants of Belyi curves." Thesis, Paris 11, 2013. http://www.theses.fr/2013PA112075/document.
Full textWe explicitly bound the Faltings height of a curve over the field of algebraic numbers in terms of the Belyi degree. Similar bounds are proven for three other Arakelov invariants: the discriminant, Faltings' delta invariant and the self-intersection of the dualizing sheaf. Our results allow us to explicitly bound these Arakelov invariants for modular curves, Hurwitz curves and Fermat curves. Moreover, as an application, we show that the Couveignes-Edixhoven-Bruin algorithmtime under the Riemann hypothesis for zeta-functions of number fields. This was known before only for certain congruence subgroups. Finally, we utilize our results to prove a conjecture of Edixhoven, de Jong and Schepers on the Faltings height of a branched cover of the projective line over the ring of integers
Nualart, Riera Joan. "On the hyperbolic uniformization of Shimura curves with an Atkin-Lehner quotient of genus 0." Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/396134.
Full textL’objectiu principal d’aquesta tesi és contribuir a la uniformització hiperbòlica explícita de les corbes de Shimura. Ens restringim a les corbes associades a ordres d’Eichler dins d’àlgebres de quaternions racionals tals que el seu quocient pel grup d’involucions d’Atkin-Lehner és de gènere 0. Aquest cas,tot I que presenta nombroses diferències amb el cas modular clàssic, també hi té certes similituds. Utilitzem aquest fet per a discutir una aproximació al problema de l’obtenció d’uniformitzacions hiperbòliques explícites d’aquestes corbes i d’alguns recobriments, així com també algunes aplicacions, que il·lustrem amb abundants exemples. Per a entendre millor el problema, començarem introduint breument el seu rerefons històric. Després explicarem en detall les nostres contribucions i el contingut de la memòria.
Shu, Cheng. "E-Polynomial of GLn⋊<σ>-character varieties." Thesis, Université de Paris (2019-....), 2020. http://www.theses.fr/2020UNIP7038.
Full textLet σ be the transpose-inverse automorphism of GLn so that we have a semi-direct product GLn⋊<σ>. Let Y→X be a double covering of Riemann surfaces, which is exactly the unramified part of a ramified covering of compact Riemann surfaces. The non trivial covering transformation is denoted by τ. To each puncture (removed ramification point), we prescribe a GLn(C)-conjugacy class contained in the connected component GLn(C).σ . And we require the collection C of these conjugacy classes to be generic. Our GLn(C)⋊<σ>-character variety is the moduli of the pairs (L,Φ), where L is a local system on Y and Φ:L → τ*L* is an isomorphism, whose monodromy at the punctures are determined by C. We compute the E-polynomial of this character variety. To this end, we use a theorem of Katz and translate the problem to point-counting over finite fields. The counting formula involves the irreducible characters of GL_n(q)⋊<σ>, and so the l-adic character table of GL_n(q)⋊<σ> is determined along the way. The resulting polynomial is expressed as the in-ner product of certain symmetric functions associated to the wreath product (Z/2Z)^N⋊(S_N), with N=[n/2]
Larsson, David. "Algorithmic Construction of Fundamental Polygons for Certain Fuchsian Groups." Thesis, Linköpings universitet, Matematik och tillämpad matematik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-119916.
Full textRemón, Adell Dionís. "Formes d'ona de Maass i aplicacions = Maass waveforms and applications." Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/396139.
Full textReyes, Edwin Oswaldo Salinas. "Superfícies mínimas de Laguerre e geometria isotrópica." Universidade Federal de Goiás, 2016. http://repositorio.bc.ufg.br/tede/handle/tede/5832.
Full textApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-08-05T12:33:56Z (GMT) No. of bitstreams: 2 Mestrado - Edwin Oswaldo Salinas Reyes - 2016.pdf: 1254340 bytes, checksum: f20230521814efa37f16e24f8d80f74e (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2016-08-05T12:33:56Z (GMT). No. of bitstreams: 2 Mestrado - Edwin Oswaldo Salinas Reyes - 2016.pdf: 1254340 bytes, checksum: f20230521814efa37f16e24f8d80f74e (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-02-29
Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq
In this work we refer to the study of a new method and simple approach to minimal surface Laguerre in isotropic model of Laguerre geometry as the bi-harmonic function graph. We developed the isotropic geometry which studies the geometric properties invariant under certain affine transformations in Euclidean space, and the fundamental elements of Laguerre geometry which are spheres orienteds and plans orienteds, and properties which are invariant on the transformation of Laguerre. In addition, we will show a close relationship between minimal surfaces Laguerre spherical type and isotropic minimal surfaces which are given by the graph of harmonic functions and minimal Euclidean surfaces. Finally, the duality metric in the isotropic space is used to develop an isotropic exchange for minimal surfaces Laguerre in certain Lie transformation of Laguerre minimal surfaces in Euclidean space.
Neste trabalho nos referimos ao estudo de um novo método de desenvolvimento de superfícies mínimas de Laguerre vista no modelo isotrópico da geometria de Laguerre como o gráfico de funções bi-harmônicas. Desenvolvemos a geometria isotrópica a qual estuda as propriedades geométricas invariantes por certas transformações afines no espaço Euclidiano, os elementos fundamentais da geometria de Laguerre as quais são esferas e planos orientados e as propriedades as quais são invariantes sobre as transformações de Laguerre. Além disso, mostraremos uma relação fechada entre superfícies mínimas de Laguerre do tipo esférico e superfícies mínimas isotrópicas as quais são dadas pelo gráfico de funções harmônicas e superfícies mínimas Euclidianas. Finalmente, a métrica dual no espaço isotrópico é utilizada para desenvolver uma contrapartida isotrópica de superfícies mínimas de Laguerre em certas transformações de Lie de superfícies mínimas de Laguerre no espaço Euclidiano.
"Harmonic maps on surfaces." 1999. http://library.cuhk.edu.hk/record=b5890049.
Full textThesis (M.Phil.)--Chinese University of Hong Kong, 1999.
Includes bibliographical references (leaves 58-59).
Abstracts in English and Chinese.
Chapter 1 --- Preliminary --- p.4
Chapter 1.1 --- Introduction --- p.4
Chapter 1.2 --- Some basic theorem --- p.7
Chapter 2 --- Bubble tree Convergence for a sequence of harmonic map --- p.11
Chapter 3 --- Heat Flow of Harmonic Maps on Riemann Surface --- p.21
Chapter 3.1 --- Existence of unique solution to the evolution problem --- p.21
Chapter 3.1.1 --- Some Basic Estimates --- p.22
Chapter 3.1.2 --- Existence Result --- p.34
Chapter 3.1.3 --- Behaviour of solutions near singular points --- p.37
Chapter 3.2 --- Finite time Blow-up --- p.39
Chapter 3.3 --- Energy Identity --- p.51
Bibliography --- p.58
Philip, Eliza. "Function Theory On Non-Compact Riemann Surfaces." Thesis, 2012. http://etd.iisc.ernet.in/handle/2005/2330.
Full textTai, Tien-En, and 戴天恩. "The Theory of Riemann Surfaces and Elliptic Functions with application to Nonlinear Schrodinger Equation." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/66233520264950696666.
Full text國立清華大學
數學系
101
In this paper, we study the theory of Riemann Surfaces of genus N and the numerical computation of path integrals on those Riemann Surfaces. We then study the classical theory of the elliptic functions. Finally, we apply both theorys to solve some special solutions of Nonlinear Schrodinger Equation.
Tzeng, Tz-Shiuan, and 曾子軒. "The Theory of Riemann Surfaces and Elliptic Functions with application to the sine-Gordon Equations." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/08924820148317943844.
Full text國立清華大學
數學系
101
In this paper, we study the theory of Riemann Surfaces of ge-nus N and the numerical computation of path intergrals on those Riemann Surfaces. We then study the classical theory of the Eillptic functions. Finally, we apply both theorys to solve some special solutions of the sine-Gordon Equation.
Jiang, Yi-Chin, and 蔣宜津. "The Theory of Riemann Surfaces and Elliptic Functions with Application to the Nonlinear Schrodinger Equation." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/86358559767396519384.
Full text國立交通大學
應用數學系所
101
In this paper, we study the function theory of the solutions of the nonlinear Schrodinger equation (NLS), and these solutions have the radical forms. Solutions of such equation resides on the the Riemann surface of genus N-1 so we first study the theory of Riemann surface. Then we study the classical elliptic functions to solve some special solutions of NLS and analyze the associated properties.
Chen, Jian-Ze, and 陳建澤. "The Theories of Riemann Surfaces and Elliptic Functions with Application to the sine-Gordon Equation." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/13014433361767114790.
Full text國立交通大學
應用數學系所
101
The Goal of this paper is to solve the sine-Gordon equation, u_tt - u_xx + sin[u(x,t)] = 0, where -∞ < x < ∞ and t > 0. By using the method of substitution, we get u_ss + sin[u(s)] = 0, which is a simple pendulum motion at time s with the angular displacement u, and it implies u_s = √2[E + cos(u)], where E is constant. But √2[E + cos(u)] is a two-valued function on C, so we introduce the theory of the Riemann surface R such that it comes to a single-valued analytic function on this surface. Next, we introduce the classical theory of the elliptic functions, to solve u_ss + sin[u(s)] = 0, and analyze the associated properties.
Rowland, Todd. "Smooth holomorphic curves in S [superscript 6] /." 1999. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:9943108.
Full textHuang, Jian-Shun, and 黃建順. "The Theory of Riemann Surfaces and the Weierstrass Elliptic Functions with Application to the Korteweg-deVries Equation." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/78897276527866821382.
Full text國立交通大學
應用數學系所
104
The Korteweg-deVries equation is nonlinear partial differential equations, and the KdV equation is as follows: u_t(x,t)-6*u(x,t)u_x(x,t)+u_xxx(x,t)=0,t>0,-∞≤x≤∞ For traveling solutions, we can transform partial differential equations into differential equation, and the KdV equation becomes the following form: u_θ^2(θ)=2*u^3(θ)+cu^2(θ)+2*A*u(θ)+B To solve u(θ) we transfer this ode into integral equation namely, The inverse problem where the integral involves square root(a multi-valued function). We develop Riemann surfaces with proper algebraic structure to make the function √ to be single-valued. Then we introduce the classical theory of Weierstrassian elliptic functions, to solve the solution of u_θ(θ)=√(2*u^3(θ)+cu^2(θ)+2*A*u(θ)+B) .
Ram, Mohan Devang S. "An Introduction to Minimal Surfaces." Thesis, 2014. http://etd.iisc.ernet.in/handle/2005/2890.
Full text