Academic literature on the topic 'Harmonic partials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Harmonic partials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Harmonic partials"
Fine, Philip A., and Brian C. J. Moore. "Frequency Analysis and Musical Ability." Music Perception 11, no. 1 (1993): 39–53. http://dx.doi.org/10.2307/40285598.
Full textNicholson, Thomas, and Marc Sabat. "FAREY SEQUENCES MAP PLAYABLE NODES ON A STRING." Tempo 74, no. 291 (December 19, 2019): 86–97. http://dx.doi.org/10.1017/s0040298219001001.
Full textde Cheveigné, Alain. "Harmonic fusion and pitch shifts of mistuned partials." Journal of the Acoustical Society of America 102, no. 2 (August 1997): 1083–87. http://dx.doi.org/10.1121/1.419612.
Full textTervaniemi, M., T. Ilvonen, J. Sinkkonen, A. Kujala, K. Alho, M. Huotilainen, and R. Näätänen. "Harmonic partials facilitate pitch discrimination in humans: electrophysiological and behavioral evidence." Neuroscience Letters 279, no. 1 (January 2000): 29–32. http://dx.doi.org/10.1016/s0304-3940(99)00941-6.
Full textMoore, Brian C. J., Brian R. Glasberg, and Robert W. Peters. "Thresholds for hearing mistuned partials as separate tones in harmonic complexes." Journal of the Acoustical Society of America 80, no. 2 (August 1986): 479–83. http://dx.doi.org/10.1121/1.394043.
Full textDai, Huanping. "Harmonic pitch: Dependence on resolved partials, spectral edges, and combination tones." Hearing Research 270, no. 1-2 (December 2010): 143–50. http://dx.doi.org/10.1016/j.heares.2010.08.002.
Full textBrunstrom, Jeffrey M., and Brian Roberts. "Profiling the perceptual suppression of partials in periodic complex tones: Further evidence for a harmonic template." Journal of the Acoustical Society of America 104, no. 6 (December 1998): 3511–19. http://dx.doi.org/10.1121/1.423934.
Full textMilne, Andrew J., Robin Laney, and David B. Sharp. "Testing a spectral model of tonal affinity with microtonal melodies and inharmonic spectra." Musicae Scientiae 20, no. 4 (August 1, 2016): 465–94. http://dx.doi.org/10.1177/1029864915622682.
Full textRupprecht, Philip. "ABOVE AND BEYOND THE BASS: HARMONY AND TEXTURE IN GEORGE BENJAMIN'S ‘VIOLA, VIOLA’." Tempo 59, no. 232 (April 2005): 28–38. http://dx.doi.org/10.1017/s0040298205000136.
Full textWalter, Caspar Johannes. "MULTIPHONICS ON VIBRATING STRINGS." Tempo 74, no. 291 (December 19, 2019): 7–23. http://dx.doi.org/10.1017/s0040298219000950.
Full textDissertations / Theses on the topic "Harmonic partials"
Eyring, Nicholas J. "Development and Validation of an Automated Directivity Acquisition System Used in the Acquisition, Processing, and Presentation of the Acoustic Far-Field Directivity of Musical Instruments in an Anechoic Space." BYU ScholarsArchive, 2013. https://scholarsarchive.byu.edu/etd/4004.
Full textJohnston, Ann. "Markov Bases for Noncommutative Harmonic Analysis of Partially Ranked Data." Scholarship @ Claremont, 2011. http://scholarship.claremont.edu/hmc_theses/4.
Full textManna, Utpal. "Harmonic and stochastic analysis aspects of the fluid dynamics equations." Laramie, Wyo. : University of Wyoming, 2007. http://proquest.umi.com/pqdweb?did=1414120661&sid=1&Fmt=2&clientId=18949&RQT=309&VName=PQD.
Full textAkman, Murat. "On the Dimension of a Certain Measure Arising from a Quasilinear Elliptic Partial Differential Equation." UKnowledge, 2014. http://uknowledge.uky.edu/math_etds/12.
Full textWiswall, Wendy Jeanne. "Partial vowel harmonies as evidence for a Height Node." Diss., The University of Arizona, 1991. http://hdl.handle.net/10150/185697.
Full textBranding, Volker. "The evolution equations for Dirac-harmonic Maps." Phd thesis, Universität Potsdam, 2012. http://opus.kobv.de/ubp/volltexte/2013/6420/.
Full textDie vorliegende Dissertation untersucht den Gradientenfluss von Dirac-harmonischen Abbildungen. Dirac-harmonische Abbildungen sind kritische Punkte eines Energiefunktionals, welches aus supersymmetrischen Feldtheorien motiviert ist. Die kritischen Punkte dieses Energiefunktionals koppeln die Gleichung für harmonische Abbildungen mit Spinorfeldern. Viele analytische Eigenschaften von Dirac-harmonischen Abbildungen sind bereits bekannt, ein allgemeines Existenzresultat wurde aber noch nicht erzielt. Diese Dissertation untersucht das Existenzproblem, indem der Gradientenfluss von einer regularisierten Version Dirac-harmonischer Abbildungen untersucht wird. Die Methode des Gradientenflusses kann nicht direkt angewendet werden, da das Energiefunktional für Dirac-harmonische Abbildungen nach unten unbeschränkt ist. Daher wird zunächst eine Regularisierungsvorschrift für Dirac-harmonische Abbildungen eingeführt und dann der Gradientenfluss betrachtet. Kapitel 1 stellt für die Arbeit wichtige Resultate über harmonische Abbildungen/harmonische Spinoren zusammen. Außerdem werden die zur Zeit bekannten Resultate über Dirac-harmonische Abbildungen zusammengefasst. In Kapitel 2 werden Dirac-harmonische Abbildungen im Detail eingeführt, außerdem wird eine Regularisierungsvorschrift präsentiert. Kapitel 3 führt die Evolutionsgleichungen für regularisierte Dirac-harmonische Abbildungen ein. Zusätzlich wird die Evolution von verschiedenen Energien diskutiert. Schließlich wird die Existenz einer Kurzzeitlösung bewiesen. In Kapitel 4 werden die Evolutionsgleichungen für den Fall analysiert, dass die Ursprungsmannigfaltigkeit eine geschlossene Kurve ist. Die Existenz einer Langzeitlösung der Evolutionsgleichungen wird bewiesen. Es wird außerdem gezeigt, dass die Evolutionsgleichungen konvergieren, falls die Regularisierung groß genug gewählt wurde. Schließlich wird diskutiert, ob die Regularisierung wieder entfernt werden kann. Kapitel 5 schlussendlich untersucht die Evolutionsgleichungen für den Fall, dass die Ursprungsmannigfaltigkeit eine geschlossene Riemannsche Spin Fläche ist. Es wird die Existenz einer global schwachen Lösung bewiesen, welche bis auf endlich viele Singularitäten glatt ist. Die Lösung konvergiert im schwachen Sinne gegen eine regularisierte Dirac-harmonische Abbildung. Auch hier wird schließlich untersucht, ob die Regularisierung wieder entfernt werden kann.
Brown, John. "A SPACE BASED PARTICLE DAMPER DEMONSTRATOR." DigitalCommons@CalPoly, 2011. https://digitalcommons.calpoly.edu/theses/501.
Full textYang, Danyu. "Partial sum process of orthogonal series as rough process." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:f48d69b9-29ba-420b-a6b5-55deba847b15.
Full textWiswall, Wendy J. "Tunica Partial Vowel Harmony as Support for a Height Node." Department of Linguistics, University of Arizona (Tucson, AZ), 1991. http://hdl.handle.net/10150/227242.
Full textBergeron, Mario. "Coherent state path integral for the harmonic oscillator and a spin particle in a constant magnetic field." Thesis, University of British Columbia, 1989. http://hdl.handle.net/2429/27391.
Full textScience, Faculty of
Physics and Astronomy, Department of
Graduate
Books on the topic "Harmonic partials"
García-Cuerva, José, ed. Harmonic Analysis and Partial Differential Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/bfb0086791.
Full textMilman, Mario, and Tomas Schonbek, eds. Harmonic Analysis and Partial Differential Equations. Providence, Rhode Island: American Mathematical Society, 1990. http://dx.doi.org/10.1090/conm/107.
Full textCifuentes, Patricio, José García-Cuerva, Gustavo Garrigós, Eugenio Hernández, José Martell, Javier Parcet, Keith Rogers, Alberto Ruiz, Fernando Soria, and Ana Vargas, eds. Harmonic Analysis and Partial Differential Equations. Providence, Rhode Island: American Mathematical Society, 2014. http://dx.doi.org/10.1090/conm/612.
Full textCifuentes, Patricio, José García-Cuerva, Gustavo Garrigós, Eugenio Hernández, José María Martell, Javier Parcet, Alberto Ruiz, Fernando Soria, José Luis Torrea, and Ana Vargas, eds. Harmonic Analysis and Partial Differential Equations. Providence, Rhode Island: American Mathematical Society, 2010. http://dx.doi.org/10.1090/conm/505.
Full textMitrea, Dorina. Distributions, Partial Differential Equations, and Harmonic Analysis. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03296-8.
Full textMitrea, Dorina. Distributions, Partial Differential Equations, and Harmonic Analysis. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8208-6.
Full textChanillo, Sagun, Bruno Franchi, Guozhen Lu, Carlos Perez, and Eric T. Sawyer, eds. Harmonic Analysis, Partial Differential Equations and Applications. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52742-0.
Full textKyoto, Japan) Symposium "Harmonic Analysis and Nonlinear Partial Differential Equations" (2008. Harmonic analysis and nonlinear partial differential equations. Kyōto, Japan: Research Institute for Mathematical Sciences, Kyoto University, 2009.
Find full textPartial regularity for harmonic maps and related problems. Hackensack, NJ: World Scientific, 2005.
Find full textGeorgakis, Constantine, Alexander M. Stokolos, and Wilfredo Urbina, eds. Special Functions, Partial Differential Equations, and Harmonic Analysis. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10545-1.
Full textBook chapters on the topic "Harmonic partials"
Gong, Yukai, Xiangbo Shu, and Jinhui Tang. "Recovering Overlapping Partials for Monaural Perfect Harmonic Musical Sound Separation Using Modified Common Amplitude Modulation." In Advances in Multimedia Information Processing – PCM 2017, 903–12. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77380-3_87.
Full textRauch, Jeffrey. "Some Harmonic Analysis." In Partial Differential Equations, 61–94. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-0953-9_2.
Full textMarin, Marin, and Andreas Öchsner. "Harmonic Functions." In Essentials of Partial Differential Equations, 289–308. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90647-8_12.
Full textChang, Der-Chen. "Nankai lecture in $$\bar \partial $$ -Neumann problem." In Harmonic Analysis, 1–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/bfb0087752.
Full textArnold, Vladimir I. "Properties of Harmonic Functions." In Lectures on Partial Differential Equations, 65–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05441-3_8.
Full textSimon, Marielle. "Diffusion Coefficient for the Disordered Harmonic Chain Perturbed by an Energy Conserving Noise." In From Particle Systems to Partial Differential Equations II, 355–70. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16637-7_14.
Full textBredies, Kristian, and Dirk Lorenz. "Partial Differential Equations in Image Processing." In Applied and Numerical Harmonic Analysis, 171–250. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01458-2_5.
Full textSauvigny, Friedrich. "Potential Theory and Spherical Harmonics." In Partial Differential Equations 1, 305–61. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2981-3_5.
Full textLanglois, Robert, Jordan T. Ash, Jesper Pallesen, and Joachim Frank. "Fully Automated Particle Selection and Verification in Single-Particle Cryo-EM." In Applied and Numerical Harmonic Analysis, 43–66. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-9521-5_3.
Full textBrandt, Siegmund, and Hans Dieter Dahmen. "Coupled Harmonic Oscillators: Distinguishable Particles." In The Picture Book of Quantum Mechanics, 129–41. New York, NY: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4684-0233-9_7.
Full textConference papers on the topic "Harmonic partials"
Jinghua Yan, Hui Wang, Chuanzhen Li, and Qin Zhang. "Analysis of high frequency partials in Bayesian harmonic model." In 2008 International Conference on Audio, Language and Image Processing (ICALIP). IEEE, 2008. http://dx.doi.org/10.1109/icalip.2008.4590051.
Full textYeh, Chunghsin, and Axel Roebel. "The expected amplitude of overlapping partials of harmonic sounds." In ICASSP 2009 - 2009 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2009. http://dx.doi.org/10.1109/icassp.2009.4960297.
Full textBronson, James, and Philippe Depalle. "Phase constrained complex NMF: Separating overlapping partials in mixtures of harmonic musical sources." In ICASSP 2014 - 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2014. http://dx.doi.org/10.1109/icassp.2014.6855053.
Full textMackowski, Daniel W. "Direct Simulation of Scattering and Absorption by Particle Deposits." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14615.
Full textBagci, Cemil. "Complete Shaking-Force, -Moment, and, -Torque Balancing of Multi-Cylinder Engines Without Requiring Harmonic Balancers." In ASME 1996 Design Engineering Technical Conferences and Computers in Engineering Conference. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-detc/mech-1188.
Full textMackowski, Daniel W., and Mario Ramos. "Prediction of the Effective Thermal Diffusivity of Discretely Inhomogeneous Media." In ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/ht2009-88508.
Full textMiddendorf, M. E., F. R. Brumwell, J. C. Dooling, D. Horan, R. L. Kustom, M. K. Lien, G. E. McMichael, M. R. Moser, A. Nassiri, and S. Wang. "The IPNS second harmonic RF upgrade." In 2007 IEEE Particle Accelerator Conference. IEEE, 2007. http://dx.doi.org/10.1109/pac.2007.4441207.
Full textRunkler, Thomas A. "Partially supervised k-harmonic means clustering." In 2011 Ieee Symposium On Computational Intelligence And Data Mining - Part Of 17273 - 2011 Ssci. IEEE, 2011. http://dx.doi.org/10.1109/cidm.2011.5949424.
Full textYadav, Shubhendra, Vipin Kumar Singh, and Satyendra Singh. "Particle swarm optimization based shunt active harmonic filter for harmonic compensation." In 2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics (UPCON). IEEE, 2017. http://dx.doi.org/10.1109/upcon.2017.8251080.
Full textBelegundu, Ashok D., and Michael D. Grissom. "Optimal Design of a Segmented Tube With Side Branches for Noise Reduction." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-88691.
Full textReports on the topic "Harmonic partials"
Takada, Yasutami. Time-Independent Variational Approach to Inelastic Collisions of a Particle with a Harmonic Oscillator. Fort Belvoir, VA: Defense Technical Information Center, August 1988. http://dx.doi.org/10.21236/ada197695.
Full textLuccio A. U. Spin Tracking in RHIC with one Full Snake and one Partial Snake. Effect of Orbit Harmonics. Office of Scientific and Technical Information (OSTI), June 2003. http://dx.doi.org/10.2172/1061693.
Full text