Academic literature on the topic 'Hausdorff Distance'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hausdorff Distance.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Hausdorff Distance"

1

Wu, Wei. "Quantized Gromov–Hausdorff distance." Journal of Functional Analysis 238, no. 1 (September 2006): 58–98. http://dx.doi.org/10.1016/j.jfa.2005.02.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kraft, Daniel. "Computing the Hausdorff Distance of Two Sets from Their Distance Functions." International Journal of Computational Geometry & Applications 30, no. 01 (March 2020): 19–49. http://dx.doi.org/10.1142/s0218195920500028.

Full text
Abstract:
The Hausdorff distance is a measure of (dis-)similarity between two sets which is widely used in various applications. Most of the applied literature is devoted to the computation for sets consisting of a finite number of points. This has applications, for instance, in image processing. However, we would like to apply the Hausdorff distance to control and evaluate optimisation methods in level-set based shape optimisation. In this context, the involved sets are not finite point sets but characterised by level-set or signed distance functions. This paper discusses the computation of the Hausdorff distance between two such sets. We recall fundamental properties of the Hausdorff distance, including a characterisation in terms of distance functions. In numerical applications, this result gives at least an exact lower bound on the Hausdorff distance. We also derive an upper bound, and consequently a precise error estimate. By giving an example, we show that our error estimate cannot be further improved for a general situation. On the other hand, we also show that much better accuracy can be expected for non-pathological situations that are more likely to occur in practice. The resulting error estimate can be improved even further if one assumes that the grid is rotated randomly with respect to the involved sets.
APA, Harvard, Vancouver, ISO, and other styles
3

Ali, Mehboob, Zahid Hussain, and Miin-Shen Yang. "Hausdorff Distance and Similarity Measures for Single-Valued Neutrosophic Sets with Application in Multi-Criteria Decision Making." Electronics 12, no. 1 (December 31, 2022): 201. http://dx.doi.org/10.3390/electronics12010201.

Full text
Abstract:
Hausdorff distance is one of the important distance measures to study the degree of dissimilarity between two sets that had been used in various fields under fuzzy environments. Among those, the framework of single-valued neutrosophic sets (SVNSs) is the one that has more potential to explain uncertain, inconsistent and indeterminate information in a comprehensive way. And so, Hausdorff distance for SVNSs is important. Thus, we propose two novel schemes to calculate the Hausdorff distance and its corresponding similarity measures (SMs) for SVNSs. In doing so, we firstly develop the two forms of Hausdorff distance between SVNSs based on the definition of Hausdorff metric between two sets. We then use these new distance measures to construct several SMs for SVNSs. Some mathematical theorems regarding the proposed Hausdorff distances for SVNSs are also proven to strengthen its theoretical properties. In order to show the exact calculation behavior and distance measurement mechanism of our proposed methods in accordance with the decorum of Hausdorff metric, we utilize an intuitive numerical example that demonstrate the novelty and practicality of our proposed measures. Furthermore, we develop a multi-criteria decision making (MCDM) method under single-valued neutrosophic environment using the proposed SMs based on our defined Hausdorff distance measures, called as a single-valued neutrosophic MCDM (SVN-MCDM) method. In this connection, we employ our proposed SMs to compute the degree of similarity of each option with the ideal choice to identify the best alternative as well as to perform an overall ranking of the alternatives under study. We then apply our proposed SVN-MCDM scheme to solve two real world problems of MCDM under single-valued neutrosophic environment to show its effectiveness and application.
APA, Harvard, Vancouver, ISO, and other styles
4

BERINDE, VASILE, and MĂDĂLINA PĂCURAR. ""Why Pompeiu-Hausdorff metric instead of Hausdorff metric?"." Creative Mathematics and Informatics 31, no. 1 (February 1, 2022): 33–41. http://dx.doi.org/10.37193/cmi.2022.01.03.

Full text
Abstract:
"The distance between two sets, commonly called Hausdorff metric, is a very important mathematical concept, with plenty of applications in almost all scientific research areas. We suggest in this paper an update of its name as Pompeiu-Hausdorff metric (distance). Based on historical evidence, this proposal follows the contemporary manner of appointing concepts in scientific writings, especially in mathematics."
APA, Harvard, Vancouver, ISO, and other styles
5

BERINDE, VASILE, and MADALINA PACURAR. "The role of the Pompeiu-Hausdorff metric in fixed point theory." Creative Mathematics and Informatics 24, no. 2 (2015): 143–50. http://dx.doi.org/10.37193/cmi.2015.02.17.

Full text
Abstract:
The main aim of this note is to highlight the role of the Pompeiu-Hausdorff metric in fixed point theory and, subsidiarily, to touch some issues related to the history of this fundamental concept in modern mathematics. This will allow us to conclude that what is nowadays almost generally called Hausdorff metric (distance) and very seldom Hausdorff-Pompeiu metric (distance) or Pompeiu-Hausdorff metric (distance), should be fairly and correctly named Pompeiu-Hausdorff metric (distance).
APA, Harvard, Vancouver, ISO, and other styles
6

BERINDE, VASILE, and MADALINA PACURAR. "The role of the Pompeiu-Hausdorff metric in fixed point theory." Creative Mathematics and Informatics 22, no. 2 (2013): 143–50. http://dx.doi.org/10.37193/cmi.2013.02.13.

Full text
Abstract:
The main aim of this note is to highlight the role of the Pompeiu-Hausdorff metric in fixed point theory and, subsidiarily, to touch some issues related to the history of this fundamental concept in modern mathematics. This will allow us to conclude that what is nowadays almost generally called Hausdorff metric (distance) and very seldom Hausdorff-Pompeiu metric (distance) or Pompeiu-Hausdorff metric (distance), should be fairly and correctly named Pompeiu-Hausdorff metric (distance).
APA, Harvard, Vancouver, ISO, and other styles
7

Bîrsan, Temistocle. "Convexity and Hausdorff-Pompeiu distance." Mathematica Moravica 15, no. 1 (2011): 17–23. http://dx.doi.org/10.5937/matmor1101017b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Beer, Gerald, and Luzviminda Villar. "Borel measures and Hausdorff distance." Transactions of the American Mathematical Society 307, no. 2 (February 1, 1988): 763. http://dx.doi.org/10.1090/s0002-9947-1988-0940226-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kerr, David. "Matricial quantum Gromov–Hausdorff distance." Journal of Functional Analysis 205, no. 1 (December 2003): 132–67. http://dx.doi.org/10.1016/s0022-1236(03)00195-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sendov, Bl. "Hausdorff distance and image processing." Russian Mathematical Surveys 59, no. 2 (April 30, 2004): 319–28. http://dx.doi.org/10.1070/rm2004v059n02abeh000721.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Hausdorff Distance"

1

Richard, Abigail H. "Quasihyperbolic Distance, Pointed Gromov-Hausdorff Distance, and Bounded Uniform Convergence." University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin156086547392659.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zerelli, Manel. "Systèmes mécatroniques à paramètres variables : analyse du comportement et approche du tolérancement." Thesis, Châtenay-Malabry, Ecole centrale de Paris, 2014. http://www.theses.fr/2014ECAP0032/document.

Full text
Abstract:
Dans cette thèse nous avons proposé une méthode d’étude des variations paramétriques pour les systèmes mécatroniques continus et hybrides puis une approche du tolérancement mécatronique. Nous avons d’abord étudié les différentes approches existantes pour la prise en compte de la variation de paramètres. Pour les systèmes continus à paramètres variables nous avons choisi la méthode des inclusions différentielles. Nous avons repris l’algorithme de Raczynski et nous avons développé un algorithme d’optimisation qui se base sur la méthode du steepest descent, avec une extension permettant d’obtenir l’optimum global. Pour les systèmes hybrides, contenant des évolutions continues et des sauts discrets, et qui présentent des variations paramétriques, nous avons choisi le formalisme de l’inclusion différentielle impulsionnelle comme outil de modélisation. Nous avons repris ce formalisme et identifié ses éléments sur un système mécatronique. Nous avons développé des algorithmes de résolution des inclusions différentielles impulsionnelles pour un puis pour plusieurs paramètres variables. Pour visualiser les résultats, les algorithmes développés ont été implémentés sous Mathématica. Nous avons fini cette partie par une comparaison entre notre approche et d’autres comme celles autour des automates hybrides à invariant polyèdre, les inclusions différentielles polygonales et l’algorithme pratique de résolution des inclusions différentielles. Nous avons montré alors certains avantages de notre approche. En dernière partie, nous avons repris les différents outils utilisés et résultats obtenus pour définir et affiner notre approche du tolérancement. Nous avons défini la zone du fonctionnement désiré, les différents cas de figures qu’elle peut présenter et son intersection avec le domaine atteignable. Nous avons présenté un outil métrique basé sur la distance topologique de Hausdorff pour le calcul des distances entre ces différents ensembles. Munis de ces éléments, nous avons proposé une démarche itérative pour le tolérancement dans l’espace d’état
In this thesis we proposed a method for the study of parametric variation for continuous and hybrid systems and an approach for mechatronics tolerancing. We first studied the different existing approaches to take into account the variation of parameters. For continuous systems with variable parameters we chose the method of differential inclusions. We took the Raczynski algorithm and we have developed an optimization algorithm which is based on the steepest descent method with an extension to obtain global optimum. For hybrid systems, containing continuous evolutions and discrete jumps, and have parametric variations, we have chosen the formalism of impulse differential inclusion as a modeling tool. We took this formalism and identified its components on a mechatronic system. We have developed algorithms for solving impulse differential inclusions for several variable parameters. To view the results, the developed algorithms were implemented in Mathematica. We ended this part by a comparison between our approach and others like those around hybrid automata invariant polyhedron, polygonal differential inclusions and practical algorithm for solving differential inclusion. We showed then some advantages of our approach. In the last part, we organized the different tools used and results obtained to define and refine our approach to tolerancing. We defined the area of the desired operation, the various scenarios that may present, and its intersection with reachable area. We presented a metric tool based on topological Hausdorff distance for the calculation of distances between the different sets. With these elements, we proposed an iterative approach to tolerancing in the state space
APA, Harvard, Vancouver, ISO, and other styles
3

Iwancio, Kathleen Marie. "Use of Integral Signature and Hausdorff Distance in Planar Curve Matching." NCSU, 2009. http://www.lib.ncsu.edu/theses/available/etd-11032009-104907/.

Full text
Abstract:
Curve matching is an important problem in computer image processing and image recognition. In particular, the problem of identifying curves that are equivalent under a geometric transformation arises in a variety of applications. Two curves in $mathbb{R}^2$ are called congruent if they are equivalent under the action of the Euclidean group, i.e. if one curve can be mapped to the other by a combination of rotations, reflections, and translations. In theory, one can identify congruent curves by using differential invariants, such as infinitesimal arc-length and curvature. The practical use of differential invariants is problematic, however, due to their high sensitivity to noise and small perturbations. Other types of invariants that are less sensitive to perturbations were proposed in literature, but are much less studied than classical differential invariants. In this thesis we provide a detailed study of matching algorithms for planar curves based on Euclidean integral invariant signatures. Several types of local and global signatures are considered. We examine numerical approximations of signatures, sensitivity to perturbation, dependence on parametrization and a choice of initial point, and effects of the symmetries of the original image on signatures. Furthermore, we use Hausdorff distance between signatures to define a distance between congruence classes of curves.
APA, Harvard, Vancouver, ISO, and other styles
4

Cerocchi, Filippo. "Dynamical and Spectral applications of Gromov-Hausdorff Theory." Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENM077/document.

Full text
Abstract:
Cette thèse est divisée en deux parties. La première est consacrée à la méthode du barycentre, introduite en 1995 par G. Besson, G. Courtois et S. Gallot pour résoudre la conjecture de l'Entropie Minimale. Dans le Chapitre 1 nous décrivons ses développements les plus récents, notamment l'extension de cette méthode au cadre des variétés dont la courbure sectionnelle est de signe quelconque (voir les énoncés 1.2.1 et 1.4.1). Dans le Chapitre 2 et 3 nous présentons des résultats dans lesquels la méthode du barycentre joue un rôle important. Le problème “deux variétés dont les flots géodésiques sont conjugués sont-elles isométriques ?” (problème de la rigidité par conjugaison des flots) est le thème du Chapitre 2. Après avoir montré que deux telles variétés ont la même géométrie à grande échelle, on montre comment on peut utiliser ce résultat et la méthode du barycentre pour donner une nouvelle preuve de la rigidité (par conjugaison des flots) des variétés plates. Dans le Chapitre 3 nous utilisons la méthode du barycentre (en courbure de signe quelconque) et des inégalités de Sobolev itérées pour démontrer un théorème de comparaison entre les spectres de deux variétés riemanniennes (Y , g) et (X , g') de volumes proches, sachant qu'il existe une approximation de Gromov-Hausdorff de degré non nul entre ces deux variétés. Il s'agit d'un résultat d'approximation avec majoration de l'erreur d'approximation (et pas seulement d'un résultat de convergence). Remarquons qu'il n'est fait aucune autre hypothèse géométrique (et en particulier aucune hypothèse de courbure) sur la variété (Y , g), ce qui autorise un grand nombre de contre-exemples prouvant que le résultat est optimal. Dans la deuxième partie de la thèse (chapitre 4), on démontre un Lemme de Margulis sans hypothèse sur la courbure, qui s'applique aux variétés dont les groupes fondamentaux sont des produits libres (et qui ne possèdent pas d'élément de torsion d'ordre 2). Nous donnons également une borne inférieure de la systole des variétés dont le diamètre et l'entropie volumique sont majorés et dont le groupe fondamental est isomorphe à un produit libre sans torsion. Comme conséquences de ce dernier résultat nous obtenons des résultats de précompacité et de finitude topologique ou différentiable pour les variétés riemanniennes et une minoration de leur volume, tout ceci sans faire d'hypothèse de courbure
This Ph.D. Thesis is divided into two parts. In the first part we present the barycenter method, a technique which has been introduced by G. Besson, G. Courtois and S. Gallot in 1995, in order to solve the Minimal Entropy conjecture. In Chapter 1 we are interested in the more recent developments of this method, more precisely in the recent extension of the method to the case of manifolds having sectional curvature of variable sign. In Chapters 2 and 3 we shall present some new results whose proofs make use of the barycenter method. The Conjugacy Rigidity problem is the theme of Chapter 2. First we show a general result which provide a comparison between the large scale geometry of the Riemannian universal coverings of two compact manifolds whose geodesic flows are conjugates. Then we shall show how we can apply the latter result and the barycenter method in curvature of variable sign in order to give a new proof of the conjugacy rigidity of flat manifolds. In Chapter 3 we shall give a proof of a spectra comparison theorem for a compact Riemannian manifold which admits a Gromov-Hausdorff-approximation of non zero absolute degree on a fixed compact manifold (X,g') and which has volume almost smaller than the one of the reference manifold. The proof relies on the barycenter method in curvature of variable sign and on iterated Sobolev inequalities. We underline that it is an approximation result (and not just a convergence result) and that no curvature assumptions are made or inferred on (Y,g). The second part of the Thesis consists of a single chapter. In this chapter we prove a Margulis Lemma without curvature assumptions for Riemannian manifolds having decomposable 2-torsionless fundamental group. We shall give also a proof of a universal lower bound for the homotopy systole of compact Riemannian manifolds having bounded volume entropy and diameter, and decomposable torsionless fundamental group. As a consequence of the latter result we shall deduce a Precompactness and Finiteness theorem and a Volume estimate without curvature assumptions
APA, Harvard, Vancouver, ISO, and other styles
5

Almuraysil, Norah Abdullatif. "MEASURING CONVEXITY OF A SET." Kent State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=kent1491496062145907.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

SURIANO, LUCA. "A Quantum distance for noncommutative measure spaces and an application to quantum field theory." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2010. http://hdl.handle.net/2108/1326.

Full text
Abstract:
Nella prima parte della Tesi, presentiamo una versione "puntata" della topologia di Gromov-Hausdorff quantistica introdotta da Rieffel per spazi metrici quantistici compatti (cioè, spazi con unità d'ordine e una seminorma Lipschitz che metrizza la topologia *-debole sullo spazio dei funzionali positivi normalizzati). In particolare, proporremo una nozione di cono tangente quantistico di uno spazio metrico quantistico, come analogo noncommutativo del cono tangente di Gromov in un punto di uno spazio metrico ordinario, basata su una opportuna procedura di riscalamento della seminorma Lipschitz definita su uno spazio metrico quantistico. Tale costruzione estende effettivamente la corrispondente costruzione valida per spazi metrici ordinari. Infine, a titolo di esempio, descriveremo il cono tangente quantistico del toro noncommutativo bidimensionale. Nella seconda parte, invece, introduciamo una particolare distanza quantistica sull'insieme delle algebre di von Neumann Lip-normate (cioè, dotate di una ulteriore norma che metrizza la topologia debole sui sottoinsiemi limitati nella norma C*). Come avviene per le distanze di tipo Gromov-Hausdorff, anche questa distanza G.-H. duale è una pseudo-distanza, e diviene una vera distanza solo sulle classi di equivalenza isometrica (rispetto alla norma Lip) delle algebre di von Neumann Lip-normate. Inoltre, dimostreremo un criterio di precompatteza per famiglie di algebre di vN Lip-normate (fortemente) uniformemente limitate, utilizzando la nozione di ultraprodotto (ristretto) di algebre di vN Lip-normate. Infine, nell'ambito del'approccio algebrico alla teoria quantistica dei campi, applicheremo tale costruzione allo studio del limite di scala (cioè, quando si fanno tendere a un punto le regioni dello spaziotempo su cui sono definiti gli osservabili della teoria) di una rete locale di algebre di vN (le algebre degli osservabili), confrontando l'approccio tramite ultraprodotti (e con la convergenza nella distanza quantistica) con la costruzione delle algebre "limite di scala" di Buchholz e Verch, mostrando che nel caso del campo libero bosonico le due procedure forniscono lo stesso risultato.
In the first part of this dissertation, we study a pointed version of Rieffel's quantum Gromov-Hausdorff topology for compact quantum metric spaces (i.e, order-unit spaces with a Lipschitz-like seminorm inducing a distance on the space of positive normalized linear functionals which metrizes the w*-topology). In particular, in analogy with Gromov's notion of metric tangent cone at a point of an (abstract) proper metric space, we propose a similar construction for (compact) quantum metric spaces, based on a suitable procedure of rescaling the Lipschitz seminorm on a given quantum metric space. As a result, we get a quantum analogue of the Gromov tangent cone, which extends the classical (say, commutative) construction. As a case study, we apply this procedure to the two-dimensional noncommutative torus, and we obtain what we call a noncommutative solenoid. In the second part, we introduce a quantum distance on the set of dual Lip-von Neumann algebras (i.e., vN algebras with a dual Lip-norm which metrizes the w*-topology on bounded subset). As for the other G.-H. distances (classical or quantum), this dual quantum Gromov-Hausdorff (pseudo-)distance turns out to be a true distance on the (Lip-)isometry classes of Lip-vN algebras. We give also a precompactness criterion, relating the limit of a (strongly) uniform sequence of Lip-vN algebras to the (restricted) ultraproduct, over an ultrafilter, of the same sequence. As an application, we apply this construction to the study of the Buchholz-Verch scaling limit theory of a local net of (algebras of) observables in the algebraic quantum field theory framework, showing that the two approaches lead to the same result for the (real scalar) free field model.
APA, Harvard, Vancouver, ISO, and other styles
7

Guven, Ayse. "Quantitative perturbation theory for compact operators on a Hilbert space." Thesis, Queen Mary, University of London, 2016. http://qmro.qmul.ac.uk/xmlui/handle/123456789/23197.

Full text
Abstract:
This thesis makes novel contributions to a problem of practical and theoretical importance, namely how to determine explicitly computable upper bounds for the Hausdorff distance of the spectra of two compact operators on a Hilbert space in terms of the distance of the two operators in operator norm. It turns out that the answer depends crucially on the speed of decay of the sequence of singular values of the two operators. To this end, 'compactness classes', that is, collections of operators the singular values of which decay at a certain speed, are introduced and their functional analytic properties studied in some detail. The main result of the thesis is an explicit formula for the Hausdorff distance of the spectra of two operators belonging to the same compactness class. Along the way, upper bounds for the resolvents of operators belonging to a particular compactness class are established, as well as novel bounds for determinants of trace class operators.
APA, Harvard, Vancouver, ISO, and other styles
8

Ryvkin, Leonie [Verfasser], Maike [Gutachter] Buchin, and Carola [Gutachter] Wenk. "On distance measures for polygonal curves bridging between Hausdorff and Fréchet distance / Leonie Ryvkin ; Gutachter: Maike Buchin, Carola Wenk ; Fakultät für Mathematik." Bochum : Ruhr-Universität Bochum, 2021. http://d-nb.info/1239418930/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Paulin, Frédéric. "Topologie de Gromov équivariante, structures hyperboliques et arbres réels." Paris 11, 1987. http://www.theses.fr/1987PA112389.

Full text
Abstract:
Les objets que nous étudions sont les actions isométriques d'un groupe de type fini fixé sur les espaces métriques. Notre but est d'étudier la dégénérescence des structures hyperboliques vers des arbres réels par des moyens purement topologiques. Nous munissons d'une topologie naturelle, dite topologie de Gromov, tous ensemble formé de telles actions. Elle est construite à partir de la distance de Hausdorff entre espaces métriques, et la topologie compacte-ouverte pour les actions sur un même espace métrique. Nous donnons un procédé canonique pour rendre séparée une topologie de Gromov. Par des méthodes inspirées des travaux de M. Gromov, nous montrons un critère de compacité séquentielle pour une topologie de Gromov. Nous montrons que la topologie de Gromov coïncide avec les topologies usuelles sur l'espace des actions hyperboliques et sur l'espace des actions sur les arbres réels minimaux irréductibles. Nous utilisons notre critère de compacité pour donner une preuve plus courte et plus géométrique de deux théorèmes : celui de M. Culler et J. Morgan, sur la compacité de l'espace des arbres réels à petits stabilisateurs d'arêtes ; et celui de W. Thurston, P. Shalen et J. Morgan sur la compactification de l'espace des structures hyperboliques par des arbres réels à petits stabilisateurs d'arêtes.
APA, Harvard, Vancouver, ISO, and other styles
10

Singhal, Kritika. "Geometric Methods for Simplification and Comparison of Data Sets." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1587253879303425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Hausdorff Distance"

1

Efficient visual recognition using the Hausdorff distance. Berlin: Springer, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rucklidge, William, ed. Efficient Visual Recognition Using the Hausdorff Distance. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0015091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rucklidge, William. Efficient visual recognition using the Hausdorff distance. Berlin: Springer, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gromov-Hausdorff Distance for Quantum Metric Spaces/Matrix Algebras Converge to the Sphere for Quantum Gromov-Hausdorff Distance. American Mathematical Society, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Hausdorff Distance"

1

Sendov, B. "Hausdorff Distance." In Hausdorff Approximations, 23–48. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0673-0_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schimmrigk, Rolf, Steven Duplij, Antoine Van Proeyen, Władysław Marcinek, Gert Roepstorff, Władysław Marcinek, Władysław Marcinek, et al. "Gromov–Hausdorff Distance." In Concise Encyclopedia of Supersymmetry, 179. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-4522-0_235.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Andreev, A. "Hausdorff Distance and Digital Filters." In ASST ’87 6. Aachener Symposium für Signaltheorie, 384–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-73015-3_72.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Jun, and Ying Tan. "Hausdorff Distance with k-Nearest Neighbors." In Lecture Notes in Computer Science, 272–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31020-1_32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Park, Sang-Cheol, and Seong-Whan Lee. "Object Tracking with Probabilistic Hausdorff Distance Matching." In Lecture Notes in Computer Science, 233–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11538059_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schmidt, Frank R., and Yuri Boykov. "Hausdorff Distance Constraint for Multi-surface Segmentation." In Computer Vision – ECCV 2012, 598–611. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33718-5_43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jesorsky, Oliver, Klaus J. Kirchberg, and Robert W. Frischholz. "Robust Face Detection Using the Hausdorff Distance." In Lecture Notes in Computer Science, 90–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45344-x_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Suau, Pablo. "Adapting Hausdorff Metrics to Face Detection Systems: A Scale-Normalized Hausdorff Distance Approach." In Progress in Artificial Intelligence, 76–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11595014_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Knauer, Christian, Maarten Löffler, Marc Scherfenberg, and Thomas Wolle. "The Directed Hausdorff Distance between Imprecise Point Sets." In Algorithms and Computation, 720–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-10631-6_73.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Agarwal, Pankaj K., Kyle Fox, Abhinandan Nath, Anastasios Sidiropoulos, and Yusu Wang. "Computing the Gromov-Hausdorff Distance for Metric Trees." In Algorithms and Computation, 529–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-48971-0_45.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Hausdorff Distance"

1

Sudha, N., and Wong Yung Ho Kenny. "Hausdorff Distance for Iris Recognition." In 2007 IEEE 22nd International Symposium on Intelligent Control. IEEE, 2007. http://dx.doi.org/10.1109/isic.2007.4450956.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Aouit, Djedjiga Ait, and Abdeldjalil Ouahabi. "Hausdorff Distance Map Classification Using SVM." In IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics. IEEE, 2006. http://dx.doi.org/10.1109/iecon.2006.347706.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Choi, Wai-Pak, Kin-Man Lam, and Wan-Chi Siu. "Robust Hausdorff distance for shape matching." In Electronic Imaging 2002, edited by C. C. Jay Kuo. SPIE, 2002. http://dx.doi.org/10.1117/12.453123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Robertson, C. "Page similarity and the Hausdorff distance." In 7th International Conference on Image Processing and its Applications. IEE, 1999. http://dx.doi.org/10.1049/cp:19990425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Niu Li-pi, Jiang Xiu-hua, Zhang Wen-hui, and Shi Dong-xin. "Image registration based on Hausdorff distance." In 2010 International Conference on Networking and Information Technology (ICNIT 2010). IEEE, 2010. http://dx.doi.org/10.1109/icnit.2010.5508517.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Shaokang, and Brian C. Lovell. "Feature Space Hausdorff Distance for Face Recognition." In 2010 20th International Conference on Pattern Recognition (ICPR). IEEE, 2010. http://dx.doi.org/10.1109/icpr.2010.362.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, Guang, Wen-wei Wang, and Qiu-ping Zhu. "A Face Detector Based on Hausdorff Distance." In 2009 5th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM). IEEE, 2009. http://dx.doi.org/10.1109/wicom.2009.5301895.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Li Zhu and Chun-qiang Zhu. "Application of Hausdorff distance in image matching." In 2014 IEEE Workshop on Electronics, Computer and Applications (IWECA). IEEE, 2014. http://dx.doi.org/10.1109/iweca.2014.6845566.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, Jinyang, Rangding Wang, Liangxu Liu, and Jiatao Song. "Clustering of trajectories based on Hausdorff distance." In 2011 International Conference on Electronics, Communications and Control (ICECC). IEEE, 2011. http://dx.doi.org/10.1109/icecc.2011.6066483.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sevakula, Rahul K., and Nishchal K. Verma. "Fuzzy Support Vector Machine using Hausdorff distance." In 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2013. http://dx.doi.org/10.1109/fuzz-ieee.2013.6622475.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Hausdorff Distance"

1

Beauchemin, M., K. P. B. Thomson, and G. Edwards. On the Hausdorff distance used for the evaluation of segmentation results. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1998. http://dx.doi.org/10.4095/219746.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography