Academic literature on the topic 'Hausdorff Distance'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hausdorff Distance.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Hausdorff Distance"

1

Wu, Wei. "Quantized Gromov–Hausdorff distance." Journal of Functional Analysis 238, no. 1 (2006): 58–98. http://dx.doi.org/10.1016/j.jfa.2005.02.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ali, Mehboob, Zahid Hussain, and Miin-Shen Yang. "Hausdorff Distance and Similarity Measures for Single-Valued Neutrosophic Sets with Application in Multi-Criteria Decision Making." Electronics 12, no. 1 (2022): 201. http://dx.doi.org/10.3390/electronics12010201.

Full text
Abstract:
Hausdorff distance is one of the important distance measures to study the degree of dissimilarity between two sets that had been used in various fields under fuzzy environments. Among those, the framework of single-valued neutrosophic sets (SVNSs) is the one that has more potential to explain uncertain, inconsistent and indeterminate information in a comprehensive way. And so, Hausdorff distance for SVNSs is important. Thus, we propose two novel schemes to calculate the Hausdorff distance and its corresponding similarity measures (SMs) for SVNSs. In doing so, we firstly develop the two forms o
APA, Harvard, Vancouver, ISO, and other styles
3

Kraft, Daniel. "Computing the Hausdorff Distance of Two Sets from Their Distance Functions." International Journal of Computational Geometry & Applications 30, no. 01 (2020): 19–49. http://dx.doi.org/10.1142/s0218195920500028.

Full text
Abstract:
The Hausdorff distance is a measure of (dis-)similarity between two sets which is widely used in various applications. Most of the applied literature is devoted to the computation for sets consisting of a finite number of points. This has applications, for instance, in image processing. However, we would like to apply the Hausdorff distance to control and evaluate optimisation methods in level-set based shape optimisation. In this context, the involved sets are not finite point sets but characterised by level-set or signed distance functions. This paper discusses the computation of the Hausdor
APA, Harvard, Vancouver, ISO, and other styles
4

BERINDE, VASILE, and MADALINA PACURAR. "The role of the Pompeiu-Hausdorff metric in fixed point theory." Creative Mathematics and Informatics 24, no. 2 (2015): 143–50. http://dx.doi.org/10.37193/cmi.2015.02.17.

Full text
Abstract:
The main aim of this note is to highlight the role of the Pompeiu-Hausdorff metric in fixed point theory and, subsidiarily, to touch some issues related to the history of this fundamental concept in modern mathematics. This will allow us to conclude that what is nowadays almost generally called Hausdorff metric (distance) and very seldom Hausdorff-Pompeiu metric (distance) or Pompeiu-Hausdorff metric (distance), should be fairly and correctly named Pompeiu-Hausdorff metric (distance).
APA, Harvard, Vancouver, ISO, and other styles
5

BERINDE, VASILE, and MADALINA PACURAR. "The role of the Pompeiu-Hausdorff metric in fixed point theory." Creative Mathematics and Informatics 22, no. 2 (2013): 143–50. http://dx.doi.org/10.37193/cmi.2013.02.13.

Full text
Abstract:
The main aim of this note is to highlight the role of the Pompeiu-Hausdorff metric in fixed point theory and, subsidiarily, to touch some issues related to the history of this fundamental concept in modern mathematics. This will allow us to conclude that what is nowadays almost generally called Hausdorff metric (distance) and very seldom Hausdorff-Pompeiu metric (distance) or Pompeiu-Hausdorff metric (distance), should be fairly and correctly named Pompeiu-Hausdorff metric (distance).
APA, Harvard, Vancouver, ISO, and other styles
6

BERINDE, VASILE, and MĂDĂLINA PĂCURAR. ""Why Pompeiu-Hausdorff metric instead of Hausdorff metric?"." Creative Mathematics and Informatics 31, no. 1 (2022): 33–41. http://dx.doi.org/10.37193/cmi.2022.01.03.

Full text
Abstract:
"The distance between two sets, commonly called Hausdorff metric, is a very important mathematical concept, with plenty of applications in almost all scientific research areas. We suggest in this paper an update of its name as Pompeiu-Hausdorff metric (distance). Based on historical evidence, this proposal follows the contemporary manner of appointing concepts in scientific writings, especially in mathematics."
APA, Harvard, Vancouver, ISO, and other styles
7

Cai, Wei, Wen Chen, and Fajie Wang. "Three-dimensional Hausdorff derivative diffusion model for isotropic/anisotropic fractal porous media." Thermal Science 22, Suppl. 1 (2018): 1–6. http://dx.doi.org/10.2298/tsci170630265c.

Full text
Abstract:
The anomalous diffusion in fractal isotropic/anisotropic porous media is characterized by the Hausdorff derivative diffusion model with the varying fractal orders representing the fractal structures in different directions. This paper presents a comprehensive understanding of the Hausdorff derivative diffusion model on the basis of the physical interpretation, the Hausdorff fractal distance and the fundamental solution. The concept of the Hausdorff fractal distance is introduced, which converges to the classical Euclidean distance with the varying orders tending to 1. The fundamental solution
APA, Harvard, Vancouver, ISO, and other styles
8

Bo, Guan, Liang Xu Liu, Jian Bo Fan, and Jin Yang Chen. "An Efficient Trajectory Clustering Framework Based Relative Distance." Applied Mechanics and Materials 241-244 (December 2012): 3209–12. http://dx.doi.org/10.4028/www.scientific.net/amm.241-244.3209.

Full text
Abstract:
along with more and more trajectory dataset being collected into application servers, the research in trajectory clustering has become increasingly important topic. This paper proposes a new mobile object trajectory Clustering algorithm (Trajectory Clustering based Improved Minimum Hausdorff Distance under Translation, TraClustMHD). In this framework, improved Minimum Hausdorff Distance under Translation is presented to measure the similarity between sub-segments. In additional, R-Tree is employed to improve the efficiency. The experimental results showed that this algorithm better than based
APA, Harvard, Vancouver, ISO, and other styles
9

Herron, David A., Abigail Richard, and Marie A. Snipes. "Chordal Hausdorff Convergence and Quasihyperbolic Distance." Analysis and Geometry in Metric Spaces 8, no. 1 (2020): 36–67. http://dx.doi.org/10.1515/agms-2020-0104.

Full text
Abstract:
AbstractWe study Hausdorff convergence (and related topics) in the chordalization of a metric space to better understand pointed Gromov-Hausdorff convergence of quasihyperbolic distances (and other conformal distances).
APA, Harvard, Vancouver, ISO, and other styles
10

Ronse, Christian, Loic Mazo, and Mohamed Tajine. "Correspondence between Topological and Discrete Connectivities in Hausdorff Discretization." Mathematical Morphology - Theory and Applications 3, no. 1 (2019): 1–28. http://dx.doi.org/10.1515/mathm-2019-0001.

Full text
Abstract:
Abstract We consider Hausdorff discretization from a metric space E to a discrete subspace D, which associates to a closed subset F of E any subset S of D minimizing the Hausdorff distance between F and S; this minimum distance, called the Hausdorff radius of F and written rH(F), is bounded by the resolution of D. We call a closed set F separated if it can be partitioned into two non-empty closed subsets F1 and F2 whose mutual distances have a strictly positive lower bound. Assuming some minimal topological properties of E and D (satisfied in ℝn and ℤn), we show that given a non-separated clos
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Hausdorff Distance"

1

Richard, Abigail H. "Quasihyperbolic Distance, Pointed Gromov-Hausdorff Distance, and Bounded Uniform Convergence." University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin156086547392659.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zerelli, Manel. "Systèmes mécatroniques à paramètres variables : analyse du comportement et approche du tolérancement." Thesis, Châtenay-Malabry, Ecole centrale de Paris, 2014. http://www.theses.fr/2014ECAP0032/document.

Full text
Abstract:
Dans cette thèse nous avons proposé une méthode d’étude des variations paramétriques pour les systèmes mécatroniques continus et hybrides puis une approche du tolérancement mécatronique. Nous avons d’abord étudié les différentes approches existantes pour la prise en compte de la variation de paramètres. Pour les systèmes continus à paramètres variables nous avons choisi la méthode des inclusions différentielles. Nous avons repris l’algorithme de Raczynski et nous avons développé un algorithme d’optimisation qui se base sur la méthode du steepest descent, avec une extension permettant d’obtenir
APA, Harvard, Vancouver, ISO, and other styles
3

Iwancio, Kathleen Marie. "Use of Integral Signature and Hausdorff Distance in Planar Curve Matching." NCSU, 2009. http://www.lib.ncsu.edu/theses/available/etd-11032009-104907/.

Full text
Abstract:
Curve matching is an important problem in computer image processing and image recognition. In particular, the problem of identifying curves that are equivalent under a geometric transformation arises in a variety of applications. Two curves in $mathbb{R}^2$ are called congruent if they are equivalent under the action of the Euclidean group, i.e. if one curve can be mapped to the other by a combination of rotations, reflections, and translations. In theory, one can identify congruent curves by using differential invariants, such as infinitesimal arc-length and curvature. The practical use of di
APA, Harvard, Vancouver, ISO, and other styles
4

Cerocchi, Filippo. "Dynamical and Spectral applications of Gromov-Hausdorff Theory." Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENM077/document.

Full text
Abstract:
Cette thèse est divisée en deux parties. La première est consacrée à la méthode du barycentre, introduite en 1995 par G. Besson, G. Courtois et S. Gallot pour résoudre la conjecture de l'Entropie Minimale. Dans le Chapitre 1 nous décrivons ses développements les plus récents, notamment l'extension de cette méthode au cadre des variétés dont la courbure sectionnelle est de signe quelconque (voir les énoncés 1.2.1 et 1.4.1). Dans le Chapitre 2 et 3 nous présentons des résultats dans lesquels la méthode du barycentre joue un rôle important. Le problème “deux variétés dont les flots géodésiques so
APA, Harvard, Vancouver, ISO, and other styles
5

Almuraysil, Norah Abdullatif. "MEASURING CONVEXITY OF A SET." Kent State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=kent1491496062145907.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

SURIANO, LUCA. "A Quantum distance for noncommutative measure spaces and an application to quantum field theory." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2010. http://hdl.handle.net/2108/1326.

Full text
Abstract:
Nella prima parte della Tesi, presentiamo una versione "puntata" della topologia di Gromov-Hausdorff quantistica introdotta da Rieffel per spazi metrici quantistici compatti (cioè, spazi con unità d'ordine e una seminorma Lipschitz che metrizza la topologia *-debole sullo spazio dei funzionali positivi normalizzati). In particolare, proporremo una nozione di cono tangente quantistico di uno spazio metrico quantistico, come analogo noncommutativo del cono tangente di Gromov in un punto di uno spazio metrico ordinario, basata su una opportuna procedura di riscalamento della seminorma Lipschitz d
APA, Harvard, Vancouver, ISO, and other styles
7

Guven, Ayse. "Quantitative perturbation theory for compact operators on a Hilbert space." Thesis, Queen Mary, University of London, 2016. http://qmro.qmul.ac.uk/xmlui/handle/123456789/23197.

Full text
Abstract:
This thesis makes novel contributions to a problem of practical and theoretical importance, namely how to determine explicitly computable upper bounds for the Hausdorff distance of the spectra of two compact operators on a Hilbert space in terms of the distance of the two operators in operator norm. It turns out that the answer depends crucially on the speed of decay of the sequence of singular values of the two operators. To this end, 'compactness classes', that is, collections of operators the singular values of which decay at a certain speed, are introduced and their functional analytic pro
APA, Harvard, Vancouver, ISO, and other styles
8

Ryvkin, Leonie [Verfasser], Maike [Gutachter] Buchin, and Carola [Gutachter] Wenk. "On distance measures for polygonal curves bridging between Hausdorff and Fréchet distance / Leonie Ryvkin ; Gutachter: Maike Buchin, Carola Wenk ; Fakultät für Mathematik." Bochum : Ruhr-Universität Bochum, 2021. http://d-nb.info/1239418930/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Paulin, Frédéric. "Topologie de Gromov équivariante, structures hyperboliques et arbres réels." Paris 11, 1987. http://www.theses.fr/1987PA112389.

Full text
Abstract:
Les objets que nous étudions sont les actions isométriques d'un groupe de type fini fixé sur les espaces métriques. Notre but est d'étudier la dégénérescence des structures hyperboliques vers des arbres réels par des moyens purement topologiques. Nous munissons d'une topologie naturelle, dite topologie de Gromov, tous ensemble formé de telles actions. Elle est construite à partir de la distance de Hausdorff entre espaces métriques, et la topologie compacte-ouverte pour les actions sur un même espace métrique. Nous donnons un procédé canonique pour rendre séparée une topologie de Gromov. Par de
APA, Harvard, Vancouver, ISO, and other styles
10

Singhal, Kritika. "Geometric Methods for Simplification and Comparison of Data Sets." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1587253879303425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Hausdorff Distance"

1

Rucklidge, William, ed. Efficient Visual Recognition Using the Hausdorff Distance. Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0015091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rucklidge, William. Efficient visual recognition using the Hausdorff distance. Springer, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Efficient visual recognition using the Hausdorff distance. Springer, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gromov-Hausdorff Distance for Quantum Metric Spaces/Matrix Algebras Converge to the Sphere for Quantum Gromov-Hausdorff Distance. American Mathematical Society, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Hausdorff Distance"

1

Sendov, B. "Hausdorff Distance." In Hausdorff Approximations. Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0673-0_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schimmrigk, Rolf, Steven Duplij, Antoine Van Proeyen, et al. "Gromov–Hausdorff Distance." In Concise Encyclopedia of Supersymmetry. Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-4522-0_235.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Andreev, A. "Hausdorff Distance and Digital Filters." In ASST ’87 6. Aachener Symposium für Signaltheorie. Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-73015-3_72.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Jun, and Ying Tan. "Hausdorff Distance with k-Nearest Neighbors." In Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31020-1_32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Callet-Feltz, Victoria. "A Different Approach: The Hausdorff Distance." In Computational Music Science. Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-82236-0_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Park, Sang-Cheol, and Seong-Whan Lee. "Object Tracking with Probabilistic Hausdorff Distance Matching." In Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11538059_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Schmidt, Frank R., and Yuri Boykov. "Hausdorff Distance Constraint for Multi-surface Segmentation." In Computer Vision – ECCV 2012. Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33718-5_43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jesorsky, Oliver, Klaus J. Kirchberg, and Robert W. Frischholz. "Robust Face Detection Using the Hausdorff Distance." In Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45344-x_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Suau, Pablo. "Adapting Hausdorff Metrics to Face Detection Systems: A Scale-Normalized Hausdorff Distance Approach." In Progress in Artificial Intelligence. Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11595014_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Knauer, Christian, Maarten Löffler, Marc Scherfenberg, and Thomas Wolle. "The Directed Hausdorff Distance between Imprecise Point Sets." In Algorithms and Computation. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-10631-6_73.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Hausdorff Distance"

1

Che, Ziwen, Tiejun Zeng, Juan Wen, and Guiping Cui. "Hausdorff distance commutation differential protection based on CT saturation." In 2024 3rd International Conference on Energy, Power and Electrical Technology (ICEPET). IEEE, 2024. http://dx.doi.org/10.1109/icepet61938.2024.10626411.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Liang, Yuchen, Haoran Chen, and Sheng Sui. "Adaptive Current Differential Protection Method Based on the Hausdorff Distance Algorithm." In 2024 IEEE 7th International Conference on Information Systems and Computer Aided Education (ICISCAE). IEEE, 2024. https://doi.org/10.1109/iciscae62304.2024.10761675.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lee, Hakjin, MinKi Song, Jamyoung Koo, and Junghoon Seo. "Hausdorff Distance Matching with Adaptive Query Denoising for Rotated Detection Transformer." In 2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). IEEE, 2025. https://doi.org/10.1109/wacv61041.2025.00189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sudha, N., and Wong Yung Ho Kenny. "Hausdorff Distance for Iris Recognition." In 2007 IEEE 22nd International Symposium on Intelligent Control. IEEE, 2007. http://dx.doi.org/10.1109/isic.2007.4450956.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Aouit, Djedjiga Ait, and Abdeldjalil Ouahabi. "Hausdorff Distance Map Classification Using SVM." In IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics. IEEE, 2006. http://dx.doi.org/10.1109/iecon.2006.347706.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Choi, Wai-Pak, Kin-Man Lam, and Wan-Chi Siu. "Robust Hausdorff distance for shape matching." In Electronic Imaging 2002, edited by C. C. Jay Kuo. SPIE, 2002. http://dx.doi.org/10.1117/12.453123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Robertson, C. "Page similarity and the Hausdorff distance." In 7th International Conference on Image Processing and its Applications. IEE, 1999. http://dx.doi.org/10.1049/cp:19990425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Niu Li-pi, Jiang Xiu-hua, Zhang Wen-hui, and Shi Dong-xin. "Image registration based on Hausdorff distance." In 2010 International Conference on Networking and Information Technology (ICNIT 2010). IEEE, 2010. http://dx.doi.org/10.1109/icnit.2010.5508517.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, Shaokang, and Brian C. Lovell. "Feature Space Hausdorff Distance for Face Recognition." In 2010 20th International Conference on Pattern Recognition (ICPR). IEEE, 2010. http://dx.doi.org/10.1109/icpr.2010.362.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chen, Guang, Wen-wei Wang, and Qiu-ping Zhu. "A Face Detector Based on Hausdorff Distance." In 2009 5th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM). IEEE, 2009. http://dx.doi.org/10.1109/wicom.2009.5301895.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Hausdorff Distance"

1

Beauchemin, M., K. P. B. Thomson, and G. Edwards. On the Hausdorff distance used for the evaluation of segmentation results. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1998. http://dx.doi.org/10.4095/219746.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!