Journal articles on the topic 'Heart – Hypertrophy'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Heart – Hypertrophy.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Kang, Peter M., Patrick Yue, Zhilin Liu, Oleg Tarnavski, Natalya Bodyak, and Seigo Izumo. "Alterations in apoptosis regulatory factors during hypertrophy and heart failure." American Journal of Physiology-Heart and Circulatory Physiology 287, no. 1 (2004): H72—H80. http://dx.doi.org/10.1152/ajpheart.00556.2003.
Full textLiu, Yaoqiu, Yahui Shen, Jingai Zhu, et al. "Cardiac-Specific PID1 Overexpression Enhances Pressure Overload-Induced Cardiac Hypertrophy in Mice." Cellular Physiology and Biochemistry 35, no. 5 (2015): 1975–85. http://dx.doi.org/10.1159/000374005.
Full textKee, Hae Jin, and Hyun Kook. "Roles and Targets of Class I and IIa Histone Deacetylases in Cardiac Hypertrophy." Journal of Biomedicine and Biotechnology 2011 (2011): 1–10. http://dx.doi.org/10.1155/2011/928326.
Full textHu, Chengyun, Feibiao Dai, Jiawu Wang, et al. "Peroxiredoxin-5 Knockdown Accelerates Pressure Overload-Induced Cardiac Hypertrophy in Mice." Oxidative Medicine and Cellular Longevity 2022 (January 29, 2022): 1–12. http://dx.doi.org/10.1155/2022/5067544.
Full textSarkar, Sagartirtha, Douglas W. Leaman, Sudhiranjan Gupta, et al. "Cardiac Overexpression of Myotrophin Triggers Myocardial Hypertrophy and Heart Failure in Transgenic Mice." Journal of Biological Chemistry 279, no. 19 (2004): 20422–34. http://dx.doi.org/10.1074/jbc.m308488200.
Full textQian, Yanxia, Mingming Zhang, Ningtian Zhou, et al. "A long noncoding RNA CHAIR protects the heart from pathological stress." Clinical Science 134, no. 13 (2020): 1843–57. http://dx.doi.org/10.1042/cs20200149.
Full textZhang, Yan, Qiang Da, Siyi Cao, et al. "HINT1 (Histidine Triad Nucleotide-Binding Protein 1) Attenuates Cardiac Hypertrophy Via Suppressing HOXA5 (Homeobox A5) Expression." Circulation 144, no. 8 (2021): 638–54. http://dx.doi.org/10.1161/circulationaha.120.051094.
Full textSHANTZ, Lisa M., David J. FEITH та Anthony E. PEGG. "Targeted overexpression of ornithine decarboxylase enhances β-adrenergic agonist-induced cardiac hypertrophy". Biochemical Journal 358, № 1 (2001): 25–32. http://dx.doi.org/10.1042/bj3580025.
Full textGu, Wei, Yutong Cheng, Su Wang, Tao Sun, and Zhizhong Li. "PHD Finger Protein 19 Promotes Cardiac Hypertrophy via Epigenetically Regulating SIRT2." Cardiovascular Toxicology 21, no. 6 (2021): 451–61. http://dx.doi.org/10.1007/s12012-021-09639-0.
Full textFunamoto, Masafumi, Yoichi Sunagawa, Yasufumi Katanasaka, et al. "Histone Acetylation Domains Are Differentially Induced during Development of Heart Failure in Dahl Salt-Sensitive Rats." International Journal of Molecular Sciences 22, no. 4 (2021): 1771. http://dx.doi.org/10.3390/ijms22041771.
Full textLi, Wei-ming, Yi-fan Zhao, Guo-fu Zhu, et al. "Dual specific phosphatase 12 ameliorates cardiac hypertrophy in response to pressure overload." Clinical Science 131, no. 2 (2016): 141–54. http://dx.doi.org/10.1042/cs20160664.
Full textBi, Hai-Lian, Xiao-Li Zhang, Yun-Long Zhang, et al. "The deubiquitinase UCHL1 regulates cardiac hypertrophy by stabilizing epidermal growth factor receptor." Science Advances 6, no. 16 (2020): eaax4826. http://dx.doi.org/10.1126/sciadv.aax4826.
Full textXie, Xin, Hai-Lian Bi, Song Lai та ін. "The immunoproteasome catalytic β5i subunit regulates cardiac hypertrophy by targeting the autophagy protein ATG5 for degradation". Science Advances 5, № 5 (2019): eaau0495. http://dx.doi.org/10.1126/sciadv.aau0495.
Full textGibbs, C. L., I. R. Wendt, G. Kotsanas, I. R. Young, and G. Woolley. "Mechanical, energetic, and biochemical changes in long-term pressure overload of rabbit heart." American Journal of Physiology-Heart and Circulatory Physiology 259, no. 3 (1990): H849—H859. http://dx.doi.org/10.1152/ajpheart.1990.259.3.h849.
Full textGough, N. R. "Limiting Heart Hypertrophy." Science Signaling 4, no. 165 (2011): ec88-ec88. http://dx.doi.org/10.1126/scisignal.4165ec88.
Full textTrivedi, Chinmay M., and Jonathan A. Epstein. "Heart-Healthy Hypertrophy." Cell Metabolism 13, no. 1 (2011): 3–4. http://dx.doi.org/10.1016/j.cmet.2010.12.012.
Full textPillai, Jyothish B., Hyde M. Russell, Jai Raman, Valluvan Jeevanandam, and Mahesh P. Gupta. "Increased expression of poly(ADP-ribose) polymerase-1 contributes to caspase-independent myocyte cell death during heart failure." American Journal of Physiology-Heart and Circulatory Physiology 288, no. 2 (2005): H486—H496. http://dx.doi.org/10.1152/ajpheart.00437.2004.
Full textPeterson, Erik N., N. Sydney Moise, Cynthia A. Brown, Hollis N. Erb, and Margaret R. Slater. "Heterogeneity of Hypertrophy in Feline Hypertrophic Heart Disease." Journal of Veterinary Internal Medicine 7, no. 3 (1993): 183–89. http://dx.doi.org/10.1111/j.1939-1676.1993.tb03184.x.
Full textYang, Jin, Xuhui Feng, Qiong Zhou, et al. "Pathological Ace2-to-Ace enzyme switch in the stressed heart is transcriptionally controlled by the endothelial Brg1–FoxM1 complex." Proceedings of the National Academy of Sciences 113, no. 38 (2016): E5628—E5635. http://dx.doi.org/10.1073/pnas.1525078113.
Full textSavchenko, M. I., YU R. Kovalev, and A. P. Kuchinskiy. "HYPERTROPHIC CARDIOMYOPATHY: FIBROSIS OR HYPERTROPHY." "Arterial’naya Gipertenziya" ("Arterial Hypertension") 19, no. 2 (2013): 148–55. http://dx.doi.org/10.18705/1607-419x-2013-19-2-148-155.
Full textGesmundo, Iacopo, Michele Miragoli, Pierluigi Carullo, et al. "Growth hormone-releasing hormone attenuates cardiac hypertrophy and improves heart function in pressure overload-induced heart failure." Proceedings of the National Academy of Sciences 114, no. 45 (2017): 12033–38. http://dx.doi.org/10.1073/pnas.1712612114.
Full textBingham, A. J., L. Ooi, and I. C. Wood. "Multiple chromatin modifications important for gene expression changes in cardiac hypertrophy." Biochemical Society Transactions 34, no. 6 (2006): 1138–40. http://dx.doi.org/10.1042/bst0341138.
Full textWehbe, Nadine, Suzanne Nasser, Gianfranco Pintus, Adnan Badran, Ali Eid, and Elias Baydoun. "MicroRNAs in Cardiac Hypertrophy." International Journal of Molecular Sciences 20, no. 19 (2019): 4714. http://dx.doi.org/10.3390/ijms20194714.
Full textBerenji, Kambeez, Mark H. Drazner, Beverly A. Rothermel, and Joseph A. Hill. "Does load-induced ventricular hypertrophy progress to systolic heart failure?" American Journal of Physiology-Heart and Circulatory Physiology 289, no. 1 (2005): H8—H16. http://dx.doi.org/10.1152/ajpheart.01303.2004.
Full textPorrello, Enzo R., James R. Bell, Jonathan D. Schertzer, et al. "Heritable pathologic cardiac hypertrophy in adulthood is preceded by neonatal cardiac growth restriction." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 296, no. 3 (2009): R672—R680. http://dx.doi.org/10.1152/ajpregu.90919.2008.
Full textDe Marchi, S. F. "Relaxation in hypertrophic cardiomyopathy and hypertensive heart disease: relations between hypertrophy and diastolic function." Heart 83, no. 6 (2000): 678–84. http://dx.doi.org/10.1136/heart.83.6.678.
Full textLi, Yuhao, Yoshihiko Saito, Koichiro Kuwahara, et al. "Guanylyl Cyclase-A Inhibits Angiotensin II Type 2 Receptor-Mediated Pro-Hypertrophic Signaling in the Heart." Endocrinology 150, no. 8 (2009): 3759–65. http://dx.doi.org/10.1210/en.2008-1353.
Full textKoga, Kiyokazu, Agnes Kenessey, and Kaie Ojamaa. "Macrophage migration inhibitory factor antagonizes pressure overload-induced cardiac hypertrophy." American Journal of Physiology-Heart and Circulatory Physiology 304, no. 2 (2013): H282—H293. http://dx.doi.org/10.1152/ajpheart.00595.2012.
Full textRoman, Brian B., David L. Geenen, Michael Leitges та Peter M. Buttrick. "PKC-β is not necessary for cardiac hypertrophy". American Journal of Physiology-Heart and Circulatory Physiology 280, № 5 (2001): H2264—H2270. http://dx.doi.org/10.1152/ajpheart.2001.280.5.h2264.
Full textGao, Si, Xue-ping Liu, Li-hua Wei, Jing Lu та Peiqing Liu. "Upregulation of α-enolase protects cardiomyocytes from phenylephrine-induced hypertrophy". Canadian Journal of Physiology and Pharmacology 96, № 4 (2018): 352–58. http://dx.doi.org/10.1139/cjpp-2017-0282.
Full textMavrides, Charalampos, and Borivoj Korecky. "Subcellular distribution of the enzymes of the malate-aspartate shuttle in rat heart and effect of experimental cardiac hypertrophy." Bioscience Reports 5, no. 2 (1985): 95–100. http://dx.doi.org/10.1007/bf01117055.
Full textAnanthasubramaniam, Karthik, Kiran Garikapati, and Celeste T. Williams. "Progressive Left Ventricular Hypertrophy after Heart Transplantation: Insights and Mechanisms Suggested by Multimodal Images." Texas Heart Institute Journal 43, no. 1 (2016): 65–68. http://dx.doi.org/10.14503/thij-14-4657.
Full textElsherif, Laila, Raymond V. Ortines, Jack T. Saari, and Y. James Kang. "Congestive Heart Failure in Copper-Deficient Mice." Experimental Biology and Medicine 228, no. 7 (2003): 811–17. http://dx.doi.org/10.1177/15353702-0322807-06.
Full textChung, Eunhee, Fan Yeung, and Leslie A. Leinwand. "Akt and MAPK signaling mediate pregnancy-induced cardiac adaptation." Journal of Applied Physiology 112, no. 9 (2012): 1564–75. http://dx.doi.org/10.1152/japplphysiol.00027.2012.
Full textDorn, Lisa E., William Lawrence, Jennifer M. Petrosino, et al. "Microfibrillar-Associated Protein 4 Regulates Stress-Induced Cardiac Remodeling." Circulation Research 128, no. 6 (2021): 723–37. http://dx.doi.org/10.1161/circresaha.120.317146.
Full textLi, Haobo, Lena E. Trager, Xiaojun Liu, et al. "lncExACT1 and DCHS2 Regulate Physiological and Pathological Cardiac Growth." Circulation 145, no. 16 (2022): 1218–33. http://dx.doi.org/10.1161/circulationaha.121.056850.
Full textSari, Nurmila, Yasufumi Katanasaka, Hiroki Honda, et al. "Cacao Bean Polyphenols Inhibit Cardiac Hypertrophy and Systolic Dysfunction in Pressure Overload-induced Heart Failure Model Mice." Planta Medica 86, no. 17 (2020): 1304–12. http://dx.doi.org/10.1055/a-1191-7970.
Full textOuattara, Alexandre, Olivier Langeron, Rachid Souktani, Stéphane Mouren, Pierre Coriat, and Bruno Riou. "Myocardial and Coronary Effects of Propofol in Rabbits with Compensated Cardiac Hypertrophy." Anesthesiology 95, no. 3 (2001): 699–707. http://dx.doi.org/10.1097/00000542-200109000-00024.
Full textMontiel, Virginie, Ramona Bella, Lauriane Y. M. Michel, et al. "Inhibition of aquaporin-1 prevents myocardial remodeling by blocking the transmembrane transport of hydrogen peroxide." Science Translational Medicine 12, no. 564 (2020): eaay2176. http://dx.doi.org/10.1126/scitranslmed.aay2176.
Full textZhao, Dingsheng, Guohui Zhong, Jianwei Li, et al. "Targeting E3 Ubiquitin Ligase WWP1 Prevents Cardiac Hypertrophy Through Destabilizing DVL2 via Inhibition of K27-Linked Ubiquitination." Circulation 144, no. 9 (2021): 694–711. http://dx.doi.org/10.1161/circulationaha.121.054827.
Full textMcLennan, Peter L., Mahinda Y. Abeywardena, Julie A. Dallimore, and Daniel Raederstorff. "Dietary fish oil preserves cardiac function in the hypertrophied rat heart." British Journal of Nutrition 108, no. 4 (2011): 645–54. http://dx.doi.org/10.1017/s0007114511005915.
Full textHaenen, N. "Lipomatous hypertrophy of the interatrial septum." Heart 88, no. 1 (2002): 111. http://dx.doi.org/10.1136/heart.88.1.111.
Full textJohansson, Markus, Benyapa Tangruksa, Sepideh Heydarkhan-Hagvall, Anders Jeppsson, Peter Sartipy, and Jane Synnergren. "Data Mining Identifies CCN2 and THBS1 as Biomarker Candidates for Cardiac Hypertrophy." Life 12, no. 5 (2022): 726. http://dx.doi.org/10.3390/life12050726.
Full textRuzicka, M., and F. H. Leenen. "Renin-angiotensin system and minoxidil-induced cardiac hypertrophy in rats." American Journal of Physiology-Heart and Circulatory Physiology 265, no. 5 (1993): H1551—H1556. http://dx.doi.org/10.1152/ajpheart.1993.265.5.h1551.
Full textZeitz, Michael J., and James W. Smyth. "Translating Translation to Mechanisms of Cardiac Hypertrophy." Journal of Cardiovascular Development and Disease 7, no. 1 (2020): 9. http://dx.doi.org/10.3390/jcdd7010009.
Full textFrey, Norbert, Hugo A. Katus, Eric N. Olson, and Joseph A. Hill. "Hypertrophy of the Heart." Circulation 109, no. 13 (2004): 1580–89. http://dx.doi.org/10.1161/01.cir.0000120390.68287.bb.
Full textNicholls, M. G. "Hypertension, hypertrophy, heart failure." Heart 76, no. 3 Suppl 3 (1996): 92–97. http://dx.doi.org/10.1136/hrt.76.3_suppl_3.92.
Full textZhang, Haifeng, Shanshan Li, Qiulian Zhou, et al. "Qiliqiangxin Attenuates Phenylephrine-Induced Cardiac Hypertrophy through Downregulation of MiR-199a-5p." Cellular Physiology and Biochemistry 38, no. 5 (2016): 1743–51. http://dx.doi.org/10.1159/000443113.
Full textLiao, Hai-han, Nan Zhang, Yan-yan Meng, et al. "Myricetin Alleviates Pathological Cardiac Hypertrophy via TRAF6/TAK1/MAPK and Nrf2 Signaling Pathway." Oxidative Medicine and Cellular Longevity 2019 (December 6, 2019): 1–14. http://dx.doi.org/10.1155/2019/6304058.
Full textXu, Man, Run-Qing Xue, Yi Lu, et al. "Choline ameliorates cardiac hypertrophy by regulating metabolic remodelling and UPRmt through SIRT3-AMPK pathway." Cardiovascular Research 115, no. 3 (2018): 530–45. http://dx.doi.org/10.1093/cvr/cvy217.
Full text