Academic literature on the topic 'Heart Metabolism'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Heart Metabolism.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Heart Metabolism"

1

Belke, Darrell D., Terje S. Larsen, Gary D. Lopaschuk, and David L. Severson. "Glucose and fatty acid metabolism in the isolated working mouse heart." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 277, no. 4 (October 1, 1999): R1210—R1217. http://dx.doi.org/10.1152/ajpregu.1999.277.4.r1210.

Full text
Abstract:
Although isolated perfused mouse heart models have been developed to study mechanical function, energy substrate metabolism has not been examined despite the expectation that the metabolic rate for a heart from a small mammal should be increased. Consequently, glucose utilization (glycolysis, oxidation) and fatty acid oxidation were measured in isolated working mouse hearts perfused with radiolabeled substrates, 11 mM glucose, and either 0.4 or 1.2 mM palmitate. Heart rate, coronary flow, cardiac output, and cardiac power did not differ significantly between hearts perfused at 0.4 or 1.2 mM pa
APA, Harvard, Vancouver, ISO, and other styles
2

Giffin, Mitch, Gilbert Arthur, Patrick C. Choy, and Ricky Y. K. Man. "Lysophosphatidylcholine metabolism and cardiac arrhythmias." Canadian Journal of Physiology and Pharmacology 66, no. 2 (February 1, 1988): 185–89. http://dx.doi.org/10.1139/y88-032.

Full text
Abstract:
The ability of exogenous lysophosphatidylcholine (LPC) to produce electrophysiological abnormalities in cardiac tissues and cardiac arrhythmias in isolated hearts has been well documented. In this study, the arrhythmogenic nature of LPC in the rat, rabbit, and guinea pig hearts was studied. The rat heart was found to be the most susceptible to LPC-induced arrhythmias, while the guinea pig heart was the least susceptible. Perfusion with labelled LPC revealed that the severity of arrhythmias correlates well with the amount of labelled LPC found in the microsomal membrane. The biochemical basis f
APA, Harvard, Vancouver, ISO, and other styles
3

Svensson, Sveneric, Rolf Svedjeholm, Rolf Ekroth, Italo Milocco, Folke Nilsson, Karl Göran Sabel, and Göran William-Olsson. "Trauma metabolism and the heart." Journal of Thoracic and Cardiovascular Surgery 99, no. 6 (June 1990): 1063–73. http://dx.doi.org/10.1016/s0022-5223(20)31463-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

FERRARA, R. "Myocardial metabolism: the diabetic heart." European Heart Journal Supplements 5 (January 2003): B15—B18. http://dx.doi.org/10.1016/s1520-765x(03)90036-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

GARLICK, P. B. "The Heart: Physiology and Metabolism." Cardiovascular Research 26, no. 1 (January 1, 1992): 85. http://dx.doi.org/10.1093/cvr/26.1.85.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

HAUGAARD, N., M. HESS, A. TORBATI, and O. TULP. "Energy metabolism in diabetic heart." Journal of Molecular and Cellular Cardiology 18 (1986): 32. http://dx.doi.org/10.1016/s0022-2828(86)80127-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

KAKO, K., and M. KATO. "Phospholipid metabolism in heart membranes." Journal of Molecular and Cellular Cardiology 18 (1986): 37. http://dx.doi.org/10.1016/s0022-2828(86)80140-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Doenst, Torsten, Tien Dung Nguyen, and E. Dale Abel. "Cardiac Metabolism in Heart Failure." Circulation Research 113, no. 6 (August 30, 2013): 709–24. http://dx.doi.org/10.1161/circresaha.113.300376.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lesnefsky, Edward J., Qun Chen, and Charles L. Hoppel. "Mitochondrial Metabolism in Aging Heart." Circulation Research 118, no. 10 (May 13, 2016): 1593–611. http://dx.doi.org/10.1161/circresaha.116.307505.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Donck, Kris. "Purine metabolism in the heart." Pharmacy World & Science 16, no. 2 (April 1994): 69–76. http://dx.doi.org/10.1007/bf01880658.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Heart Metabolism"

1

Murray, Andrew James. "Control of cardiac metabolism and efficiency." Thesis, University of Oxford, 2003. http://ora.ox.ac.uk/objects/uuid:858cc1f9-7ba0-4999-a1c8-614a950888c2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Babić, Nikolina. "Regulation of energy metabolism of heart myoblasts /." Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/11563.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Belke, Darrell David. "Hypothermia and energy substrate metabolism in the heart." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq21548.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Råmunddal, Truls Are. "Myocardial metabolism in experimental infarction and heart failure /." Göteborg : Department of Molecular and Clinical Medicine, The Wallenberg Laboratory for Cardiovascular Research, Sahlgrenska Academy Göteborg University, 2008. http://hdl.handle.net/2077/9565.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Heather, Lisa Claire. "Substrate transporters and metabolism in the hypertrophied heart." Thesis, University of Oxford, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.442468.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Beadle, Roger. "Metabolic manipulation in chronic heart failure." Thesis, University of Aberdeen, 2013. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=201651.

Full text
Abstract:
Treatments aimed at modifying cardiac substrate utilisation are designed to improve metabolic efficiency. In the fasting state, the heart mainly relies on fatty acid oxidation for its energy production. The heart can adapt to metabolise glucose, lactate and amino acids depending on the predominate milieu and demands placed upon it. A shift from fatty acid oxidation to carbohydrate oxidation leads to a lower oxygen consumption per unit of adenosine triphosphate produced. It is this concept of improving cardiac efficiency by a reduction in oxygen demand that underpins the use of metabolic manipu
APA, Harvard, Vancouver, ISO, and other styles
7

Adix, Longlet Nancy J. "Chronic Ventricular Sympathectomy : Effects on Myocardial Metabolism." Thesis, University of North Texas, 1993. https://digital.library.unt.edu/ark:/67531/metadc278768/.

Full text
Abstract:
Chronic ventricular sympathectomy elicits changes in the coronary circulation, myocardial oxygen consumption and size of infarction resulting fromcoronary occlusion. These changes indicate a change occurring in the basic metabolism of the heart in response to the removal of its sympathetic nervous input. This hypothesis was tested using two groups of dogs, a shamoperated control and a ventricular sympathectomized group. The sympathectomy procedure was an intrapericardial surgical technique which selectively removes ventricular sympathetic input. Four weeks after surgery, left ventricular tissu
APA, Harvard, Vancouver, ISO, and other styles
8

Jones, Barney. "Ischaemia and efficiency in the isolated heart." Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.311982.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lindbom, Malin. "Myocardial creatine metabolism in experimental infarction and heart failure /." Göteborg : Dept. of Molecular and Clinical Medicine/Cardiology, Wallenberg Laboratory for Cardiovascular research, Sahlgrenska Academy, Göteborgs Universitet, 2007. http://hdl.handle.net/2077/7380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kalsi, Kameljit Kaur. "Nucleotide and adenosine metabolism in heart failure and cardioprotection." Thesis, Imperial College London, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.409176.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Heart Metabolism"

1

Dhalla, Naranjan S., Grant N. Pierce, and Robert E. Beamish, eds. Heart Function and Metabolism. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-2053-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

The heart: Physiology and metabolism. 2nd ed. New York: Raven Press, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sideman, S., and R. Beyar, eds. Activation, Metabolism and Perfusion of the Heart. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3313-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Van Der Vusse, Ger J., ed. Lipid Metabolism in Normoxic and Ischemic Heart. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-1611-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

van der Vusse, Ger J., and Hans Stam, eds. Lipid Metabolism in the Healthy and Disease Heart. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3514-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Stam, H., and G. J. van der Vusse, eds. Lipid metabolism in the normoxic and ischaemic heart. Heidelberg: Steinkopff, 1987. http://dx.doi.org/10.1007/978-3-662-08390-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

ATP and the heart. Boston: Kluwer Academic, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

H, Opie Lionel, ed. Atlas of the myocardium. New York: Raven Press, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sideman, S. Activation, Metabolism and Perfusion of the Heart: Simulation and experimental models. Dordrecht: Springer Netherlands, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

The heart: Physiology, from cell to circulation. 3rd ed. Philadelphia: Lippincott-Raven, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Heart Metabolism"

1

Pfister, Roman, and Erland Erdmann. "Heart Failure." In Metabolism of Human Diseases, 251–57. Vienna: Springer Vienna, 2014. http://dx.doi.org/10.1007/978-3-7091-0715-7_37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Slavich, Massimo, and Juan Carlos Kaski. "Atherosclerotic Heart Disease." In Metabolism of Human Diseases, 243–49. Vienna: Springer Vienna, 2014. http://dx.doi.org/10.1007/978-3-7091-0715-7_36.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kowaltowski, Alicia, and Fernando Abdulkader. "Metabolism and Heart Disease." In Where Does All That Food Go?, 117–23. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-50968-2_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kusmic, Claudia, and Serena L’Abbate. "TH Metabolism in Ischemia/Reperfusion Models." In Thyroid and Heart, 71–83. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36871-5_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Laughlin, Maren R. "Cardiac Glycogen Metabolism in Diabetes." In The Heart in Diabetes, 166–88. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-1269-7_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Haugaard, N., M. E. Hess, A. Torbati, and O. L. Tulp. "Energy Metabolism in Diabetic Heart." In Developments in Cardiovascular Medicine, 199–208. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-2051-7_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kako, K. J., and M. Kato. "Phospholipid Metabolism in Heart Membranes." In Myocardial Ischemia, 99–112. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-2055-5_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bogazzi, Fausto, and Daniele Cappellani. "Heart Drugs and Influences on TH Metabolism." In Thyroid and Heart, 311–25. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36871-5_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Klevay, Leslie M. "Ischemic Heart Disease as Copper Deficiency." In Copper Bioavailability and Metabolism, 197–208. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0537-8_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yui, Nobuhiko, Ken Suzuki, Teruo Okano, Yasuhisa Sakurai, Chikako Ishikawa, Keiji Fujimoto, and Haruma Kawaguchi. "Changes in Platelet Metabolism in Contact with Hydrophilic Copolymer Surfaces." In Heart Replacement, 33–36. Tokyo: Springer Japan, 1993. http://dx.doi.org/10.1007/978-4-431-67023-0_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Heart Metabolism"

1

Zhang, Yu, Wataru Mizushima, Shinichi Oka, Peiyong Zhai, and Dominic Del Re. "Abstract B19: Neurofibromin 2 regulates metabolism in the heart." In Abstracts: AACR Special Conference on the Hippo Pathway: Signaling, Cancer, and Beyond; May 8-11, 2019; San Diego, CA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1557-3125.hippo19-b19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Miller, JJ, YB Ding, D. Ball, AZ Lau, and DJ Tyler. "P9 Hyperpolarised ketone body metabolism in the rat heart." In British Society for Cardiovascular Research, Autumn Meeting 2017 ‘Cardiac Metabolic Disorders and Mitochondrial Dysfunction’, 11–12 September 2017, University of Oxford. BMJ Publishing Group Ltd and British Cardiovascular Society, 2018. http://dx.doi.org/10.1136/heartjnl-2018-bscr.14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hundertmark, MJ, CT Rodgers, O. Rider, S. Neubauer, and M. Mahmod. "P21 Cardiac metabolism in patients with heart failure with mid-range ejection fraction." In British Society for Cardiovascular Research, Autumn Meeting 2017 ‘Cardiac Metabolic Disorders and Mitochondrial Dysfunction’, 11–12 September 2017, University of Oxford. BMJ Publishing Group Ltd and British Cardiovascular Society, 2018. http://dx.doi.org/10.1136/heartjnl-2018-bscr.26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Reutter, Bryan W., Rostyslav Boutchko, Ronald H. Huesman, Stephen M. Hanrahan, Kathleen M. Brennan, Anne C. Sauve, and Grant T. Gullberg. "Dynamic pinhole SPECT imaging and compartmental modeling of fatty acid metabolism in the rat heart." In 2008 IEEE Nuclear Science Symposium and Medical Imaging conference (2008 NSS/MIC). IEEE, 2008. http://dx.doi.org/10.1109/nssmic.2008.4774275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Vyas, R., H. Cheng, P. E. Grant, J. Newburger, K. Hagan, M. A. Franceschini, and M. Dehaes. "Lower Cerebral Oxygen Metabolism In Neonates With Congenital Heart Disease As Compared To Healthy Neonates." In Biomedical Optics. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/biomed.2014.bm3a.19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Reutter, B. W., R. Boutchko, R. H. Huesman, A. C. Sauve, and G. T. Gullberg. "Tissue spillover correction for dynamic pinhole SPECT studies of fatty acid metabolism in the rat heart." In 2009 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC 2009). IEEE, 2009. http://dx.doi.org/10.1109/nssmic.2009.5401782.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kluza, J., V. Peugnet, W. Laine, G. Kervoaze, G. Remy, I. Wolowczuck, P. Gosset, et al. "Validation of a new strategy to maintain functional mitochondrial metabolism in conserved murine heart and lung tissues." In ERS Lung Science Conference 2020 abstracts. European Respiratory Society, 2020. http://dx.doi.org/10.1183/23120541.lsc-2020.10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Terres, W., C. Hamm, W. Kupper, and W. Bleifeld. "PLATELET AGGREGABLLITY AND METABOLISM IN PATIENTS WITH UNSTABLE ANGINA PECTORIS." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643777.

Full text
Abstract:
Several platelet products indicating platelet activation have been detected in blood and urine of patients (PTS) with angina pectoris (AP) at rest. Platelet activation mainly depends on local changes in the morphology or biochemical behaviour of the vessels. Whether platelet hyperaggregability is of additional importance in the pathogenesis of unstable AP is up to now unclear. In a prospective trial we therefore evaluated 32 patients (PTS) with coronary heart disease, 16 with AP at rest during the last 8 hours before blood collection and 16 age and sex matched controls with stable exertional A
APA, Harvard, Vancouver, ISO, and other styles
9

NIADA, R., R. Porta, R. Tettamanti, R. Pescador, M. Mantovani, and G. Prino. "DEFIBROTIDE IN EXPERIMENTAL MYOCARDIAL ISCHEMIA IN THE CAT: EFFECTS ON HEMODYNAMICS, ENERGY METABOLISM AND INFARCT SIZE." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643152.

Full text
Abstract:
Defibrotide was able to prevent the hemodynamic and biochemical alterations caused by acute myocardial ischemia (AMI) induced by coronary occlusion in the cat when infused 3.5 h before and 5 h after left anterior descending coronary artery (LAD) occlusion. In the platelet perfused heart, Defibrotide was a selective stimulator of coronary vascular PGI^ but not of platelet thromboxane formation. The present study was designed both to investigate the effects of Defibrotide injected 30 min after the induction of acute myocardial ischemia (AMI) in the cat and to evaluate the ability of this drug to
APA, Harvard, Vancouver, ISO, and other styles
10

Albuquerque-Neto, Cyro, and Jurandir Itizo Yanagihara. "A Passive Model of the Heat, Oxygen and Carbon Dioxide Transport in the Human Body." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-11104.

Full text
Abstract:
The aim of this work is the development of a mathematical model which integrates a model of the human respiratory system and a model of the human thermal system. Both models were previously developed at the same laboratory, based on classical works. The human body was divided in 15 segments: head, neck, trunk, arms, forearms, hands, thighs, legs and feet. Those segments have the form of a cylinder (circular cross-section) or a parallelogram (hands and feet) with the following tissue layers: muscle, fat, skin, bone, brain, lung, heart and viscera. Two different geometries are used to model the
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Heart Metabolism"

1

Andrews, Matthew T. Regulation of Genes Controlling Carbohydrate Metabolism in the Heart of a Hibernating Mammal. Fort Belvoir, VA: Defense Technical Information Center, May 2004. http://dx.doi.org/10.21236/ada424253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Research, Gratis. Brown Fat Activation: A Future Treatment for Obesity & Diabetes. Gratis Research, November 2020. http://dx.doi.org/10.47496/gr.blog.01.

Full text
Abstract:
Brown fat holds a promising therapeutic approach to prevent obesity and type 2 diabetes by its profound effects on body weight reduction, heat generation, increased insulin sensitivity and glucose metabolism regulation
APA, Harvard, Vancouver, ISO, and other styles
3

Upah, Nathan, Sarah Pearce, Nicholas K. Gabler, and Lance H. Baumgard. Effects of Heat Stress and Plane of Nutrition on Production and Metabolism in Growing Pigs. Ames (Iowa): Iowa State University, January 2011. http://dx.doi.org/10.31274/ans_air-180814-107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Staab, Janet E., Margaret A. Kolka, and Bruce S. Cadarette. Metabolic Rate and Heat Stress Associated With Flying Military Rotary-Wing Aircraft. Fort Belvoir, VA: Defense Technical Information Center, June 1998. http://dx.doi.org/10.21236/ada345641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tharion, William J., Victoria Goetz, and Miyo Yokota. Estimated Metabolic Heat Production of Helicopter Aircrew Members during Operations in Iraq and Afghanistan. Fort Belvoir, VA: Defense Technical Information Center, April 2012. http://dx.doi.org/10.21236/ada558580.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Heaps, Cristine L., and Stefan H. Constable. The Metabolic and Thermoregulatory Responses of Rhesus Monkeys to Combined Exercise and Environmental Heat Load. Fort Belvoir, VA: Defense Technical Information Center, August 1993. http://dx.doi.org/10.21236/ada269756.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Miao, Lina, Hua Qu, and Dazhuo Shi. Prognostic value of the level of gut microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure:a meta-analysis and systematic review. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, May 2020. http://dx.doi.org/10.37766/inplasy2020.5.0030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Miao, Lina, Hua Qu, and Dazhuo Shi. Prognostic value of the level of gut microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: a meta-analysis and systematic review. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, October 2020. http://dx.doi.org/10.37766/inplasy2020.10.0047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Goetz, Victoria, Miyo Yokota, Anthony J. Karis, and William J. Tharion. Energy Expenditure and Metabolic Heat Production Storage Estimates of Tactical Law Enforcement Personnel during Chemical, Biological, Radiological, and Nuclear (CBRN) Training. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada549510.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Being overweight or obese is linked with heart disease even without other metabolic risk factors. National Institute for Health Research, November 2017. http://dx.doi.org/10.3310/signal-000501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!