Academic literature on the topic 'Heart Rate Variability (HRV) Signals'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Heart Rate Variability (HRV) Signals.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Heart Rate Variability (HRV) Signals"
Çelik, Gamze, Mustafa Yıldırım, Mahmut Ilhan, Özcan Karaman, Ertuğrul Taşan, Sadık Kara, and Şükrü Okkesim. "Comparison of Pulse Rate Variability and Heart Rate Variability for Hypoglycemia Syndrome." Methods of Information in Medicine 55, no. 03 (2016): 250–57. http://dx.doi.org/10.3414/me15-01-0088.
Full textLee, Dae-Young, and Young-Seok Choi. "Multiscale Distribution Entropy Analysis of Short-Term Heart Rate Variability." Entropy 20, no. 12 (December 11, 2018): 952. http://dx.doi.org/10.3390/e20120952.
Full textScheff, Jeremy D., Panteleimon D. Mavroudis, Steven E. Calvano, Stephen F. Lowry, and Ioannis P. Androulakis. "Modeling autonomic regulation of cardiac function and heart rate variability in human endotoxemia." Physiological Genomics 43, no. 16 (August 2011): 951–64. http://dx.doi.org/10.1152/physiolgenomics.00040.2011.
Full textSieciński, Szymon, Paweł S. Kostka, and Ewaryst J. Tkacz. "Heart Rate Variability Analysis on Electrocardiograms, Seismocardiograms and Gyrocardiograms on Healthy Volunteers." Sensors 20, no. 16 (August 13, 2020): 4522. http://dx.doi.org/10.3390/s20164522.
Full textGospodinov, Mitko, Evgeniya Gospodinova, and Penio Lebamovski. "Analysis of Heart Rate Variability Using Photopletismnographic and Electrocardiographic Signals." Innovative STEM Education 3, no. 1 (June 29, 2021): 7–12. http://dx.doi.org/10.55630/stem.2021.0301.
Full textMontano, N., S. Cerutti, and L. T. Mainardi. "Automatic Decomposition of Wigner Distribution and its Application to Heart Rate Variability." Methods of Information in Medicine 43, no. 01 (2004): 17–21. http://dx.doi.org/10.1055/s-0038-1633416.
Full textElgendi, Mohamed, Ian Norton, Matt Brearley, Socrates Dokos, Derek Abbott, and Dale Schuurmans. "A pilot study: Can heart rate variability (HRV) be determined using short-term photoplethysmograms?" F1000Research 5 (September 22, 2016): 2354. http://dx.doi.org/10.12688/f1000research.9556.1.
Full textKARAMANOS, K., S. NIKOLOPOULOS, K. HIZANIDIS, G. MANIS, A. ALEXANDRIDI, and S. NIKOLAKEAS. "BLOCK ENTROPY ANALYSIS OF HEART RATE VARIABILITY SIGNALS." International Journal of Bifurcation and Chaos 16, no. 07 (July 2006): 2093–101. http://dx.doi.org/10.1142/s0218127406015933.
Full textMartinez-Delgado, Gerardo H., Alfredo J. Correa-Balan, José A. May-Chan, Carlos E. Parra-Elizondo, Luis A. Guzman-Rangel, and Antonio Martinez-Torteya. "Measuring Heart Rate Variability Using Facial Video." Sensors 22, no. 13 (June 21, 2022): 4690. http://dx.doi.org/10.3390/s22134690.
Full textMejía-Mejía, Elisa, and Panicos A. Kyriacou. "Photoplethysmography-Based Pulse Rate Variability and Haemodynamic Changes in the Absence of Heart Rate Variability: An In-Vitro Study." Applied Sciences 12, no. 14 (July 18, 2022): 7238. http://dx.doi.org/10.3390/app12147238.
Full textDissertations / Theses on the topic "Heart Rate Variability (HRV) Signals"
Alghoul, Karim. "Heart Rate Variability Extraction from Video Signals." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/33003.
Full textSoler, Anderson Ivan Rincon. "Impact of artifact correction methods on R-R interbeat signals to quantifying heart rate variability (HRV) according to linear and nonlinear methods." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/59/59135/tde-02052016-130306/.
Full textNa análise da variabilidade da frequência cardíaca (Heart Rate Variability - HRV) são usadas séries temporais que contém as distancias entre batimentos cardíacos sucessivos, com o m de avaliar a regulação autonômica do sistema cardiovascular. Estas séries são obtidas a partir da análise de sinais de eletrocardiograma (ECG), as quais podem ser afetados por distintos tipos de artefatos, levando a interpretações incorretas nas análises feitas sob as séries da HRV. Abordagem clássica para lidar com esses artefatos implica a utilização de métodos de correção, alguns deles com base na interpolação, substituição ou técnicas estatísticas. No entanto, existem poucos estudos que mostram a precisão e desempenho destes métodos de correção em sinais reais da HRV. Assim, o presente estudo tem como objetivo determinar cómo os diferentes níveis de artefatos presentes no sinal afetam as caraterísticas da mesma, utilizando-se diferentes métodos lineares e não lineares de correção e posteriormente quanticação dos parâmetros da HRV. Como parte da metodología utilizada, sinais ECG de ratos obtidas mediante a técnica da telemetria foram usadas para gerar séries de HRV reais sem nenhum tipo de erro. Nestas séries foram simulados batimentos perdidos para diferentes taxas de pontos a m de emular a situação real com a maior precisão possível. Adicionalmente, foram aplicados os métodos de eliminação de segmentos (DEL), interpolação linear (LI) e cúbica (CI), janela de média móvel (MAW) e interpolação preditiva não lineal (NPI) como métodos de correção dos artefatos simulados sob as séries com erros. A precisão de cada método de correção foi conhecida através dos resultados obtidos com a quanticação do valor médio da série (AVNN), desvio padrão (SDNN), erro quadrático médio das diferenças entre batimentos sucessivos (RMSSD), periodograma de Lomb (LSP), análise de flutuações destendenciadas (DFA), entropia multiescala (MSE) e dinâmica simbólica (SD) sob cada sinal de HRV com e sem erros. Os resultados obtidos mostram que para baixos níveis de perdas de batimentos o desempenho das técnicas de correção é similar, com valores muito semelhantes para cada parámetro quanticado da HRV. Não obstante, em níveis de perdas maiores só NPI permite obter valores muito próximos e sem muitas diferenças signicativas para os mesmos parâmetros da HRV, em comparação com os valores calculados para as séries sem perdas.
Wang, Yuan. "Heart rate variability and respiration signals as late onset sepsis diagnostic tools in neonatal intensive care units." Thesis, Rennes 1, 2013. http://www.theses.fr/2013REN1S106/document.
Full textLate-onset sepsis, defined as a systemic infection in neonates older than 3 days, occurs in approximately 10% of all neonates and in more than 25% of very low birth weight infants who are hospitalized in Neonatal Intensive Care Units (NICU). Recurrent and severe spontaneous apneas and bradycardias (AB) is one of the major clinical early indicators of systemic infection in the premature infant. Various hematological and biochemical markers have been evaluated for this indication but they are invasive procedures that cannot be repeated several times. The objective of this Ph.D dissertation was to determine if heart rate variability (HRV), respiration and the analysis of their relationships help to the diagnosis of infection in premature infants via non-invasive ways in NICU. Therefore, we carried out Mono-Channel (MC) and Bi-Channel (BC) Analysis in two selected groups of premature infants: sepsis (S) vs. non-sepsis (NS). (1) Firstly, we studied the RR series not only by distribution methods (moy, varn, skew, kurt, med, SpAs), by linear methods: time domain (SD, RMSSD) and frequency domain (p_VLF, p_LF, p_HF), but also by non-linear methods: chaos theory (alphaS, alphaF) and information theory (AppEn, SamEn, PermEn, Regul). For each method, we attempt three sizes of window 1024/2048/4096, and then compare these methods in order to find the optimal ways to distinguish S from NS. The results show that alphaS, alphaF and SamEn are optimal parameters to recognize sepsis from the diagnosis of late neonatal infection in premature infants with unusual and recurrent AB. (2) The question about the functional coupling of HRV and nasal respiration is addressed. Linear and non-linear relationships have been explored. Linear indexes were correlation (r²), coherence function (Cohere) and time-frequency index (r2t,f), while a non-linear regression coefficient (h²) was used to analyze non-linear relationships. We calculated two directions during evaluate the index h2 of non-linear regression. Finally, from the entire analysis process, it is obvious that the three indexes (r2tf_rn_raw_0p2_0p4, h2_rn_raw and h2_nr_raw) were complementary ways to diagnosticate sepsis in a non-invasive way, in such delicate patients.(3) Furthermore, feasibility study is carried out on the candidate parameters selected from MC and BC respectively. We discovered that the proposed test based on optimal fusion of 6 features shows good performance with the largest Area Under Curves (AUC) and the least Probability of False Alarm (PFA). As a conclusion, we believe that the selected measures from MC and BC signal analysis have a good repeatability and accuracy to test for the diagnosis of sepsis via non-invasive NICU monitoring system, which can reliably confirm or refute the diagnosis of infection at an early stage
Franěk, Pavel. "Analýza variability srdečního rytmu pomocí rekurentního diagramu." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2013. http://www.nusl.cz/ntk/nusl-220048.
Full textJohnston, William S. "Development of a signal processing library for extraction of SpO2, HR, HRV, and RR from photoplethysmographic waveforms." Worcester, Mass. Worcester Polytechnic Institute, 2006. http://www.wpi.edu/Pubs/ETD/Available/etd-073106-130906/.
Full textKeywords: wearable medical sensors; arterial oxygen saturation; software development; embedded systems; heart rate; respiration rate; heart rate variability; pulse oximetry; digital signal processing Includes bibliographical references (leaves 125-133).
Jež, Radek. "Software pro ruční rozměření signálů EKG." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2011. http://www.nusl.cz/ntk/nusl-219251.
Full textHeathers, James. "Methodological improvements in heart rate variability." Thesis, The University of Sydney, 2014. http://hdl.handle.net/2123/13106.
Full textBoman, Kajsa. "Heart rate variability : A possible measure of subjective wellbeing?" Thesis, Högskolan i Skövde, Institutionen för biovetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-15911.
Full textSuh, Sooyeon. "STRESS, ANXIETY, AND HEART RATE VARIABILITY IN CHRONIC OBSTRUCTIVE PULMONARY DISEASE." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1275495558.
Full textMinnis, James Michael. "Nutrition and athletic performance: implications of heart rate variability." Kansas State University, 2015. http://hdl.handle.net/2097/20344.
Full textDepartment of Human Nutrition
Mark Haub
The purpose of this review is to examine the role of heart rate variability (HRV) as a predictor of athletic readiness and performance and assess whether nutrition strategies can be implemented to create favorable HRV indices with the goal of improving athletic readiness and performance. The balance between training and recovery is crucial for reaching an optimal adaptation and avoiding overtraining, allowing for improved readiness to train and compete. The measurement of HRV is non-invasive and is used primarily to quantify physical and mental stress in athletes by monitoring the effects of the autonomic nervous system on the heart. Current data suggests a relationship between resting parasympathetic tone, via time and frequency domains, and athletic performance. Parasympathetic modulated HRV indices have been associated with performance metrics such as peripheral work capacity, aerobic power, running and sprint performance, swimming performance, weight lifting performance, anaerobic capacity, strength, and enhanced mental focus/skill execution. The use of nutrition to help enhance sports performance is becoming more common. Evidence-based sports nutrition provides fuel for training/competition, assists in maximizing training adaptations, enhances recovery, improves mental focus, and aids in injury prevention and recovery. The use of nutrition strategies to influence HRV is novel and current evidence is scarce in regards to nutritional effects on HRV, specifically in athletes. Current research suggests that achieving energy balance and decreasing body fat in overweight/obese individuals has positive effects on the vagal component of HRV indices. Proper hydration, fruit and vegetable intake, a moderate carbohydrate diet, omega-3 fatty acid supplementation/intake also seem to have positive effects on HRV indices. Certain individual supplements have been studied in regards to HRV including casein hydrolysate, amaranth oil, and bovine colostrum. Caffeine seems to have the opposite effect on HRV indices, increasing sympathetic modulation while decreasing parasympathetic modulation. Much more research needs to be done in regard to potential nutritional influences on HRV so that sport dietitians feel confident in the methods currently used to assess athlete readiness and determining what types of nutrition strategies may be used to further improve the performance of an athlete.
Books on the topic "Heart Rate Variability (HRV) Signals"
Heart rate variability (HRV) signal analysis: Clinical applications. Boca Raton: Taylor & Francis, 2013.
Find full textKamath, Markad V., Mari Watanabe, and Adrian Upton, eds. Heart Rate Variability (HRV) Signal Analysis. CRC Press, 2016. http://dx.doi.org/10.1201/b12756.
Full textWatanabe, Mari, Markad V. Kamath, Adrian R. M. Upton, and Carlos A. Morillo. Heart Rate Variability (Hrv) Signal Analysis. Taylor & Francis Group, 2012.
Find full textTrimmel, Karin, Jerzy Sacha, and Heikki Veli Huikuri, eds. Heart Rate Variability: Clinical Applications and Interaction between HRV and Heart Rate. Frontiers Media SA, 2015. http://dx.doi.org/10.3389/978-2-88919-652-4.
Full textZarneh, Alexander Tahmassian. An instrument for on-line autonomic function testing: Design, construction and application of a microcomputer based data acquisition and analysis system used for study of the photoplethysmograph and heart rate variability signals of healthy and diseased people. Bradford, 1985.
Find full textJovanovic, Tanja, and Seth Davin Norrholm. Human Psychophysiology and PTSD. Edited by Israel Liberzon and Kerry J. Ressler. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780190215422.003.0015.
Full textBook chapters on the topic "Heart Rate Variability (HRV) Signals"
Anandhi, B., and S. Jerritta. "Hilbert Huang Transform (HHT) Analysis of Heart Rate Variability (HRV) in Recognition of Emotion in Children with Autism Spectrum Disorder (ASD)." In Biomedical Signals Based Computer-Aided Diagnosis for Neurological Disorders, 65–81. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-97845-7_4.
Full textOrbell, Sheina, Havah Schneider, Sabrina Esbitt, Jeffrey S. Gonzalez, Jeffrey S. Gonzalez, Erica Shreck, Abigail Batchelder, et al. "Heart Rate Variability (HRV)." In Encyclopedia of Behavioral Medicine, 953. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-1005-9_100783.
Full textErnst, Gernot. "HRV in Oncology and Palliative Medicine." In Heart Rate Variability, 261–68. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4309-3_13.
Full textErnst, Gernot. "HRV and Alterations in the Vegetative Nervous System." In Heart Rate Variability, 119–28. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4309-3_5.
Full textKiyono, Ken, Junichiro Hayano, Eiichi Watanabe, and Yoshiharu Yamamoto. "Heart Rate Variability (HRV) and Sympathetic Nerve Activity." In Clinical Assessment of the Autonomic Nervous System, 147–61. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-56012-8_9.
Full textRompelman, Otto, and Ben J. TenVoorde. "Analysis of Heart Rate Variability." In Advances in Processing and Pattern Analysis of Biological Signals, 225–34. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-9098-6_16.
Full textCerutti, Sergio, and Maria G. Signorini. "The Heart Rate Variability Signal." In Advances in Processing and Pattern Analysis of Biological Signals, 235–49. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-9098-6_17.
Full textKhandoker, Ahsan Habib, Chandan Karmakar, Michael Brennan, Andreas Voss, and Marimuthu Palaniswami. "Poincaré Plot Interpretation of HRV Using Physiological Model." In Poincaré Plot Methods for Heart Rate Variability Analysis, 25–46. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-1-4614-7375-6_3.
Full textKhandoker, Ahsan Habib, Chandan Karmakar, Michael Brennan, Andreas Voss, and Marimuthu Palaniswami. "Poincaré Plot in Capturing Nonlinear Temporal Dynamics of HRV." In Poincaré Plot Methods for Heart Rate Variability Analysis, 47–68. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-1-4614-7375-6_4.
Full textGarcía Martínez, Constantino Antonio, Abraham Otero Quintana, Xosé A. Vila, María José Lado Touriño, Leandro Rodríguez-Liñares, Jesús María Rodríguez Presedo, and Arturo José Méndez Penín. "Comparing HRV Variability Across Different Segments of a Recording." In Heart Rate Variability Analysis with the R package RHRV, 117–32. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65355-6_6.
Full textConference papers on the topic "Heart Rate Variability (HRV) Signals"
Liou, Jian-Chiun, and Ting-Yu Su. "Instantaneous Heart Rate Variability(HRV) Signal Cloud Portable Flat Panel Observation." In 2018 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW). IEEE, 2018. http://dx.doi.org/10.1109/icce-china.2018.8448483.
Full textCarvalho, Diogo, Luis Silva, Miguel Carvalho, Mariana Dias, Nelson Costa, Duarte Folgado, Maria Lua, Hugo Gamboa, and Elazer Edelman. "Heart rate variability during repetitive work in the presence of fatigue." In 14th International Conference on Applied Human Factors and Ergonomics (AHFE 2023). AHFE International, 2023. http://dx.doi.org/10.54941/ahfe1003433.
Full textPodaru, Alexandru, and Valeriu David. "A STUDY REGARDING THE ACQUISITION OF PHOTOPLETHYSMOGRAPIC SIGNAL USED IN DETERMINATION OF THE PRV PARAMETERS." In eLSE 2020. University Publishing House, 2020. http://dx.doi.org/10.12753/2066-026x-20-203.
Full textGao, Jianbo, Jing Hu, and Wen-wen Tung. "Multiscale Analysis of Biological Signals." In ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control. ASMEDC, 2011. http://dx.doi.org/10.1115/dscc2011-6084.
Full textWanqing Wu and Jungtae Lee. "Development of full-featured ECG system for visual stress induced heart rate variability (HRV) assessment." In 2010 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT). IEEE, 2010. http://dx.doi.org/10.1109/isspit.2010.5711762.
Full textRezaei, Shahab, Sadaf Moharreri, and Ali Ghorshi. "Designing the FPGA-based system for Triangle Phase space Mapping (TPSM) of heart rate variability (HRV) signal." In 2015 38th International Conference on Telecommunications and Signal Processing (TSP). IEEE, 2015. http://dx.doi.org/10.1109/tsp.2015.7296403.
Full textLuca, Catalina, Calin Corciova, and Daniela Matei. "THE IMPORTANCE OF COMPUTER METHODS IN BIOMEDICINE - THE ANALIZATION BETWEEN HRV AND TYPES OF EXERCISE." In eLSE 2018. Carol I National Defence University Publishing House, 2018. http://dx.doi.org/10.12753/2066-026x-18-207.
Full textHu, Shan, and Xun Yu. "Non-Intrusive ECG Measurement on Vehicle Steering Wheel and Driver Seat." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192963.
Full textGUOMING CHEN, GUOMING CHEN, QI ZHANG, XUANKE TONG, and GUOFU LIAO. "VITAL SIGNS MONITORING BASED ON WEBCAM FOR HOME TELEMEDICINE APPLICATIONS." In 2021 INTERNATIONAL CONFERENCE ON ADVANCED EDUCATION AND INFORMATION MANAGEMENT (AEIM 2021). Destech Publications, Inc., 2021. http://dx.doi.org/10.12783/dtssehs/aeim2021/35982.
Full textHiguera Trujillo, Juan Luis, Javier Marín Morales, Juan Carlos Rojas, and Juan López Tarruella Maldonado. "Emotional maps: neuro architecture and design applications." In Systems & Design: Beyond Processes and Thinking. Valencia: Universitat Politècnica València, 2016. http://dx.doi.org/10.4995/ifdp.2016.3170.
Full textReports on the topic "Heart Rate Variability (HRV) Signals"
Brusseau, Valentin, I. Tauveron, R. Bagheri, U. Ugbolue, V. Magnon, J. B. Bouillon-Minois, V. Navel, and F. Dutheil. Effect of hyperthyroidism treatments on heart rate variability: A systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, August 2022. http://dx.doi.org/10.37766/inplasy2022.8.0062.
Full textZhou, Mu-Jiao, and Yong-Hong Yang. Effects of Transcutaneous Electric Acupoint Stimulation (TEAS) on Heart Rate Variability (HRV): a systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, November 2022. http://dx.doi.org/10.37766/inplasy2022.11.0137.
Full text