Journal articles on the topic 'Heat-affected zone liquation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Heat-affected zone liquation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Chaturvedi, Mahesh C. "Liquation Cracking in Heat Affected Zone in Ni Superalloy Welds." Materials Science Forum 546-549 (May 2007): 1163–70. http://dx.doi.org/10.4028/www.scientific.net/msf.546-549.1163.
Full textJeong, Ye-Seon, Kyeong-Min Kim, Hyungsoo Lee, Seong-Moon Seo, and Eun-Joon Chun. "Evaluation and Control of Liquation Cracking Susceptibility for CM247LC Superalloy Weld Heat-Affected Zone via Visualization-Based Varestraint Test." Korean Journal of Metals and Materials 59, no. 7 (2021): 445–58. http://dx.doi.org/10.3365/kjmm.2021.59.7.445.
Full textJeong, Ye-Seon, Kyeong-Min Kim, Uijong Lee, Hyungsoo Lee, Seong-Moon Seo, and Eun-Joon Chun. "Evaluation of Liquation Cracking Behavior and Susceptibility in Heat-Affected Zone of CM247LC Superalloy Welds for Turbine Blade Application." Korean Journal of Metals and Materials 58, no. 12 (2020): 875–86. http://dx.doi.org/10.3365/kjmm.2020.58.12.875.
Full textRakoczy, Łukasz, Fabian Hanning, Joel Andersson, Małgorzata Grudzień-Rakoczy, Rafał Cygan, and Anna Zielińska-Lipiec. "Microstructure evolution of the Gleeble-simulated heat-affected zone of Ni-based superalloy." MATEC Web of Conferences 287 (2019): 06002. http://dx.doi.org/10.1051/matecconf/201928706002.
Full textChen, Kai-Cheng, Tai-Cheng Chen, Ren-Kae Shiue, and Leu-Wen Tsay. "Liquation Cracking in the Heat-Affected Zone of IN738 Superalloy Weld." Metals 8, no. 6 (2018): 387. http://dx.doi.org/10.3390/met8060387.
Full textBaeslack, W. A., and D. E. Nelson. "Morphology of weld heat-affected zone liquation in cast alloy 718." Metallography 19, no. 3 (1986): 371–79. http://dx.doi.org/10.1016/0026-0800(86)90024-8.
Full textSaha, Dulal Chandra, InSung Chang, and Yeong-Do Park. "Heat-affected zone liquation crack on resistance spot welded TWIP steels." Materials Characterization 93 (July 2014): 40–51. http://dx.doi.org/10.1016/j.matchar.2014.03.016.
Full textMessler, R. W., and L. Li. "Weld heat affected zone liquation cracking in type 347 stainless steel." Science and Technology of Welding and Joining 2, no. 2 (1997): 43–52. http://dx.doi.org/10.1179/stw.1997.2.2.43.
Full textRaza, Hurtig, Asala, Andersson, Svensson, and Ojo. "Influence of Heat Treatments on Heat Affected Zone Cracking of Gas Tungsten Arc Welded Additive Manufactured Alloy 718." Metals 9, no. 8 (2019): 881. http://dx.doi.org/10.3390/met9080881.
Full textSingh, Sukhdeep, Fabian Hanning, and Joel Andersson. "Influence of Hot Isostatic Pressing on the Hot Ductility of Cast Alloy 718: The Effect of Niobium and Minor Elements on the Liquation Mechanism." Metallurgical and Materials Transactions A 51, no. 12 (2020): 6248–57. http://dx.doi.org/10.1007/s11661-020-06004-8.
Full textSingh, Sukhdeep, and Joel Andersson. "Heat-Affected-Zone Liquation Cracking in Welded Cast Haynes® 282®." Metals 10, no. 1 (2019): 29. http://dx.doi.org/10.3390/met10010029.
Full textBaeslack, W. A., S. Ernst, and J. C. Lippold. "Heat-affected zone liquation cracking in a cobalt-free low-expansion superalloy." Journal of Materials Science Letters 7, no. 11 (1988): 1204–8. http://dx.doi.org/10.1007/bf00722338.
Full textWest, S. L., W. A. Baeslack, and T. J. Kelly. "Morphology of weld heat-affected zone liquation cracking in Ta-modified cast Alloy 718." Metallography 23, no. 3 (1989): 219–29. http://dx.doi.org/10.1016/0026-0800(89)90033-5.
Full textOjo, O. A., Y. L. Wang, and M. C. Chaturvedi. "Heat affected zone liquation cracking in electron beam welded third generation nickel base superalloys." Materials Science and Engineering: A 476, no. 1-2 (2008): 217–23. http://dx.doi.org/10.1016/j.msea.2007.04.091.
Full textChen, Yuan, Ke Zhang, Jian Huang, Seyed Reza Elmi Hosseini, and Zhuguo Li. "Characterization of heat affected zone liquation cracking in laser additive manufacturing of Inconel 718." Materials & Design 90 (January 2016): 586–94. http://dx.doi.org/10.1016/j.matdes.2015.10.155.
Full textKazempour-Liasi, Hassan, Mohammad Tajally, and Hassan Abdollah-Pour. "Liquation cracking in the heat-affected zone of IN939 superalloy tungsten inert gas weldments." International Journal of Minerals, Metallurgy and Materials 27, no. 6 (2020): 764–73. http://dx.doi.org/10.1007/s12613-019-1954-y.
Full textLi, Shanlin, Kejian Li, Mengjia Hu, Yao Wu, Zhipeng Cai, and Jiluan Pan. "The Mechanism for HAZ Liquation of Nickel-Based Alloy 617B During Gas Tungsten Arc Welding." Metals 10, no. 1 (2020): 94. http://dx.doi.org/10.3390/met10010094.
Full textKarthik, G. M., G. D. Janaki Ram, and Ravi Sankar Kottada. "Heat-Affected Zone Liquation Cracking Resistance of Friction Stir Processed Aluminum-Copper Alloy AA 2219." Metallurgical and Materials Transactions B 48, no. 2 (2016): 1158–73. http://dx.doi.org/10.1007/s11663-016-0892-6.
Full textBaeslack, W. A., S. J. Savage, and F. H. Froes. "Laser-weld heat-affected zone liquation and cracking in a high-strength Mg-based alloy." Journal of Materials Science Letters 5, no. 9 (1986): 935–39. http://dx.doi.org/10.1007/bf01729281.
Full textSasabe, Seiji. "Effect of Mn on welding liquation micro-cracking in heat affected zone of 6082 aluminum alloy." Journal of Japan Institute of Light Metals 60, no. 5 (2010): 213–19. http://dx.doi.org/10.2464/jilm.60.213.
Full textOjo, O. A., and M. C. Chaturvedi. "Liquation Microfissuring in the Weld Heat-Affected Zone of an Overaged Precipitation-Hardened Nickel-Base Superalloy." Metallurgical and Materials Transactions A 38, no. 2 (2007): 356–69. http://dx.doi.org/10.1007/s11661-006-9025-1.
Full textChang, Baohua, Shuo Yang, Guan Liu, Wangnan Li, Dong Du, and Ninshu Ma. "Influences of Cooling Conditions on the Liquation Cracking in Laser Metal Deposition of a Directionally Solidified Superalloy." Metals 10, no. 4 (2020): 466. http://dx.doi.org/10.3390/met10040466.
Full textOjo, O. A. "Intergranular liquation cracking in heat affected zone of a welded nickel based superalloy in as cast condition." Materials Science and Technology 23, no. 10 (2007): 1149–55. http://dx.doi.org/10.1179/174328407x213323.
Full textIlyushenko, R., and V. Nesterenkov. "Novel Technique for Joining of Thick Section Difficult-to-Weld Aluminium Alloys." Materials Science Forum 519-521 (July 2006): 1125–30. http://dx.doi.org/10.4028/www.scientific.net/msf.519-521.1125.
Full textZiewiec, A. "Study of the Weldability of Austenitic PH Steel for Power Plants." Archives of Metallurgy and Materials 61, no. 2 (2016): 1109–14. http://dx.doi.org/10.1515/amm-2016-0186.
Full textOla, Oyedele T., Olanrewaju A. Ojo, Priti Wanjara, and Mahesh C. Chaturvedi. "Crack-Free Welding of IN 738 by Linear Friction Welding." Advanced Materials Research 278 (July 2011): 446–53. http://dx.doi.org/10.4028/www.scientific.net/amr.278.446.
Full textVanek, J. "Evaluation of the liquation cracking susceptibility of the heat affected zone of fully austenitic Ni-Fe-Cr alloys." Welding International 4, no. 3 (1990): 241–43. http://dx.doi.org/10.1080/09507119009447716.
Full textRadhakrishnan, B., and R. G. Thompson. "The effect of weld Heat-Affected zone (HAZ) liquation kinetics on the hot cracking susceptibility of alloy 718." Metallurgical and Materials Transactions A 24, no. 6 (1993): 1409–22. http://dx.doi.org/10.1007/bf02668209.
Full textYan, Fei, Sang Liu, Chongjing Hu, Chunming Wang, and Xiyuan Hu. "Liquation cracking behavior and control in the heat affected zone of GH909 alloy during Nd: YAG laser welding." Journal of Materials Processing Technology 244 (June 2017): 44–50. http://dx.doi.org/10.1016/j.jmatprotec.2017.01.018.
Full textLI, Zhuoxin. "Progress on Effect of Processes and Microelements on Liquation Cracking of Weld Heat-affected Zone of Nickel-based Alloy." Journal of Mechanical Engineering 52, no. 6 (2016): 37. http://dx.doi.org/10.3901/jme.2016.06.037.
Full textKarthik, G. M., G. D. Janaki Ram, and Ravi Sankar Kottada. "Use of Friction Stir Processing for Improving Heat-Affected Zone Liquation Cracking Resistance of a Cast Magnesium Alloy AZ91D." Metallurgical and Materials Transactions B 48, no. 6 (2017): 3270–80. http://dx.doi.org/10.1007/s11663-017-1100-z.
Full textHong, Hyun Uk, In Soo Kim, Baig Gyu Choi, et al. "The Potential of HAZ Property Improvement through Control of Grain Boundary Character in a Wrought Ni-Based Superalloy." Materials Science Forum 654-656 (June 2010): 488–91. http://dx.doi.org/10.4028/www.scientific.net/msf.654-656.488.
Full textK, RamReddy, Nandha Kumar E, Jeyaraam R., Janaki Ram G.D., and Subramanya Sarma V. "Effect of grain boundary character distribution on weld heat-affected zone liquation cracking behavior of AISI 316Ti austenitic stainless steel." Materials Characterization 142 (August 2018): 115–23. http://dx.doi.org/10.1016/j.matchar.2018.05.020.
Full textBai, Guanshun, Yiyi Li, and Shanping Lu. "Localized Liquation and Resultant Pitting Corrosion Behavior of Welding Coarse-Grained Heat-Affected Zone in Niobium-Stabilized Austenitic Stainless Steel." Journal of The Electrochemical Society 165, no. 11 (2018): C722—C731. http://dx.doi.org/10.1149/2.0091811jes.
Full textHong, Hyun Uk, In Soo Kim, Baig Gyu Choi, Young Soo Yoo, and Chang Yong Jo. "On the Role of Grain Boundary Serration in Simulated Weld Heat-Affected Zone Liquation of a Wrought Nickel-Based Superalloy." Metallurgical and Materials Transactions A 43, no. 1 (2011): 173–81. http://dx.doi.org/10.1007/s11661-011-0837-2.
Full textFunamoto, Takao, Mitsuo Kato, Tomohiko Shida, Satoshi Kokura, Hisanao Kita, and Takamitsu Nakazaki. "Welding of non magnetic steel. (Report 4). Mechanism of grain boundary liquation in weld heat-affected zone of 14% Mn steel." QUARTERLY JOURNAL OF THE JAPAN WELDING SOCIETY 7, no. 1 (1989): 88–93. http://dx.doi.org/10.2207/qjjws.7.88.
Full textHsieh, Rong-Iuan, Shyi-Chin Wang, and Horng-Yih Liou. "A study on the formation of liquation cracks in the weld heat-affected zone of HY-80 quenched and tempered steel." Journal of Materials Science 29, no. 9 (1994): 2328–34. http://dx.doi.org/10.1007/bf00363422.
Full textGuo, H., M. C. Chaturvedi, N. L. Richards, and G. S. McMahon. "Interdependence of character of grain boundaries, intergranular segregation of boron and grain boundary liquation in simulated weld heat-affected zone in inconel 718." Scripta Materialia 40, no. 3 (1999): 383–88. http://dx.doi.org/10.1016/s1359-6462(98)00427-8.
Full textLuo, X., S. Yoshihara, K. Shinozaki, H. Kuroki, and M. Shirai. "Theoretical analysis of grain boundary liquation in heat affected zone of Inconel 718 alloy. Study of laser weldability of Ni‐base superalloys (3rdReport)." Welding International 14, no. 11 (2000): 865–73. http://dx.doi.org/10.1080/09507110009549284.
Full textHong, Hyun-Uk, June-Woo Choi, Sang-Hyun Bae, et al. "Effects of Serrated Grain Boundary Structures on Boron Enrichment and Liquation Cracking Behavior in the Simulated Weld Heat-Affected Zone of a Ni-Based Superalloy." Journal of the Korean Welding and Joining Society 31, no. 3 (2013): 31–38. http://dx.doi.org/10.5781/kwjs.2013.31.3.31.
Full textOla, O. T., O. A. Ojo, and M. C. Chaturvedi. "On the development of a new pre-weld thermal treatment procedure for preventing heat-affected zone (HAZ) liquation cracking in nickel-base IN 738 superalloy." Philosophical Magazine 94, no. 29 (2014): 3295–316. http://dx.doi.org/10.1080/14786435.2014.956838.
Full textLertora, Enrico, Chiara Mandolfino, and Carla Gambaro. "Mechanical Behaviour of Inconel 718 Thin-Walled Laser Welded Components for Aircraft Engines." International Journal of Aerospace Engineering 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/721680.
Full textSwathi Kiranmayee, M., Abhay Kumar Jha, Sushant K. Manwatkar, P. Ramesh Narayanan, K. Sreekumar, and Parameshwar Prasad Sinha. "Microstructural Characterisation of AA2219 Weldments." Materials Science Forum 710 (January 2012): 638–43. http://dx.doi.org/10.4028/www.scientific.net/msf.710.638.
Full textKhalil, Asmaa M., Irina S. Loginova, Andrey V. Pozdniakov, Ahmed O. Mosleh, and Alexey N. Solonin. "Evaluation of the Microstructure and Mechanical Properties of a New Modified Cast and Laser-Melted AA7075 Alloy." Materials 12, no. 20 (2019): 3430. http://dx.doi.org/10.3390/ma12203430.
Full textdu Toit, Madeleine, Patronica Letsoalo, and Heinrich Möller. "Fusion Welding of Rheocast Semi-Solid Metal (SSM) Processed Aluminium Alloy 7017." Solid State Phenomena 192-193 (October 2012): 161–66. http://dx.doi.org/10.4028/www.scientific.net/ssp.192-193.161.
Full textAcoff, V. L., R. D. Griffin, and R. G. Thompson. "Characterization of constitutional liquid-film migration in Alloy 718." Proceedings, annual meeting, Electron Microscopy Society of America 52 (1994): 906–7. http://dx.doi.org/10.1017/s0424820100172267.
Full textLi, Qiuge, Xin Lin, Xinghua Wang, Haiou Yang, Menghua Song, and Weidong Huang. "Research on the Grain Boundary Liquation Mechanism in Heat Affected Zones of Laser Forming Repaired K465 Nickel-Based Superalloy." Metals 6, no. 3 (2016): 64. http://dx.doi.org/10.3390/met6030064.
Full textGuo, Shaoqing, and Xiaohong Li. "Numerical simulation of the liquating behavior of niobium carbide in heat-affected-zone during welding of a superalloy." Frontiers of Materials Science in China 1, no. 2 (2007): 203–9. http://dx.doi.org/10.1007/s11706-007-0036-7.
Full textZhou, Wei, Aprilia Aprilia, and Chee Kong Mark. "Mechanisms of Cracking in Laser Welding of Magnesium Alloy AZ91D." Metals 11, no. 7 (2021): 1127. http://dx.doi.org/10.3390/met11071127.
Full textLi, Huaxin, and T. K. Chaki. "Cracking in the Weld Heat-Affected Zone of COntinuously Cast Sheet and Ingot of Ni3Al." MRS Proceedings 213 (1990). http://dx.doi.org/10.1557/proc-213-919.
Full text