Academic literature on the topic 'Heat calculation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Heat calculation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Heat calculation"
LUKS, Alexander L., Andrey G. MATVEEV, and Danila V. ZELENTSOV. "METHOD FOR CALCULATING HEAT PIPES THAT DIVERT HEAT FROM THE HEAT-EMITTING SURFACE." Urban construction and architecture 8, no. 1 (March 15, 2018): 35–39. http://dx.doi.org/10.17673/vestnik.2018.01.6.
Full textDobáková, Romana, Natália Jasminská, Tomáš Brestovič, Marian Lazár, and Jiří Marek. "Heat exchange on the outside of the pipe when heat is distributed by heat networks." International Journal for Innovation Education and Research 5, no. 9 (September 30, 2017): 82–87. http://dx.doi.org/10.31686/ijier.vol5.iss9.807.
Full textHan, Wei Min, Yan Zhou, Heng Liang Zhang, and Dan Mei Xie. "The Research on Heat Transfer Coefficient of Wheel Rims of Large Capacity Steam Turbines." Advanced Materials Research 744 (August 2013): 100–104. http://dx.doi.org/10.4028/www.scientific.net/amr.744.100.
Full textIlyin, A. A., and V. I. Merkulov. "Optimization of heat exchanger heat transfer surface of the engine with external heat supply." Izvestiya MGTU MAMI 8, no. 4-1 (February 20, 2014): 19–22. http://dx.doi.org/10.17816/2074-0530-67631.
Full textWang, Ya Li, Su Ping Cui, Gui Ping Tian, Ming Zhang Lan, and Zhi Hong Wang. "Theoretical Calculation and Experimental Study on the Forming Heat of Cement Clinker Made from Steel Slag." Materials Science Forum 814 (March 2015): 564–68. http://dx.doi.org/10.4028/www.scientific.net/msf.814.564.
Full textLiu, Jie, Shuang Xi Zhang, and Yu Feng He. "Investigation on Double-Tube Copper-Aluminum Column-Wing Type Radiators." Advanced Materials Research 243-249 (May 2011): 4883–86. http://dx.doi.org/10.4028/www.scientific.net/amr.243-249.4883.
Full textFaizullin, R. O., V. Y. Zakharova, and A. V. Baranenko. "Numerical simulation of processes in the latent-heat thermal energy storage tank." IOP Conference Series: Earth and Environmental Science 866, no. 1 (October 1, 2021): 012036. http://dx.doi.org/10.1088/1755-1315/866/1/012036.
Full textBacon, Sheldon, and Nick Fofonoff. "Oceanic Heat Flux Calculation." Journal of Atmospheric and Oceanic Technology 13, no. 6 (December 1996): 1327–29. http://dx.doi.org/10.1175/1520-0426(1996)013<1327:ohfc>2.0.co;2.
Full textZhu, Dan, and Peng Yun Song. "The Calculation Methods of the Heat Balance for Recovering the Vaporous Water from Exhaust Gas in Ammonium Phosphate Production." Advanced Materials Research 881-883 (January 2014): 649–52. http://dx.doi.org/10.4028/www.scientific.net/amr.881-883.649.
Full textXue, Jia Xing, Zhou Wei Zhang, and Ya Hong Wang. "Research on Double-Stream Coil-Wound Heat Exchanger." Applied Mechanics and Materials 672-674 (October 2014): 1485–95. http://dx.doi.org/10.4028/www.scientific.net/amm.672-674.1485.
Full textDissertations / Theses on the topic "Heat calculation"
Siqueira, Sunni Ann. "Calculation of Time-Dependent Heat Flow in a Thermoelectric Sample." ScholarWorks@UNO, 2012. http://scholarworks.uno.edu/honors_theses/24.
Full textEriksen, Håkon. "Development of Calculation Model for Heat Exchangers in Subsea Systems." Thesis, Norwegian University of Science and Technology, Department of Energy and Process Engineering, 2010. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9115.
Full textSubsea processing can make production from otherwise unprofitable fields profitable. In subsea processing controlled cooling of the process fluid will often be required. Robust and simple solutions are desirable in subsea processing. Coolers that rely on natural convection from the surrounding seawater are therefore interesting, but control of the process fluid outlet temperature is hard to obtain in such coolers. In this study a calculation model for subsea coolers has been developed. The commercial software MATLAB has been used for developing a program. Heat transfer and frictional pressure drop correlations have been studied and recommendations are made for the model. The model is based on tubes in parallel, and the tubes can be oriented vertically or horizontally. The program allows for open, semi-open and closed arrangements on the waterside, and both natural and forced convection is implemented. The program has been tested through simulations of two test cases and found to be performing as desired.
Dahlqvist, Johan. "Impulse Turbine Efficiency Calculation Methods with Organic Rankine Cycle." Thesis, KTH, Kraft- och värmeteknologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-104174.
Full textSeletskaia, Tatiana. "Calculation of thermal expansion of iron-aluminides with transition metal additives." Morgantown, W. Va. : [West Virginia University Libraries], 2002. http://etd.wvu.edu/templates/showETD.cfm?recnum=2684.
Full textTitle from document title page. Document formatted into pages; contains vi, 103 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references.
Harris, J. B. "Calculation of convective heat transfer rates in geometries relating to nuclear reactor safety research." Thesis, University of Exeter, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.377312.
Full textBezuidenhout, Johannes Jurie. "Convective heat flux determination using surface temperature history measurements and an inverse calculation method." Thesis, Virginia Tech, 2000. http://hdl.handle.net/10919/35706.
Full textThe objective of this study is therefore to develop a cost-effective single gage that can be used to measure both skin friction and heat flux. The method proposed in this study is to install a coaxial thermocouple into an existing skin friction gage to measure the unsteady temperature on the surface of the gage. By using the temperature history and a computer program the heat flux through the surface can be obtained through an iterative guessing method. To ensure that the heat flux through the gage is similar to the heat flux through the rest of the surface, the gage is manufactured of a material very similar to the rest of the surface.
Walker developed a computer program capable of predicting the heat flux through a surface from the measured surface temperature history. The program is based on an inverse approach to calculate the heat flux through the surface. The biggest advantages of this method are its stability and the small amount of noise induced into the system. The drawback of the method is that it is limited to semi-infinite objects. For surfaces with a finite thickness, a second thermocouple was installed into the system some distance below the first thermocouple. By modifying the computer program these two unsteady temperatures can be used to predict the heat flux through a surface of finite thickness.
As part of this study, the effect of noise induced by the Cook-Felderman technique, found in the literature were investigated in detail and it was concluded that the method proposed in this study is superior to this Cook-Felderman method. Heat flux measurements compared well with measurements recorded with heat flux gages. In all cases evaluated the difference was less than 20%. It can therefore be concluded that heat flux gages on their own can measure surface heat flux very accurately. These gages are however too large to install in a skin-friction gage. The method introduced in this study is noisier than the heat flux gages on their own, but the size which is very important, is magnitudes smaller when using a coaxial thermocouple, to measure the surface temperature history.
Master of Science
Divi, Suresh Chandra. "Heat capacity measurements of pure and binary organic "plastic crystal" thermal energy storage materials and calculation of excess molar heat capacities." abstract and full text PDF (free order & download UNR users only), 2005. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1433411.
Full textFinkbeiner, David L. "Calculation of gas-wall heat transfer from pressure and volume data for spaces with inflow and outflow." Thesis, This resource online, 1994. http://scholar.lib.vt.edu/theses/available/etd-12042009-020320/.
Full textBirhanzl, Petr. "Klimatizace administrativní budovy." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2011. http://www.nusl.cz/ntk/nusl-229905.
Full textWANG, DIYUE. "A Numerical Calculation Tool Design for the Performance Assessment of a Bench-Scale Thermochemical Heat Storage System." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-288527.
Full textTermokemisk energilagring (TCS) är en teknik som omvandlar värme och kyla till kemisk energi via reversibla kemiska reaktioner, som ska lagras för uppvärmning och kylning. Intresset för TCS-teknik ökar idag för sin mycket kompakta energilagringstäthet som erbjuder ett attraktivt alternativ för termiskenergilagring (TES) för att minska energirelaterade växthusgasutsläpp (GHG) och bidra till hållbar utveckling. Denna avhandling är en del av paraplyprojektet ”neutroner för värmelagring (NHS)”, finansierat av Nordforsk. Målet med NHS-projektet vid KTH är att designa, konstruera och driva ett TCS-system i bänksala med strontiumklorid (SrCl2) och ammoniak (NH3) som reaktionspar för fast-gas reaktion för värmelagringsapplikationer vid låg temperatur (40-80℃). Detta system har därmed numeriskt utformats och anpassats till praktiska användningsområden och byggs nu på institutionen för Energiteknik på KTH. Med denna bakgrund utformar detta projekt som sitt primära mål, ett beräkningsverktyg för att utvärdera den experimentella prestandan för det ovan beskrivna TCS-systemet i bänkskala. En grundlig förklaring av metoden presenteras här, inklusive förberedning av kompositerna (SrCl2 impregnerat i en expanderad naturlig grafit) samt systemets riskanalys. Kritiskt fokus ligger på systemens prestandaparametrar och den matematiska utformningen av beräkningsverktyget. En genomgång av relevant litteratur genomfördes också för att identifiera de mest relevanta parametrarna. Med hänsyn till användarvänlighet, enkelhet och effektivitet, är beräkningsverktyget utformat med hjälp av Excel. Här väljs energieffektivitet, reaktionsprogression, förändring av reaktionsprogression, den verkliga termiska energidensiteten per massa och praktisk termisk energitäthet per volym som parametrar för att bäst representera systemets prestanda (dvs Key Performance Indicators (KPIs)). Dessa KPIs beräknades främst baserat på massbalans och energibalansuttryck. Med hjälp av detta beräkningsverktyg för detta TCS-systemet på bänkskala kan användaren visualisera den erhållna experimentella datan, beräkna de definierade KPI:erna för systemet och hitta potentialen att förbättra det nuvarande systemet. En mängd testdata antogs (genom att hänvisa till reaktionens jämviktskurva, vilket säkerställer att de faller inom realistiska experimentförhållanden) för att kontrollera beräkningsverktygets noggrannhet och funktion. På grund av avsaknaden av experimentella data är resultaten av testdata inte optimala. Men med hjälp av den antagna testdatan är det bevisat att beräkningsverktyget fungerar korrekt. Beräkningen kan avslutas efter några minuter, vilket sparar mycket tid som annars krävs för dataanalysen efter experimenten. Det fungerar också som en testmodell för att analysera experimentdata. Sammanfattningsvis utformade och presenterade detta projekt ett fungerande beräkningsverktyg för att utvärdera experimentella prestanda för ett experimentellt TCS-system på bänkskala (byggs och tas i drift vid KTH) för reaktionen mellan SrCl2 och NH3. Några förslag relaterade till framtida förbättringar föreslås också. Beräkningsverktyget är till exempel inte helt automatiserat eftersom det behöver manuell inmatning vid specifika punkter. Därför är en av de framtida uppgifterna att lägga till förmågan att identifiera reaktionstrycket mot temperaturkurvan i förhållande till jämvikten och att definiera om processen är absorption eller desorption automatiskt. För närvarande används mycket elektrisk utrustning i systemet vilket minskar systemets hållbarhet, medan systemet i framtiden kan förbättras. Systemets exergiprestanda analyseras inte i rapporten, vilket kan lämnas för framtida arbete.
Books on the topic "Heat calculation"
Künzel, Hartwig M. Simultaneous heat and moisture transport in building components: One- and two-dimensional calculation using simple parameters. Stuttgart: IRB Verlag, 1995.
Find full textFerris, J. M. LIMNO/2: A BASIC program for calculation of whole lake stability, heat content, and volume-weighted averages of oxygen concentration and salinity. Kingston, Tas., Australia: Antarctic Division, Dept. of the Arts, Sport, the Environment, Tourism, and Territories, 1989.
Find full textMarsh, Charles P. Boiling manhole heat-loss calculations. [Champaign, IL]: US Army Corps of Engineers, Construction Engineering Research Laboratories, 1998.
Find full textCroft, D. R. Heat transfer calculations using finite difference equations. Sheffield: PAVIC Publications, 1989.
Find full textStanderfer, Stan. Thermal insulation calculations for plant process engineers. Hermiston, Or: Stan Standerfer, 1993.
Find full textBaylon, David. Super good cents heat loss reference: Heat loss assumptions and calculations. Seattle, WA: Ecotope, 1988.
Find full textInternational, Conference on Numerical Methods in Thermal Problems (5th 1987 Montreal Canada). Numerical methods in thermal problems: Proceedings of the fifth international conference held in Montreal, Canada on June 29th-July 3rd, 1987. Swansea: Pineridge, 1987.
Find full textW, Lewis R., and Morgan K. 1945-, eds. Numerical methods in thermal problems: Proceedings of the Sixth International Conference held in Swansea, U.K. on July 3rd-July 7th, 1989. Swansea: Pineridge, 1989.
Find full textProterma, Ltd. Manual for calculating CHP electricity and heat. Helsinki, Fi: Proterma, Ltd., 2000.
Find full textDavis, Bob. Manufactured homes acquisition program: Heat loss assumptions, calculations, and heat loss coefficient tables. Seattle, WA: Ecotope, Inc., 1992.
Find full textBook chapters on the topic "Heat calculation"
Duchemin, B., and C. Nordborg. "Decay Heat Calculation." In Nuclear Data for Science and Technology, 556–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-58113-7_159.
Full textKoelet, P. C., and T. B. Gray. "The Heat Load Calculation." In Industrial Refrigeration, 374–83. London: Macmillan Education UK, 1992. http://dx.doi.org/10.1007/978-1-349-11433-7_11.
Full textKleiber, Michael, and Ralph Joh. "D1 Calculation Methods for Thermophysical Properties." In VDI Heat Atlas, 119–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-77877-6_10.
Full textKochnev, I., S. Kondakov, and G. Lomakin. "Recuperative Heat Exchanger Calculation Method." In Lecture Notes in Mechanical Engineering, 198–204. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-54814-8_24.
Full textWickström, Ulf. "Heat Transfer by Radiation." In Temperature Calculation in Fire Safety Engineering, 65–87. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30172-3_5.
Full textWickström, Ulf. "Heat Transfer by Convection." In Temperature Calculation in Fire Safety Engineering, 89–105. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30172-3_6.
Full textNagnibeda, Ekaterina, and Elena Kustova. "Algorithms for the Calculation of Transport Coefficients." In Heat and Mass Transfer, 111–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01390-4_6.
Full textWickström, Ulf. "Measurements of Temperature and Heat Flux." In Temperature Calculation in Fire Safety Engineering, 133–51. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30172-3_9.
Full textShang, De-Yi, and Liang-Cai Zhong. "Calculation Examples on Heat Transfer by Using Conversion Formulae." In Heat and Mass Transfer, 173–88. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94403-6_14.
Full textShang, De-Yi, and Liang-Cai Zhong. "Calculation Examples by Using the Predictive Formulae on Heat Transfer." In Heat and Mass Transfer, 121–38. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94403-6_10.
Full textConference papers on the topic "Heat calculation"
Novomestský, Marcel, Andrej Kapjor, Štefan Papučík, and Ján Siažik. "Heat pipe thermosyphon heat performance calculation." In THE APPLICATION OF EXPERIMENTAL AND NUMERICAL METHODS IN FLUID MECHANICS AND ENERGY 2016: XX. Anniversary of International Scientific Conference. AIP Publishing LLC, 2016. http://dx.doi.org/10.1063/1.4953731.
Full textKarmanov, F. I., A. A. Travleev, L. N. Latysheva, and M. Vecchi. "Heat Deposit Calculation in Spallation Unit." In Proceedings of the Conference “Bologna 2000: Structure of the Nucleus at the Dawn of the Century”. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812810922_0074.
Full textTian, Weixue, and Wilson K. S. Chiu. "Calculation of Direct Exchange Areas for Non-Uniform Zones." In ASME 2003 Heat Transfer Summer Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/ht2003-47479.
Full textChew, P. E., and D. R. Atthey. "Calculation of High Temperature Regenerative Heat Exchangers." In Advanced Course in High Temperature Equipment. Connecticut: Begellhouse, 1986. http://dx.doi.org/10.1615/ichmt.1986.advcoursehightempeq.40.
Full textHeggs, Peter J. "Calculation of High Temperature Regenerative Heat Exchangers." In Advanced Course in High Temperature Equipment. Connecticut: Begellhouse, 1986. http://dx.doi.org/10.1615/ichmt.1986.advcoursehightempeq.50.
Full textAhmed, Ikram, and Ildar Sabirov. "Inverse Calculation of Flame Impingement Heat Transfer." In ASME 2006 2nd Joint U.S.-European Fluids Engineering Summer Meeting Collocated With the 14th International Conference on Nuclear Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/fedsm2006-98450.
Full textChulenyov, A. "Calculation of Heat Transfer in Condensing Boilers." In 2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). IEEE, 2019. http://dx.doi.org/10.1109/fareastcon.2019.8934299.
Full textWu, Yanmei, Junchang Li, and Yunchang Fu. "Approximate calculation of pulse laser heat treatment." In Photonics Asia 2010, edited by Upendra N. Singh, Dianyuan Fan, Jianquan Yao, and Robert F. Walter. SPIE, 2010. http://dx.doi.org/10.1117/12.871376.
Full textTsygankov, A. V., O. V. Dolgovskaia, Y. L. Kuznetsov, and A. S. Shilin. "Hydrodynamic calculation of rotary regenerative heat exchanger." In OIL AND GAS ENGINEERING (OGE-2018). Author(s), 2018. http://dx.doi.org/10.1063/1.5051881.
Full textHrbek, Jan, Igor Poznyak, and Jan Uher. "Calculation of heat flux through calorimeter wall." In 17TH CONFERENCE OF POWER SYSTEM ENGINEERING, THERMODYNAMICS AND FLUID MECHANICS. Author(s), 2018. http://dx.doi.org/10.1063/1.5081638.
Full textReports on the topic "Heat calculation"
Bojanowski, Cezary, and Aurelien Bergeron. Influence of Multi-Dimension Heat Conduction on Heat Flux Calculation for HFIR LEU Analysis. Office of Scientific and Technical Information (OSTI), September 2017. http://dx.doi.org/10.2172/1463238.
Full textPlodinec, M. J. Method of calculation of heat generation rates for DWPF glass. Office of Scientific and Technical Information (OSTI), March 1992. http://dx.doi.org/10.2172/7025424.
Full textWorley, B. A., R. Q. Wright, and F. G. Pin. Finite-line heat transfer code with automated sensitivity-calculation capability. Office of Scientific and Technical Information (OSTI), September 1986. http://dx.doi.org/10.2172/5120612.
Full textPlodinec, M. J. Method of calculation of heat generation rates for DWPF glass. Office of Scientific and Technical Information (OSTI), February 1993. http://dx.doi.org/10.2172/6593562.
Full textPlodinec, M. J. Method of calculation of heat generation rates for DWPF glass. Revision 2. Office of Scientific and Technical Information (OSTI), February 1993. http://dx.doi.org/10.2172/10151234.
Full textPlodinec, M. J. Method of calculation of heat generation rates for DWPF glass. Revision 1. Office of Scientific and Technical Information (OSTI), March 1992. http://dx.doi.org/10.2172/10190215.
Full textChoi, A. S. Calculation of DWPF Canister Decay Heat for Sludge Macro-Batches 1B to 9. Office of Scientific and Technical Information (OSTI), April 1999. http://dx.doi.org/10.2172/6756.
Full textLan, J. S. Spent Nuclear Fuel project photon heat deposition calculation for hygrogen generation within MCO. Office of Scientific and Technical Information (OSTI), August 1996. http://dx.doi.org/10.2172/658111.
Full textVeynandt, François, Thomas Ramschak, Yoann Louvet, Michael Köhl, and Stephan Fischer. INFO Sheet A13: LCoH calculation method: comparison between Task 54 and Solar Heat WorldWide. IEA SHC Task 54, November 2017. http://dx.doi.org/10.18777/ieashc-task54-2017-0012.
Full textBell, J., and L. Hand. Calculation of Mass Transfer Coefficients in a Crystal Growth Chamber through Heat Transfer Measurements. Office of Scientific and Technical Information (OSTI), April 2005. http://dx.doi.org/10.2172/918405.
Full text