Academic literature on the topic 'Heat Climatology. Terrestrial heat flow'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Heat Climatology. Terrestrial heat flow.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Heat Climatology. Terrestrial heat flow"
Čermák, V., M. Krešl, J. Šafanda, L. Bodri, M. Nápoles-Pruna, and R. Tenreyro-Perez. "Terrestrial heat flow in Cuba." Physics of the Earth and Planetary Interiors 65, no. 3-5 (January 1991): 207–9. http://dx.doi.org/10.1016/0031-9201(91)90128-5.
Full textHart, S. R., J. S. Steinhart, and T. J. Smith. "Terrestrial heat flow in Lake Superior." Canadian Journal of Earth Sciences 31, no. 4 (April 1, 1994): 698–708. http://dx.doi.org/10.1139/e94-062.
Full textVacquier, Victor. "The origin of terrestrial heat flow." Geophysical Journal International 106, no. 1 (July 1991): 199–202. http://dx.doi.org/10.1111/j.1365-246x.1991.tb04611.x.
Full textLister, Clive. "Terrestrial heat flow and lithosphere structure." Eos, Transactions American Geophysical Union 68, no. 39 (1987): 775. http://dx.doi.org/10.1029/eo068i039p00775-02.
Full textLysak, S. V. "Terrestrial heat flow of continental rifts." Tectonophysics 143, no. 1-3 (November 1987): 31–41. http://dx.doi.org/10.1016/0040-1951(87)90076-x.
Full textVacquier, Victor. "Corrigendum to ‘Origin of terrestrial heat flow‘." Geophysical Journal International 111, no. 3 (December 1992): 637–38. http://dx.doi.org/10.1111/j.1365-246x.1992.tb02118.x.
Full textBallard, Sanford, Henry N. Pollack, and Neville J. Skinner. "Terrestrial heat flow in Botswana and Namibia." Journal of Geophysical Research 92, B7 (1987): 6291. http://dx.doi.org/10.1029/jb092ib07p06291.
Full textLee, Tien-Chang. "On terrain corrections in terrestrial heat flow." Pure and Applied Geophysics PAGEOPH 135, no. 1 (January 1991): 1–13. http://dx.doi.org/10.1007/bf00877005.
Full textCermak, Vladimir. "Terrestrial heat flow and geothermal energy in Asia." Journal of Volcanology and Geothermal Research 74, no. 3-4 (December 1996): 324–25. http://dx.doi.org/10.1016/s0377-0273(97)88030-4.
Full textPollack, H. N. "Terrestrial heat flow and geothermal energy in Asia." Tectonophysics 269, no. 3-4 (February 1997): 345–46. http://dx.doi.org/10.1016/s0040-1951(96)00155-2.
Full textDissertations / Theses on the topic "Heat Climatology. Terrestrial heat flow"
MacKay, Robert Malcolm. "The Oregon Graduate Institute one dimensional time-dependent radiative convective model : theory and application /." Full text open access at:, 1990. http://content.ohsu.edu/u?/etd,202.
Full textForster, Craig Burton. "Interaction of groundwater flow systems and thermal regimes in mountainous terrain : a numerical study." Thesis, University of British Columbia, 1987. http://hdl.handle.net/2429/27300.
Full textScience, Faculty of
Earth, Ocean and Atmospheric Sciences, Department of
Graduate
Wilson, N. P. "Thermal studies in sedimentary basins." Thesis, University of Cambridge, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.383208.
Full textLapham, Wayne Wright, and Wayne Wright Lapham. "Conductive and convective heat transfer in sediments near streams." Diss., The University of Arizona, 1988. http://hdl.handle.net/10150/191144.
Full textAbareshi, Behzad. "Sensible heat flux estimation over a prairie grassland by neural networks." Thesis, McGill University, 1996. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=23765.
Full textMbandezi, Mxolisi Louis. "Finite element simulations of shear aggregation as a mechanism to form platinum group elements (PGEs) in dyke-like ore bodies." Thesis, Rhodes University, 2002. http://hdl.handle.net/10962/d1018249.
Full textCheng, Li Zhen. "Interprétation des données de flux de chaleur et de gravité dans le Bouclier Canadien /." Thèse, Montréal : Chicoutimi : Université du Québec à Montréal ;. Université du Québec à Chicoutimi, 1999. http://theses.uqac.ca.
Full textKlepikova, Maria. "Imaging of fractured rock properties from flow and heat transport : field experiments and inverse modelling." Phd thesis, Université Rennes 1, 2013. http://tel.archives-ouvertes.fr/tel-00865302.
Full textCaramori, Paulo Henrique. "Structural analysis of airborne flux traces and their link to remote sensing of vegetation and surface temperature." Thesis, McGill University, 1992. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=41012.
Full textBarbier, Benjamin. "Bilan thermique et caractérisation géochimique de l'activité hydrothermale du volcan Rinjani, Lombok, Indonésie." Doctoral thesis, Universite Libre de Bruxelles, 2010. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210140.
Full textLes sources thermales situées autour du Gunung Baru (cône volcanique situé dans la caldera) ont une composition chimique en éléments majeurs et une composition isotopique proche de celles du lac volcanique indiquant qu’elles sont essentiellement le résultat du recyclage du lac par le système hydrothermal. Les variations de compositions entre les différentes sources ont permis de montrer que leurs compositions est le résultat du mélange entre un fluide hydrothermal profond de composition neutre chlorure, dont la température a été estimée à 270°C, et d’un fluide plus superficiel riche en magnésium et en sulfate.
Le flux de dioxyde de carbone à la surface du lac a été estimé à l’aide de la méthode de la chambre d’accumulation et par calcul à environ 2300 t/j, ce qui représente un apport significatif de gaz. Cependant, comme le lac présente une structure polymictique, le risque d’accumulation de dioxyde de carbone en profondeur et donc d’éruption limnique peut être exclus.
Pour la première fois dans cette thèse, le modèle d’estimation des flux thermiques émis par les lacs volcaniques mis au point par Stevenson (1992) a été contraint par des mesures des paramètres météorologiques mesurés en continu, ce qui a permis de valider le modèle. De plus, nous avons pu montrer que l’essentiel des variations de températures des lacs volcaniques est dû à des variations météorologiques. En utilisant le flux thermique plutôt que la température, il est dès lors possible d’avoir accès à des variations de l’activité volcanique.
Le flux thermique estimé pour le lac du Rinjani est de 1700 MW, ce qui représente le flux le plus élevé jamais mesuré sur un lac volcanique aérien. Ce flux thermique est aussi plus élevé que le flux thermique mesuré sur des lacs de lave à 800°C. Ce paradoxe apparent s’explique par la plus grande dimension des lacs volcaniques, la capacité calorifique de l’eau quatre fois plus importante que celle du magma et la viscosité de l’eau 1 million de fois inférieure, ce qui fait de l’eau un excellent fluide caloporteur pour transporter les calories vers la surface.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Books on the topic "Heat Climatology. Terrestrial heat flow"
Jones, M. Q. W. Heat flow in South Africa. Pretoria, Republic of South Africa: Dept. of Mineral and Energy Affairs, Geological Survey, 1992.
Find full textMaj, Sławomir. A parabolic relation between the surface heat flow and radiogenic heat production for heat flow provinces. Warszawa: Państwowe Wydawn. Nauk., 1987.
Find full textČermák, Vladimír, and Ladislaus Rybach, eds. Terrestrial Heat Flow and the Lithosphere Structure. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-75582-8.
Full textHaenel, R., L. Rybach, and L. Stegena, eds. Handbook of Terrestrial Heat-Flow Density Determination. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2847-3.
Full textJones, M. Q. W. Report on heat flow measurements made during 1987. Pretoria: Geological Survey, Dept. of Mineral and Energy Affairs, Republic of South Africa, 1988.
Find full textSorey, M. L. Measurements of heat and mass flow from thermal areas in Lassen Volcanic National Park, California, 1984-93. Menlo Park, Calif: U.S. Geological Survey, 1994.
Find full textWilliams, Colin F. Heat-flow measurements in the vicinity of the Hayward Fault, California. Menlo Park, CA: U.S. Geological Survey, 1994.
Find full textWilliams, Colin F. Heat-flow measurements in the vicinity of the Hayward Fault, California. Menlo Park, CA: U.S. Geological Survey, 1994.
Find full textClauser, Christoph. Thermal signatures of heat transfer processes in the Earth's crust. Berlin: Springer, 1999.
Find full textE, Hobbs Bruce, and Ord Alison 1955-, eds. Convective and advective heat transfer in geological systems. Berlin: Springer, 2008.
Find full textBook chapters on the topic "Heat Climatology. Terrestrial heat flow"
Bullard, Edward C. "Historical Introduction to Terrestrial Heat Flow." In Terrestrial Heat Flow, 1–6. Washington, D.C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm008p0001.
Full textJaeger, John C. "Application of the Theory Of Heat Conduction to Geothermal Measurements." In Terrestrial Heat Flow, 7–23. Washington, D.C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm008p0007.
Full textBeck, Alan E. "Techniques of Measuring Heat Flow on Land." In Terrestrial Heat Flow, 24–57. Washington, D.C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm008p0024.
Full textLangseth, Marcus G. "Techniques of Measuring Heat Flow Through the Ocean Floor." In Terrestrial Heat Flow, 58–77. Washington, D.C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm008p0058.
Full textLubimova, Elena A., Richard P. Von Herzen, and Gleb B. Udintsev. "On Heat Transfer Through the Ocean Floor." In Terrestrial Heat Flow, 78–86. Washington, D.C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm008p0078.
Full textLee, William H. K., and Seiya Uyeda. "Review of Heat Flow Data." In Terrestrial Heat Flow, 87–190. Washington, D.C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm008p0087.
Full textMacdonald, Gordon J. F. "Geophysical Deductions from Observations of Heat Flow." In Terrestrial Heat Flow, 191–210. Washington, D.C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm008p0191.
Full textElder, John W. "Physical Processes in Geothermal Areas." In Terrestrial Heat Flow, 211–39. Washington, D.C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm008p0211.
Full textMcnitt, James R. "Review of Geothermal Resources." In Terrestrial Heat Flow, 240–66. Washington, D.C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm008p0240.
Full textVerma, R. K., and Hari Narain. "Terrestrial Heat Flow in India." In The Crust and Upper Mantle of the Pacific Area, 22–34. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm012p0022.
Full textConference papers on the topic "Heat Climatology. Terrestrial heat flow"
Yuan, Kun, J. N. Chung, and Yan Ji. "Cryogenic Two-Phase Flow and Heat Transfer Under Terrestrial and Microgravity." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-80613.
Full textCassidy, Daniel A., and Richard D. Gould. "Heat Transfer With a MicroPCM Suspension in Laminar Tube Flow Using a Realistic Melting Model." In ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ht-fed2004-56730.
Full textHo, Clifford K., and Walter Gerstle. "Terrestrial Heat Repository for Months of Storage (THERMS): A Novel Radial Thermocline System." In ASME 2021 15th International Conference on Energy Sustainability collocated with the ASME 2021 Heat Transfer Summer Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/es2021-63066.
Full textAbe, Yoshiyuki, Kotaro Tanaka, Takuya Yokoyama, and Akira Iwasaki. "Heat Transfer Devices With Self-Rewetting Fluids." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61328.
Full textLiang, Q., X. Wang, A. S. Barve, and A. Narain. "Effects of Gravity and Surface Tension and Interfacial-Waves and Heat-Transfer Rates in Internal Condensing Flows." In ASME 2003 Heat Transfer Summer Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/ht2003-47472.
Full textPatel, Viral K., and Jamal Seyed-Yagoobi. "Combined Electrohydrodynamic Conduction Pumping and Dielectrophoresis for Enhancement of Liquid Film Flow Boiling." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-53247.
Full textCastaneda, Alexander J., Nathaniel J. O’Connor, and Jamal Yagoobi. "Investigation of Gravity Effects on Electrically Driven Liquid Film Flow Boiling: A Micro-Gravity Flight Campaign in Preparation of ISS Experiment." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-24133.
Full textYang, Lei, Michal Talmor, and Jamal Seyed-Yagoobi. "Flow Distribution Control Between Two Parallel Meso-Scale Evaporators With Electrohydrodynamic Conduction Pumping." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-66222.
Full textTalmor, Michal, and Jamal Yagoobi. "Numerical Performance Characterization of an Innovative Micro-Scale Electrohydrodynamic Conduction Pumping Device." In ASME 2017 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2017 Conference on Information Storage and Processing Systems. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/ipack2017-74107.
Full textMcKellar, Michael G., Rick A. Wood, Carl M. Stoots, Lila Mulloth, and Bernadette Luna. "The Mathematical Analysis of a Novel Approach to Maximize Waste Recovery in a Life Support System." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-64199.
Full text