Books on the topic 'Heat equation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 books for your research on the topic 'Heat equation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse books on a wide variety of disciplines and organise your bibliography correctly.
Seizō, Itō. Diffusion equations. Providence, R.I: American Mathematical Society, 1992.
Find full textBejenaru, Ioan. Near soliton evolution for equivariant Schrödinger maps in two spatial dimensions. Providence, Rhode Island: American Mathematical Society, 2013.
Find full textLawler, Gregory F. Random walk and the heat equation. Providence, R.I: American Mathematical Society, 2010.
Find full textWazwaz, Abdul-Majid. Partial differential equations: Methods and applications. Lisse: Balkema, 2001.
Find full textSeizō, Itō. Diffusion equations: Seizō Itō ; translated by Seizō Itō. Providence, R.I: American Mathematical Society, 1992.
Find full textHans, Triebel, ed. Hybrid function spaces, heat and Navier-Stokes equations. Zürich: European Mathematical Society, 2014.
Find full textSowers, R. B. Short-time geometry of random heat kernels. Providence, R.I: American Mathematical Society, 1998.
Find full textSowers, R. B. Short-time geometry of random heat kernels. Providence, R.I: American Mathematical Society, 1998.
Find full textAndrea, Arnone, and United States. National Aeronautics and Space Administration., eds. Navier-Stokes turbine heat transfer predictions using two-equation turbulence. [Washington, DC: National Aeronautics and Space Administration, 1992.
Find full textAndrea, Arnone, and United States. National Aeronautics and Space Administration., eds. Navier-Stokes turbine heat transfer predictions using two-equation turbulence. [Washington, DC: National Aeronautics and Space Administration, 1992.
Find full textAndrea, Arnone, and United States. National Aeronautics and Space Administration., eds. Navier-Stokes turbine heat transfer predictions using two-equation turbulence. [Washington, DC: National Aeronautics and Space Administration, 1992.
Find full textAndrea, Arnone, and United States. National Aeronautics and Space Administration., eds. Navier-Stokes turbine heat transfer predictions using two-equation turbulence. [Washington, DC: National Aeronautics and Space Administration, 1992.
Find full textN, Dewynne Jeffrey, ed. Heat conduction. Oxford [Oxfordshire]: Blackwell Scientific Publications, 1987.
Find full textPakanen, Jouko. Conduction of heat through slabs and walls: A differential-difference approach for design, energy analysis and building automation applications. Espoo, [Finland]: Technical Research Centre of Finland, 1994.
Find full textMorales, Wilfredo. An alternative model for estimating liquid diffusion coefficients requiring no viscosity data. [Washington, DC: National Aeronautics and Space Administration, 1993.
Find full textDay, William Alan. Heat conduction within linear thermoelasticity. New York: Springer-Verlag, 1985.
Find full textLewis, John L. The method of layer potentials for the heat equation in time-varying domains. Providence, R.I: American Mathematical Society, 1995.
Find full textBamberger, Alain. Analyse, optimisation et filtrage numériques: Anaylse numérique de l'équation de la chaleur. [Palaiseau, France]: Ecole polytechnique, Département de mathématiques appliquées, 1991.
Find full textDay, William Alan. Heat Conduction Within Linear Thermoelasticity. New York, NY: Springer New York, 1985.
Find full textDenis, Maillet, ed. Thermal quadrupoles: Solving the heat equation through integral transforms. Chichester, West Sussex: Wiley, 2000.
Find full textIshii, Audrey L. A numerical solution for the diffusion equation in hydrogeologic systems. Urbana, Ill: Dept. of the Interior, U.S. Geological Survey, 1989.
Find full textIshii, Audrey L. A numerical solution for the diffusion equation in hydrogeologic systems. Urbana, Ill: Dept. of the Interior, U.S. Geological Survey, 1989.
Find full textIshii, Audrey L. A numerical solution for the diffusion equation in hydrogeologic systems. Urbana, Ill: Dept. of the Interior, U.S. Geological Survey, 1989.
Find full textSeminario sobre Problemas de Frontera Libre y sus Aplicaciones (5th 1992 Rosario, Argentina). V Seminario sobre Problemas de Frontera Libre y sus Aplicaciones, Rosario, 19 al 21 de diciembre de 1994. Edited by Tarzia D. A. Rosario, República Argentina: Universidad Nacional de Rosario, Facultad de Ciencias Exactas, Ingeniería y Agrimensura, 1995.
Find full text1967-, Wang Changyou, ed. The analysis of harmonic maps and their heat flows. Singapore: World Scientific, 2008.
Find full textSolovʹev, Aleksandr. Diffuzionnai︠a︡ teorii︠a︡ solnechnogo magnitnogo t︠s︡ikla. Ėlista: Kalmyt︠s︡kiĭ gos. universitet, 2004.
Find full textVuik, C. The solution of a one-dimensional Stefan problem. Amsterdam, Netherlands: Centrum voor Wiskunde en Informatica, 1993.
Find full textW, Begehr Heinrich G., and Jeffrey Alan, eds. Partial differential equations with real analysis. Essex, England: Longman Scientific & Technical, 1992.
Find full textGrigoryan, A. Heat kernel and analysis on manifolds. Providence, R.I: American Mathematical Society, 2009.
Find full textGrigoryan, A. Heat kernel and analysis on manifolds. Providence, R.I: American Mathematical Society, 2009.
Find full textJorgenson, Jay. Heat Eisenstein series on SLn(C). Providence, R.I: American Mathematical Society, 2009.
Find full textPascal, Auscher, Coulhon T, and Grigoryan A, eds. Heat kernels and analysis on manifolds, graphs, and metric spaces: Lecture notes from a quarter program on heat kernels, random walks, and analysis on manifolds and graphs, April 16-July 13, 2002, Emile Borel Centre of the Henri Poincaré Institute, Paris, France. Providence, R.I: American Mathematical Society, 2003.
Find full textReed, J. E. Digital model for simulating steady-state ground-water and heat flow. Denver, Colo: U.S. Dept. of the Interior, Geological Survey, 1985.
Find full textLin, Fanghua. The analysis of harmonic maps and their heat flows. Singapore: World Scientific, 2008.
Find full textLee, Myung W. Application of heat flow equation to analyses of bottom simulating reflections. [Denver, CO]: U.S. Dept. of the Interior, U.S. Geological Survey, 1995.
Find full textLee, Myung W. Application of heat flow equation to analyses of bottom simulating reflections. [Denver, CO]: U.S. Dept. of the Interior, U.S. Geological Survey, 1995.
Find full textJorgenson, Jay. Heat Eisenstein series on SL[subscript n](C). Providence, R.I: American Mathematical Society, 2009.
Find full textB, Gilkey Peter, ed. Invariance theory, the heat equation, and the Atiyah-Singer index theorem. 2nd ed. Boca Raton: CRC Press, 1995.
Find full textBradley, E. F. A guide to making climate quality meteorological and flux measurements at sea. Boulder, Colo: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Office of Oceanic and Atmospheric Research, Earth System Research Laboratory, Physical Sciences Division, 2007.
Find full textBradley, E. F. A guide to making climate quality meteorological and flux measurements at sea. Boulder, CO: National Oceanic and Atmospheric Administration, Office of Oceanic and Atmospheric Research, Earth System Research Laboratory, Physical Sciences Division, 2006.
Find full textRegional, Scientific Session of Mathematicians (6th 1986 Żagań Poland). Differential equations and optimal control: Proceedings of the sixth Regional Scientific Session of Mathematicians held in Żagań, September 1986 : Section, Differential equations. Zielona Góra: Wydawn. Uczelniane Wyższej Szkoły Inżynierskiej im. Jurija Gagarina w Zielonej Górze, 1987.
Find full textBrowder, Felix E., and John Rozier Cannon. One-Dimensional Heat Equation. Cambridge University Press, 2013.
Find full textBrowder, Felix E., and John Rozier Cannon. One-Dimensional Heat Equation. Cambridge University Press, 2008.
Find full textBrowder, Felix E., and John Rozier Cannon. One-Dimensional Heat Equation. Cambridge University Press, 2012.
Find full text