Journal articles on the topic 'Heat loads on the divertor'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Heat loads on the divertor.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Barr, William L., and B. Grant Logan. "A Slot Divertor for Tokamaks with High Divertor Heat Loads." Fusion Technology 18, no. 2 (1990): 251–56. http://dx.doi.org/10.13182/fst90-a29297.
Full textMarki, J., R. A. Pitts, J. Horacek, and D. Tskhakaya. "ELM induced divertor heat loads on TCV." Journal of Nuclear Materials 390-391 (June 2009): 801–5. http://dx.doi.org/10.1016/j.jnucmat.2009.01.212.
Full textHerrmann, A. "Overview on stationary and transient divertor heat loads." Plasma Physics and Controlled Fusion 44, no. 6 (2002): 883–903. http://dx.doi.org/10.1088/0741-3335/44/6/318.
Full textRiccardo, V., P. Andrew, L. C. Ingesson, and G. Maddaluno. "Disruption heat loads on the JET MkIIGB divertor." Plasma Physics and Controlled Fusion 44, no. 6 (2002): 905–29. http://dx.doi.org/10.1088/0741-3335/44/6/319.
Full textMavrin, Aleksey A., and Andrey A. Pshenov. "Tolerable Stationary Heat Loads to Liquid Lithium Divertor Targets." Plasma 5, no. 4 (2022): 482–98. http://dx.doi.org/10.3390/plasma5040036.
Full textDai, S. Y., D. F. Kong, V. S. Chan, L. Wang, Y. Feng, and D. Z. Wang. "EMC3–EIRENE simulations of neon impurity seeding effects on heat flux distribution on CFETR." Nuclear Fusion 62, no. 3 (2022): 036019. http://dx.doi.org/10.1088/1741-4326/ac47b5.
Full textHassanein, Ahmed. "Analysis of sweeping heat loads on divertor plate materials." Journal of Nuclear Materials 191-194 (September 1992): 499–502. http://dx.doi.org/10.1016/s0022-3115(09)80095-0.
Full textGunn, J. P., S. Carpentier-Chouchana, F. Escourbiac, et al. "Surface heat loads on the ITER divertor vertical targets." Nuclear Fusion 57, no. 4 (2017): 046025. http://dx.doi.org/10.1088/1741-4326/aa5e2a.
Full textAbrams, T., M. A. Jaworski, J. Kallman, et al. "Response of NSTX liquid lithium divertor to high heat loads." Journal of Nuclear Materials 438 (July 2013): S313—S316. http://dx.doi.org/10.1016/j.jnucmat.2013.01.057.
Full textHASSANEIN, A. "Analysis of sweeping heat loads on divertor plate materials*1." Journal of Nuclear Materials 191-194 (September 1992): 499–502. http://dx.doi.org/10.1016/0022-3115(92)90815-3.
Full textHogan, J. T., and J. Wesley. "Scaling of Divertor Temperature and Heat Loads for TPX-Class Devices." Fusion Technology 21, no. 3P2A (1992): 1406–15. http://dx.doi.org/10.13182/fst92-a29919.
Full textGao, Y., Marcin W. Jakubowski, Peter Drewelow, et al. "Methods for quantitative study of divertor heat loads on W7-X." Nuclear Fusion 59, no. 6 (2019): 066007. http://dx.doi.org/10.1088/1741-4326/ab0f49.
Full textScarabosio, A., C. Fuchs, A. Herrmann, and E. Wolfrum. "ELM characteristics and divertor heat loads in ASDEX Upgrade helium discharges." Journal of Nuclear Materials 415, no. 1 (2011): S877—S880. http://dx.doi.org/10.1016/j.jnucmat.2010.10.062.
Full textXi, Ya, Gaoyong He, Xiang Zan, et al. "Characterization of the Crack and Recrystallization of W/Cu Monoblocks of the Upper Divertor in EAST." Applied Sciences 13, no. 2 (2023): 745. http://dx.doi.org/10.3390/app13020745.
Full textOka, Kiyoshi, Satoshi Kakudate, Nobukazu Takeda, Yuji Takiguchi, and Kentaro Akou. "Measurement and Control System for ITER Remote Maintenance Equipment." Journal of Robotics and Mechatronics 10, no. 2 (1998): 139–45. http://dx.doi.org/10.20965/jrm.1998.p0139.
Full textTakeda, Nobukazu, Kiyoshi Oka, Kentaro Akou, and Yuji Takiguchi. "Development of Divertor Remote Maintenance System." Journal of Robotics and Mechatronics 10, no. 2 (1998): 88–95. http://dx.doi.org/10.20965/jrm.1998.p0088.
Full textAraki, M., K. Kitamura, K. Urata, and S. Suzuki. "Analyses of divertor high heat-flux components on thermal and electromagnetic loads." Fusion Engineering and Design 42, no. 1-4 (1998): 381–87. http://dx.doi.org/10.1016/s0920-3796(97)00180-4.
Full textGunn, J. P., S. Carpentier-Chouchana, R. Dejarnac, et al. "Ion orbit modelling of ELM heat loads on ITER divertor vertical targets." Nuclear Materials and Energy 12 (August 2017): 75–83. http://dx.doi.org/10.1016/j.nme.2016.10.005.
Full textHong, Suk–Ho, Richard A. Pitts, Hyung-Ho Lee, et al. "Inter-ELM heat loads on tungsten leading edge in the KSTAR divertor." Nuclear Materials and Energy 12 (August 2017): 1122–29. http://dx.doi.org/10.1016/j.nme.2017.02.005.
Full textCarli, S., R. A. Pitts, X. Bonnin, F. Subba, and R. Zanino. "Effect of strike point displacements on the ITER tungsten divertor heat loads." Nuclear Fusion 58, no. 12 (2018): 126022. http://dx.doi.org/10.1088/1741-4326/aae43f.
Full textLi, Muyuan, Francesco Maviglia, Gianfranco Federici, and Jeong-Ha You. "Sweeping heat flux loads on divertor targets: Thermal benefits and structural impacts." Fusion Engineering and Design 102 (January 2016): 50–58. http://dx.doi.org/10.1016/j.fusengdes.2015.11.026.
Full textNoce, Simone, Davide Flammini, Pasqualino Gaudio, et al. "Neutronics Assessment of the Spatial Distributions of the Nuclear Loads on the DEMO Divertor ITER-like Targets: Comparison between the WCLL and HCPB Blanket." Applied Sciences 13, no. 3 (2023): 1715. http://dx.doi.org/10.3390/app13031715.
Full textRiccardi, B., P. Gavila, R. Giniatulin, et al. "Effect of stationary high heat flux and transient ELMs-like heat loads on the divertor PFCs." Fusion Engineering and Design 88, no. 9-10 (2013): 1673–76. http://dx.doi.org/10.1016/j.fusengdes.2013.05.016.
Full textSizyuk, V., and A. Hassanein. "Heat loads to divertor nearby components from secondary radiation evolved during plasma instabilities." Physics of Plasmas 22, no. 1 (2015): 013301. http://dx.doi.org/10.1063/1.4905632.
Full textHayashi, Y., M. Kobayashi, K. Mukai, S. Masuzaki, and T. Murase. "Divertor heat load distribution measurements with infrared thermography in the LHD helical divertor." Fusion Engineering and Design 165 (April 2021): 112235. http://dx.doi.org/10.1016/j.fusengdes.2021.112235.
Full textZhuang, Qing, Lei Cao, Nanyu Mou, et al. "Study on the effect of EAST divertor geometric accuracy on heat load distribution." Journal of Instrumentation 18, no. 01 (2023): P01025. http://dx.doi.org/10.1088/1748-0221/18/01/p01025.
Full textLi, Xiangyu, Guanghuai Wang, Yun Guo, and Songwei Li. "Critical heat flux analysis of divertor cooling flow channel in fusion reactor with CFD method." Thermal Science, no. 00 (2021): 203. http://dx.doi.org/10.2298/tsci210216203l.
Full textMiloshevskii, G. V., and G. S. Romanov. "Evaluation of Heat Loads in Graphite Divertor Plates Acted by a Magnetized Electron Flux." Heat Transfer Research 33, no. 7-8 (2002): 9. http://dx.doi.org/10.1615/heattransres.v33.i7-8.60.
Full textSilburn, S. A., G. F. Matthews, C. D. Challis, et al. "Mitigation of divertor heat loads by strike point sweeping in high power JET discharges." Physica Scripta T170 (October 24, 2017): 014040. http://dx.doi.org/10.1088/1402-4896/aa8db1.
Full textYou, J. H., H. Bolt, R. Duwe, J. Linke, and H. Nickel. "Thermomechanical behavior of actively cooled, brazed divertor components under cyclic high heat flux loads." Journal of Nuclear Materials 250, no. 2-3 (1997): 184–91. http://dx.doi.org/10.1016/s0022-3115(97)00240-7.
Full textVAHALA, GEORGE, LINDA VAHALA, JOSEPH MORRISON, SERGEI KRASHENINNIKOV та DIETER SIGMAR. "K–ε compressible 3D neutral fluid turbulence modelling of the effect of toroidal cavities on flame-front propagation in the gas-blanket regime for tokamak divertors". Journal of Plasma Physics 57, № 1 (1997): 155–73. http://dx.doi.org/10.1017/s0022377896005235.
Full textWU Yanghai, DU Hailong, XUE Lei, LI Jiaxian, XUE Miao, and ZHENG Guoyao. "Machine Learning-Based Prediction of Heat Load on Tokamak Divertor Target Plates." Acta Physica Sinica 74, no. 13 (2025): 0. https://doi.org/10.7498/aps.74.20250381.
Full textKAWASHIMA, Hisato, Kazuya UEHARA, Nobuhiro NISHINO, et al. "A Comparison between Divertor Heat Loads in ELMy and HRS H-Modes on JFT-2M." Journal of Plasma and Fusion Research 80, no. 11 (2004): 907–8. http://dx.doi.org/10.1585/jspf.80.907.
Full textHuang, Shenghong, and Shimin Liu. "Numerical Analysis of Fatigue Behavior of ITER-Like Monoblock Divertor Interlayer Under Coupled Heat Loads." Journal of Fusion Energy 37, no. 4 (2018): 177–86. http://dx.doi.org/10.1007/s10894-018-0164-3.
Full textJachmich, S., Y. Liang, G. Arnoux, et al. "Effect of external perturbation fields on divertor particle and heat loads during ELMs at JET." Journal of Nuclear Materials 390-391 (June 2009): 768–72. http://dx.doi.org/10.1016/j.jnucmat.2009.01.204.
Full textBudaev, V. P. "RESULTS OF HIGH HEAT FLUX TUNGSTEN DIVERTOR TARGET TESTS UNDER ITER AND REACTOR TOKAMAK-RELEVANT PLASMA HEAT LOADS (REVIEW)." Problems of Atomic Science and Technology, Ser. Thermonuclear Fusion 38, no. 4 (2015): 5–33. http://dx.doi.org/10.21517/0202-3822-2015-38-4-5-33.
Full textIshitsuka, E., M. Uchida, K. Sato, M. Akiba, and H. Kawamura. "High heat load tests of neutron-irradiated divertor mockups." Fusion Engineering and Design 56-57 (October 2001): 421–25. http://dx.doi.org/10.1016/s0920-3796(01)00347-7.
Full textEngels, Dion, Samuel A. Lazerson, Victor Bykov, and Josefine H. E. Proll. "Investigating the n = 1 and n = 2 error fields in W7-X using the newly accelerated FIELDLINES code." Plasma Physics and Controlled Fusion 64, no. 3 (2022): 035003. http://dx.doi.org/10.1088/1361-6587/ac43ef.
Full textPark, In Sun, In Je Kang, and Kyu-Sun Chung. "Experimental Estimation of Dust Generation Under ELM-Like Transient Heat Loads in Divertor Plasma Simulator-2." Fusion Science and Technology 77, no. 6 (2021): 429–36. http://dx.doi.org/10.1080/15361055.2021.1929759.
Full textLi, C., H. Greuner, Y. Yuan, et al. "Surface modifications of W divertor components for EAST during exposure to high heat loads with He." Journal of Nuclear Materials 463 (August 2015): 223–27. http://dx.doi.org/10.1016/j.jnucmat.2014.10.063.
Full textNagata, Masayoshi, Yusuke Kikuchi, and Naoyuki Fukumoto. "Application of Magnetized Coaxial Plasma Guns for Simulation of Transient High Heat Loads on ITER Divertor." IEEJ Transactions on Electrical and Electronic Engineering 4, no. 4 (2009): 518–22. http://dx.doi.org/10.1002/tee.20438.
Full textBudaev, V. P. "Results of high heat flux tests of tungsten divertor targets under plasma heat loads expected in ITER and tokamaks (review)." Physics of Atomic Nuclei 79, no. 7 (2016): 1137–62. http://dx.doi.org/10.1134/s106377881607005x.
Full textGago, Mauricio, Arkadi Kreter, Bernhard Unterberg, and Marius Wirtz. "Bubble Formation in ITER-Grade Tungsten after Exposure to Stationary D/He Plasma and ELM-like Thermal Shocks." Journal of Nuclear Engineering 4, no. 1 (2023): 204–12. http://dx.doi.org/10.3390/jne4010016.
Full textSi, Hang, Rui Ding, Ilya Senichenkov, et al. "SOLPS-ITER simulations of high power exhaust for CFETR divertor with full drifts." Nuclear Fusion 62, no. 2 (2022): 026031. http://dx.doi.org/10.1088/1741-4326/ac3f4b.
Full textHuang, Xiaoxuan, Jianjun Wei, Zongbiao Ye, and Fujun Gou. "Evolution Mechanism and Mechanical Response of Tungsten Surface Damage Under Pulsed Heat Load and Helium Plasma Irradiation." Processes 13, no. 6 (2025): 1711. https://doi.org/10.3390/pr13061711.
Full textAdebayo-Ige, P. O., K. F. Gan, C. J. Lasnier, R. Maingi, and B. D. Wirth. "Divertor heat load estimates on NSTX and DIII-D using new and open-source 2D inversion analysis code." Nuclear Fusion 64, no. 9 (2024): 096006. http://dx.doi.org/10.1088/1741-4326/ad60dd.
Full textLópez-Galilea, I., G. Pintsuk, C. García-Rosales, and Jochen Linke. "High Heat Flux Testing of TiC-Doped Isotropic Graphite for Plasma Facing Components." Advanced Materials Research 59 (December 2008): 288–92. http://dx.doi.org/10.4028/www.scientific.net/amr.59.288.
Full textWang, Fuqiong, Xiang Gu, jiankun hua, et al. "Divertor heat flux challenge and mitigation in the EHL-2 spherical torus." Plasma Science and Technology, January 23, 2025. https://doi.org/10.1088/2058-6272/adadb8.
Full textGao, Yu, Yuhe Feng, Michael Bernd Sebastian Endler, et al. "Improvement in the simulation tools for heat distribution predictions and control of baffle and middle divertor loads in Wendelstein 7-X." Nuclear Fusion, December 29, 2022. http://dx.doi.org/10.1088/1741-4326/acaf0e.
Full textXie, Tian, Hang Li, Wei Zhang, et al. "EMC3-EIRENE simulations of edge plasma and impurity transport by toroidally localized argon seeding on CFETR X-divertor." Nuclear Fusion, December 9, 2024. https://doi.org/10.1088/1741-4326/ad9bc9.
Full text