Dissertations / Theses on the topic 'Heat mass transfers'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Heat mass transfers.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Gondre, Damien. "Numerical modeling and analysis of heat and mass transfers in an adsorption heat storage tank : Influences of material properties, operating conditions and system design on storage performances." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI022/document.
Full textThe development of energy storage solutions is a key challenge to enable the energy transition from fossil resources to renewable energies. The need to store energy actually comes from a dissociation between energy sources and energy demand. Storing energy meets two principal expectations: have energy available where and when it is required. Low temperature heat, for dwellings and offices heating, represents a high share of overall energy consumption (i.e. about 35 %). The development of heat storage solutions is then of great importance for energy management, especially in the context of the growing part of renewable energies. Adsorption heat storage appears to be the best trade off among available storage technologies in terms of heat storage density and performances over several cycles. Then, this PhD thesis focuses on adsorption heat storage and addresses the enhancement of storage performances and system integration. The approach developed to address these issues is numerical. Then, a model of an adsorption heat storage tank is developed, and validated using experimental data. The influence of material thermophysical properties on output power but also on storage density and system autonomy is investigated. This analysis enables a selection of particularly influencing material properties and a better understanding of heat and mass transfers. The influence of operating conditions is also underlined. It shows the importance of inlet humidity on both storage capacity and outlet power and the great influence of discharge flowrate on outlet power. Finally, it is shown heat storage capacity depends on the storage tank volume, while outlet power depends on cross section area and system autonomy on bed length. Besides, the conversion efficiency from absorbed energy (charge) to released energy (discharge) is 70 %. But during the charging process, about 60 % of incoming heat is not absorbed by the material and directly released. The overall conversion efficiency from energy provided to energy released is as low as 25 %. This demonstrates that an adsorption heat storage system cannot be thought of as a self-standing component but must be integrated into the building systems and control strategy. A clever use of heat losses for heating applications (in winter) or inlet fluid preheating (in summer) enhances global performances. Using available solar heat for system preheating is an interesting option since a part is instantly retrieved at the outlet of the storage tank and can be used for direct heating. Another part is stored as sensible heat and can be retrieved a few hours later. At least, it has the advantage of turning the adsorption storage tank into a combined sensible-adsorption storage tank that offers short-term and long-term storage solutions. Then, it may differ avoidable discharges of the sorption potential and increase the overall autonomy (or coverage fraction), in addition to optimizing chances of partial system recharge
Ben, Hassine Nidhal. "Etude numérique d'un écoulement forcé dans un canal horizontal dont la partie inférieure est constituée de boues assimilées à un matériau poreux." Thesis, Perpignan, 2017. http://www.theses.fr/2017PERP0021/document.
Full textThe drying of sewage sludge is a current environmental problem, not sufficiently described in the literature. Hence, the aim of this work is a numerical study of heat and mass transfers during solar drying of residual sludge. This sludge is assimilated to a porous medium and exposed to a forced convection laminar flow within a horizontal channel. The transfers in the channel and the porous medium are respectively described by the classic equations of forced convection and the Darcy-Brinkman-Forchheimer model. The implicit finite difference method is used to discretize the governing differential equation system. The algebraic systems obtained are solved using the Gauss, Thomas and Gauss-Seidel algorithms. To determine the drying rate, we associate a drying kinetics model. This model is based on the concept of the characteristic curve. We particularly studied the effects of climatic conditions (temperature, velocity and relative humidity of the ambient air as well as the solar radiation intensity) and the conditions relating to the sludge on the spatio-temporal evolutions of the transfers characteristic numbers as well as on drying kinetics. This work is completed by simulations using meteorological data from the Tataouine region in southern Tunisia. These data were statistically processed using the Liu and Jordan method to determine the typical day of each month. The rentability study of the dryer show that the summer period is the optimum period for drying
Alzahrani, Faris. "3D modelling by computational fluid dynamics of local interactions of momentum, mass and heat transfers with catalyst deactivation in gas-solid catalytic reactors of low aspect ratios." Thesis, Lancaster University, 2016. http://eprints.lancs.ac.uk/82666/.
Full textBusser, Thomas. "Etude des transferts hygrothermiques dans les matériaux à base de bois et leurs contributions à l'ambiance intérieure des bâtiments." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAA010/document.
Full textThe general aim of the thesis is to advance the understanding of multi-physical behavior of wooden buildings and improving the assessment of their energy performance with comfort hygrothermal. Sector professionals and scientific studies show the differences between the calculations and performance measures (consumption, comfort) of these buildings. The reasons for these differences are not yet well understood: the impact of moisture and latent heat in these constructions are often put forward as a likely explanation, although this is still research. The most recent studies show that the foundations are likely to fall at the hygrothermal behavior of materials at the base of wooden unsteady. This work will focus primarily on two studies scales: scale and scale building material. One of the lines of work of the thesis will focus on the experimental characterization of hygroscopic properties of wood-based materials and their modeling. The second strand of work will focus on building wide integration of these materials in modeling, integrating the impact of specific properties of these materials in the walls constituent assemblies and in complex balance sheets at the building scale . An experimental study will focus on a living room with a large presence of wood in the building envelope to characterize the hygrothermal comfort, and quantify the contribution of Hygric inertia of the envelope on performance in terms of the atmosphere comfort. If necessary, measures will also be drawn to scale "wall" on one hand, on real structures on the other
Soares, Cintia. "Avaliação experimental dos coeficientes de transferencia de massa e calor em uma coluna com pratos perfurados." [s.n.], 2000. http://repositorio.unicamp.br/jspui/handle/REPOSIP/267657.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Quimica
Made available in DSpace on 2018-07-27T23:52:32Z (GMT). No. of bitstreams: 1 Soares_Cintia_M.pdf: 6610044 bytes, checksum: 4b52b82aa749a3987b506a6240f74361 (MD5) Previous issue date: 2000
Resumo: Devido à sua abrangência com os fenômenos de transferência de massa, calor e quantidade de movimento, capacidade e características operacionais, relações termodinâmicas e o amplo envolvimento com outros equipamentos industriais, o estudo dos processos de separação por destilação toma-se muito complexo, apesar de sua extensiva utilização nas indústrias químicas e petroquímicas. Por isto, trabalhos de grande relevância científica são ainda desenvolvidos para melhor entender os fenômenos relacionados e que permitem melhorar a sua operacionalidade. Assim, este trabalho teve como objetivo a avaliação experimental de uma coluna de destilação com pratos perfurados, permitindo averiguar o comportamento das eficiências de Murphree, O'Connell e da correlação de Barros & Wolf, além da avaliação dos perfis dos coeficientes de transferência de massa e calor ao longo do equipamento. Os dados experimentais obtidos foram utilizados para a validação dos modelos de estágios de equilíbrio e de não equilíbrio e da correlação de eficiência desenvolvida por Barros & Wolf. Para a realização deste trabalho, uma coluna de destilação, em aço inoxidável, contendo 8 pratos perfurados com vertedor e um sistema para controle da potência foram projetados e construídos. A coluna contém 8 pontos para a coleta de amostras de líquido e termopares acoplados em cada prato para a leitura de temperatura. Para cada experimento foram variadas as composições do etanol na alimentação e a potência fomecida ao refervedor para avaliar a influência da carga térmica sobre o comportamento das frações molares e da temperatura em uma coluna operada a refluxo total. Nos ensaios, trabalhou-se com o sistema etanolágua por ser de fácil determinação analítica e por existirem dados de equilíbrio precisos e alguns valores de eficiência. Após o alcance do estado estacionário, determinado a partir de leituras periódicas de temperatura ao longo do equipamento, foram feitas coletas de amostras de líquido em cada estágio da coluna, as quais foram analisadas empregando a técnica de cromatografia à gás. Com os dados da temperatura, composição do etanol e da água em cada estágio e da potência fomecida ao refervedor, foram calculadas as eficiências de Murphree e de O'Connell. Com a utilização de programas computacionais envolvendo a modelagem de estágios de equilíbrio (com a correlação de Barros & Wolf) e de não equilíbrio, desenvolvidos no Laboratório de Desenvolvimento de Processos de Separação da UNICAMP, foram realizadas simulações nas condições de operação dos experimentos, cujos dados obtidos foram utilizados para comparação com dados experimentais de forma a corroborar tais modelos. Os resultados obtidos mostraram que as modelagens de estágios de equil íbrio e de não equilíbrio reproduzem, com grande fidelidade, as condições reais do processo e representam o comportamento real dos coeficientes de transferência de massa e calor ao longo da coluna de destilação. Os resultados obtidos mostraram-se compatíveis com os dados da literatura
Abstract: Due to the relation with the mass, heat and momentum transfer phenomena, capacity and operational characteristics, thermodynamic properties and the wide relationship with other industrial equipment, the study of the separation processes by distillation becomes very complex, in spite of its extensive use in the chemical and petrochemical industries. For this reason, researches of great scientific relevance are still being developed for better understanding the related phenomena and for allowing the improvement of the operation. Thus, this work presents as objective the experimental study of a distillation column with sieve plates to evaluate the behaviour of the Murphree efficiency, Q'Connell and Barros & Wolf correlations and the mass and heat transfer coefficients along the equipment. The experimental data were obtained used for the validation of the equilibrium and nonequilibrium stage models and of the new efficiency correlation developed by Barros & Wolf. For these purposes, a stainless steel distillation column with eight sieve plates with down comer and a system for the power measuring were designed and built. The column contains eight spaced temperature/sample points. For each experiment, the ethanol feed composition and the heat duty were changed to evaluate the influence of the heat duty on the behaviour of the mole fractions and on the temperature profiles in the column operating at total reflux. After established the steady state, the liquid samples and the temperature were taken in each stage of the column, and the samples were analyzed using the gas chromatography technique. Using the temperature and ethanol and water compositions in each stage and the heat duty supplied to the reboiler, Murphree and Q'Connell efficiency were calculated. The programs involving the equilibrium stage model (with Barros & Wolf correlation) and the nonequilibrium stage model developed in the Laboratory of Separation Process Development (UNICAMP) were used in the simulations at the same conditions of the experiments. The data obtained with simulations were compared with experimental data to corroborate such models. The obtained results showed that the equilibrium stage model and the nonequilibrium stage model reproduce, with great fidelity, the real conditions of the process and they can be used to represent the real behaviour of the mass and heat transfer coefficients along the distillation column
Mestrado
Desenvolvimento de Processos Químicos
Mestre em Engenharia Química
Gudmundsson, Yngvi. "Performance evaluation of wet-cooling tower fills with computational fluid dynamics." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/19908.
Full textENGLISH ABSTRACT: A wet-cooling tower fill performance evaluation model developed by Reuter is derived in Cartesian coordinates for a rectangular cooling tower and compared to cross- and counterflow Merkel, e-NTU and Poppe models. The models are compared by applying them to a range of experimental data measured in the cross- and counterflow wet-cooling tower test facility at Stellenbosch University. The Reuter model is found to effectively give the same results as the Poppe method for cross- and counterflow fill configuration as well as the Merkel and e-NTU method if the assumptions as made by Merkel are implemented. A second order upwind discretization method is applied to the Reuter model for increased accuracy and compared to solution methods generally used to solve cross- and counterflow Merkel and Poppe models. First order methods used to solve the Reuter model and crossflow Merkel and Poppe models are found to need cell sizes four times smaller than the second order method to obtain the same results. The Reuter model is successfully implemented in two- and three-dimensional ANSYS-Fluent® CFD models for under- and supersaturated air. Heat and mass transfer in the fill area is simulated with a user defined function that employs a second order upwind method. The two dimensional ANSYS-Fluent® model is verified by means of a programmed numerical model for crossflow, counterflow and cross-counterflow.
AFRIKAANSE OPSOMMING: ‘n Natkoeltoring model vir die evaluering van pakkings werkverrigting, wat deur Reuter ontwikkel is, word in Kartesiese koördinate afgelei vir ‘n reghoekige koeltoring en word vergelyk met kruis- en teenvloei Merkel, e-NTU en Poppe modelle. Die verskillende modelle word vergelyk deur hulle op ‘n reeks eksperimentele data toe te pas wat in die kruis- en teenvloei natkoeltoring toetsfasiliteit by die Universiteit van Stellenbosch gemeet is. Dit is bevind dat die Reuter model effektief dieselfde resultate gee as die Poppe model vir kruis- en teenvloei pakkingskonfigurasies sowel as die Merkel en e-NTU metode, indien dieselfde aannames wat deur Merkel gemaak is geїmplementeer word. ‘n Tweede orde “upwind” metode word op die Reuter model toegepas vir hoër akkuraatheid en word vergelyk met oplossingsmetodes wat gewoonlik gebruik word om kruis- en teenvloei Merkel en Poppe modelle op te los. Eerste orde metodes wat gebruik is om die Reuter model en kruisvloei Merkel en Poppe modelle op te los benodig rooster selle wat vier keer kleiner is as vir tweede orde metodes om dieselfde resultaat te verkry. Die Reuter model is suksesvol in twee- en driedimensionele ANSYS-Fluent® BVD (“CFD”) modelle geїmplementeer vir on- en oorversadigde lug. Warmte- en massaoordrag in die pakkingsgebied word gesimuleer mbv ‘n gebruiker gedefinieerde funksie (“user defined function”) wat van ‘n tweede orde numeriese metode gebruik maak. Die tweedimensionele ANSYS-Fluent® model word m.b.v. ‘n geprogrameerde numeriese model bevestig vir kruis-, teen- en kruis-teenvloei.
Bouzarour, Amina. "Auto-échauffement d'un lit ventilé de matériaux carbonés : cas du bois torréfié Experimental study of torrefied wood fixed bed: Thermal analysis and source term identification." Thesis, Ecole nationale des Mines d'Albi-Carmaux, 2019. http://www.theses.fr/2019EMAC0012.
Full textTorrefaction is one of the thermo-chemical pretreatment processes of lignocellulosic biomass that facilitates both the storage and transport of the material and increases the energy value of the product. However, as the torrefied substrate is more reactive, it is more prone to spontaneous exothermic mechanisms that can lead to self-heating of the material. This issue is not well investigated in the case of torrefied wood since its industrial application is mainly in the test phase. For this reason, this topic is further studied throughout this thesis. Indeed, the aim was to understand the phenomena responsible for the self-heating of a bed of biomass ventilated with oxidizing gas at low temperature. To do this, self-heating scenarios of torrefied wood chips were created under an oxidizing atmosphere. Pilot-scale experiments were conducted in a 12 L fixed-bed reactor. During these tests, we demonstrated that self-heating is intensified when the oxidizing gas flow rate is low and under a high oxygen fraction. In addition, the heat produced during the self-heating of the wooden bed was estimated on the basis of a heat balance and thermal data. Then, the source term was correlated to the oxygen fraction and temperature in a simplified model. The apparent kinetic parameters and heat of reaction associated with self-heating were derived from this. On the other hand, in order to understand the exothermic phenomena characterizing self-heating, low temperature oxidation tests are carried out on a small scale (ATG/ATD). On the basis of these analyses, kinetic models were developed to distinguish and quantify the mechanisms identified experimentally. These two approaches have made it possible to highlight three main mechanisms involved in low-temperature oxidation: chemical adsorption of oxygen on the reagent, decomposition of the oxygen complexes formed during adsorption and a direct oxidation reaction. In a more problem-oriented approach to industrial-scale self-heating, a numerical model coupling chemical kinetics and mass and heat transfers was designed at the scale of the particle bed. This model provided a reasonable prediction of the thermal performance of the torrefied wood bed under high ventilation flow. It was then extrapolated to an industrial scale to simulate the thermal behaviour of a storage silo undergoing self-heating
Mahdhaoui, Hamza. "Etude numérique des transferts de masse et de chaleur dans un canal contenant un matériau poreux de section carrée." Thesis, Perpignan, 2018. http://www.theses.fr/2018PERP0037/document.
Full textThe characteristics of mass and heat transfers by forced convection during liquid film evaporation in the channel with a built in porous square cylinder in a cross flow are investigated numerically. The main objective of the present study is to evaluate the effect of introducing a porous square cylinder on the heat and mass transfer. Specifically, this study examines the influence of parameters such as the relative humidity of the ambient air, the air inlet temperature, the imposed heat flux, the variation of the cylinder position, blockage ratio and Reynolds number on the performance of the evaporation at the channel wall. A comparison between the two configurations, with and without, porous square cylinder has been performed to highlight the effect of its addition. To achieve this, we solved the classic equation of forced convection and the Darcy-Brinkman-Forchheimer model in the porous media. We find that the insertion of a porous square cylinder in the channel could make the flow more disturbed and significantly improve mass and heat transfer rates at the channel walls. The heat and mass transfer enhancements is greater with a decrease of the Darcy number and for γ=1 when the porous obstacle is placed in the middle of the channel. It is also greater with a decrease of the temperature and relative humidity of the air at the inlet. At Da = 10-6, the flow does not penetrate through the porous cylinder, the flow pattern is similar to that of a solid square cylinder. Finally, we propose correlations that allow us to define the Sherwood and Nusselt numbers based on the Reynolds, Biot numbers and the blockage ratio
Nadim, Pedram. "Irreversibility of combustion, heat and mass transfer." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for energi- og prosessteknikk, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-13651.
Full textKeyhani, Alireza. "Heat and mass transfer in layered seedbed." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq23997.pdf.
Full textWee, H. K. "Heat and mass transfer in confined spaces." Thesis, University of Canterbury. Chemical and Process Engineering, 1986. http://hdl.handle.net/10092/5879.
Full textZhang, Guodong. "Heat and mass transfer in porous media." Thesis, University of Leeds, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.392321.
Full textReichrath, Sven. "Convective heat and mass transfer in glasshouses." Thesis, University of Exeter, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.391213.
Full textHublitz, Inka. "Heat and mass transfer of a low pressure Mars greenhouse simulation and experimental analysis /." [Gainesville, Fla.] : University of Florida, 2006. http://purl.fcla.edu/fcla/etd/UFE0013488.
Full textVerhaegen, Julien. "Modélisation multiphasique d'écoulements et de phénomènes de dispersion issus d'explosion." Thesis, Aix-Marseille 1, 2011. http://www.theses.fr/2011AIX10028/document.
Full textThis work focuses on modeling the formation and the dispersion of a cloud of droplets, induced by ejection of a liquid, resulting from an external aggression or an accidental situation. The goal is to build a model able to reproduce simultaneously the conditions which generate the cloud formation and the cloud evolution in time (dispersion). The main difficulty lies in the differences between the already existing models adapted to the description of flows which are able to characterize each stage of the global phenomenon: initially a multiphase flow model with compressible phases (Continuum), then the atomization and the formation of a cloud of droplets dispersed in a carrier phase (dilute flow model). We propose a new approach to achieve an effective coupling between these two models. The problem of the formation and the dispersion of the liquid requires to take into account several physical phenomena: atomization, heat and mass transfers and drag between phases. These phenomena are included in the global model through interaction terms involved in the systems of equations. The construction of this model has permited the realization of calculations describing the formation and dispersion of a cloud of droplets which may occur during, for axample, in accidental situations at industrial sites
Tourreilles, Céline. "Qualification énergétique et sanitaire des systèmes d'épuration intégrés aux réseaux de ventilation." Thesis, La Rochelle, 2015. http://www.theses.fr/2015LAROS012/document.
Full textIndoor air quality in low-energy buildings has become these recent years an important topic with the rigorous performance expectations in terms of envelope airtightness and energy consumption set by the RT2012 thermal building code. One possible solution to conciliate indoor air quality and energy performance is to integrate air-cleaning systems in the building ventilation system. Because of the lack of scientific results regarding the suitability of those systems to solve this problematic, an investigation using numerical simulation has been conducted in the present work. This choice led to the development of a numerical tool that resolves in a coupled way, the heat and mass transfers, considering a multi-pollutant representation at the scale of the building/rooms. This tool was developed in the Dymola environment, using the Modelica programming language. Several experiments were also performed in the present work to acquire complementary data about the sorption of gaseous pollutants by indoor covering materials and about the cleaning effectiveness and energy consumption of six air-cleaning systems. To illustrate the capabilities of the numerical tool, simulations have been performed for an office building zone. The building has been located in two climatic zones and submitted to two levels of outdoor pollution, for a whole year. Three of the tested solutions that have shown the best air-cleaning performances in the experimental phase have been simulated under various operating conditions. Two cases of higher amount of fresh air, i.e. without any air-cleaning system, have been also included to the study. One index has then been defined to compare the performance of the different solutions considering both the exposure reduction to eight pollutants and the induced energy consumption. The results obtained in the present study confirm the adequacy of the proposed methodology. In particular, the importance of evaluating the solutions in their real context and not simply relying on their intrinsic performances to judge their performances when applied to indoor environments has been demonstrated. Another important issue is the need to conduct experimental characterizations of sorption processes and air-cleaning system under environmental conditions representative of real indoor spaces, i.e. low pollutant concentration and adequate air temperature, humidity and velocity. Future developments needed to improve the capabilities of the numerical tool are presented in conclusion as well as some important issues that would need a careful attention for further works in the domain
Souccar, Adham. "Heat transfer and mass transfer with heat generation in drops at high peclet number /." Connect to Online Resource-OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1177603981.
Full textTypescript. "Submitted as partial fulfillment of the requirements for The Doctor of Philosophy degree in Engineering." Bibliography: leaves 65-74.
Souccar, Adham W. "Heat Transfer and Mass Transfer with Heat Generation in Drops at High Peclet Number." University of Toledo / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1177603981.
Full textDe, la Cruz Sanchez Carmen Mariella. "Utilisation de conduites de séchage oscillantes pour réduire les contraintes liées au retrait du bois." Thesis, Paris, AgroParisTech, 2012. http://www.theses.fr/2012AGPT0068/document.
Full textWood drying is an essential process in the wood industry. A perfect control of wood drying is nowadays very important for the wood industry. In this study, we propose the utilization of oscillating drying conditions to reduce the drying stresses induced by wood shrinkage by activating the mechanosorptive creep. The best way to apply this concept remains an open question in the scientific community. Beech wood (Fagus sylvatica), one of the most commonly used hardwood in France, was chosen for this study owing its elevated risk of drying defaults. The effect of oscillating conditions on drying stresses inside the boards was studied by both an experimental and a theoretical approach, structured in three parts: - A first experimental part realized with a semi – industrial kiln in order to study the global effect of oscillating conditions at the stack scale. Improvement of the quality of dried wood was showed by the best homogeneity of water content inside the board and among the boards and by the decrease of global deformations and residual stresses expressed by the gap measured by the slicing test. - The study was continued with a theoretical part based on analytical and numerical modeling to understand the development of internal heat and mass transfers inside the boards and the evolution of drying stresses during oscillating conditions. A simple analytical model adapted to the oscillating conditions was proposed, particularly for kiln users who don't have access to sophisticated numerical tools. The numerical approach used the simulation tool TransPore, able to simulate oscillating drying in more realistic conditions. Its mechanical module was used to set accurate drying schedules to study the effect of oscillating conditions on stresses relaxation. - Finally, a second experimental part was performed in a laboratory scale kiln, at the board scale, to test the information obtained theoretically. A non-symmetrical drying device (flying wood) and two different loaded drying devices (cantilever beam test and three points bending) were used to study the effect of oscillations. However, it is difficult to see the oscillating conditions effect on the stresses relaxation. The confrontation between experimental results at the board scale and the numerical simulation showed the significant effect produced on experimental results by parasite oscillations of small periods and intensities, originated by the kiln regulation. Further work should consider some modifications of the time dependent mechanical behavior model in order to capture the experimentally observed behavior
Benmansour, Jaouad. "Contribution a l'etude des mecanismes de transferts radiatif, thermique et massique dans un systeme plan multiphases semi-transparent." Poitiers, 1988. http://www.theses.fr/1988POIT2281.
Full textChaze, William. "Transferts de chaleur et de masse lors de l’impact d’une goutte sur une paroi chaude en régime d’ébullition en film : application de diagnostics optiques et modélisation." Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0290/document.
Full textThe understanding of phenomena occurring at the impact of a droplet onto a hot wall is crucial for the optimization of spray cooling systems. When the temperature of the wall is high, a vapor layer appears quasi-instantaneously between the droplet and le wall. This film of vapor modifies the hydrodynamic behavior of the droplet and highly reduce the heat and mass transfers in comparison with a wetting impact. Modelling these phenomena is complex because of the numerous coupling between the heat and mass transfers and the fluids dynamic. To get some insights into this phenomenon, optical diagnostic techniques have been developed. Two color planar laser induced fluorescence imaging allows characterizing the distribution of the temperature inside the droplet. Images of the temperature fields, resolved both spatially and temporally, are recorded thanks to the use of a couple of fluorescent dyes keeping a high temperature sensitivity even when they are excited by a nanosecond pulsed laser with and an energy of hundreds m J. In parallel, the infrared thermography is used to determine the temperature of the impinged surface made of sapphire. For that, this surface is coated with a thin film (about 300 nanometers) of TiAlN, highly emissive in the IR domain as opposed to the sapphire which is transparent in it. High frame rate image sequences are analyzed thanks to an analytical inversion model, taking into account the thermal conduction in the sapphire, in order to estimate the heat flux density at the impact surface. The thickness of the vapor layer was also deduced from this measurements thanks to the hypothesis of a dominant thermal conduction in the vapor layer. A study of water drop impact was performed with different impact speeds, wall temperatures and different drop injection temperatures. In most of the cases, the heat flux extracted from the wall in close to the flux transferred to the liquid phase of the droplet. When the wall temperature approaches or exceeds the Leidenfrost temperature, the transfers become more sensitive to the Weber number and less sensitive to the wall temperature. The vapor layer thickness is affected by instabilities whose caracteristics (wavelengths, amplitude) were investigated from the IR images. Eventually, a 1-Dsemi-empirical model is given for describing the heating of the liquid part of the droplet and the growth of vapor layer. The effect of the pressure exerted by the droplet onto the vapor film rapidly decreases during the impact process, so that the growth of the vapor film is only driven by the heat transferred by conduction to the droplet and not by dynamical parameters such as the impact velocity
Kilic, Ilker. "Heat And Mass Transfer Problem And Some Applications." Phd thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614140/index.pdf.
Full textLindblom, Jenny. "Condensation irrigation : simulations of heat and mass transfer." Licentiate thesis, Luleå : Luleå University of technology, 2006. http://epubl.luth.se/1402-1757/2006/08.
Full textHussain, Arshad. "Heat and mass transfer in tubular inorganic membranes." [S.l.] : [s.n.], 2006. http://diglib.uni-magdeburg.de/Dissertationen/2006/arshussain.htm.
Full textPorter, Simon William. "Heat and mass transfer during structured cereal baking." Thesis, University of Bristol, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.505758.
Full textGalbraith, Graham H. "Heat and mass transfer within porous building materials." Thesis, University of Strathclyde, 1992. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=21508.
Full textSabir, Hisham. "Heat and mass transfer processes in absorption systems." Thesis, King's College London (University of London), 1993. https://kclpure.kcl.ac.uk/portal/en/theses/heat-and-mass-transfer-processes-in-absorption-systems(ab68d065-c159-4292-ad39-b7a820ac0054).html.
Full textGlockling, James L. D. "Heat and mass transfer in specific aerosol systems." Thesis, London South Bank University, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303937.
Full textStaton, JoAnna Christen II. "Heat and Mass Transfer Characteristics of Desiccant Polymers." Thesis, Virginia Tech, 1998. http://hdl.handle.net/10919/9785.
Full textMaster of Science
Shao, Ming. "Modelling simultaneous heat and mass transfer in wood." Thesis, Virginia Tech, 1994. http://hdl.handle.net/10919/42073.
Full textMaster of Science
Okorafor, Agbai Azubuike. "A study of heat and mass transfer in a double-diffusive system /." Available from the University of Aberdeen Library and Historic Collections Digital Resources. Restricted: no access until May 13, 2009, 2009. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?application=DIGITOOL-3&owner=resourcediscovery&custom_att_2=simple_viewer&pid=26048.
Full textOh, Sung Hyuk. "Experimental and numerical investigation of turbulent flow and heat (mass) transfer in a two-pass trapezoidal channel with turbulence promoters." [College Station, Tex. : Texas A&M University, 2008. http://hdl.handle.net/1969.1/ETD-TAMU-3198.
Full textDarolles, Danielle. "Couplages transferts de chaleur et de masse a la surface de materiaux poreux utilises en genie civil lors de sechages en ecoulements turbulents." Toulouse 3, 1987. http://www.theses.fr/1987TOU30080.
Full textSong, Yang. "Solids transportation, heat and mass transfer in rotary dryers." Thesis, University of Ottawa (Canada), 2003. http://hdl.handle.net/10393/26346.
Full textMcClelland, Elizabeth A. "Heat and mass transfer in an axisymmetric sudden expansion." Thesis, Georgia Institute of Technology, 1994. http://hdl.handle.net/1853/16462.
Full textTzevelecos, Wassilis. "Contribution to Heat and Mass Transfer for Space Experiments." Doctoral thesis, Universite Libre de Bruxelles, 2018. https://dipot.ulb.ac.be/dspace/bitstream/2013/269864/6/contratWT.pdf.
Full textDoctorat en Sciences de l'ingénieur et technologie
info:eu-repo/semantics/nonPublished
Pembery, J. G. A. "Mass transfer modelling of heat transfer in partially blocked nuclear fuel bundles." Thesis, University of Exeter, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.354029.
Full textGilbert, Gregory P. "Flow through a model fin and tube heat exchanger and its influence on mass and heat transfer /." Title page, contents and summary only, 1987. http://web4.library.adelaide.edu.au/theses/09ENS/09ensg464.pdf.
Full textFurfaro, Damien. "Simulation numérique d'écoulements multiphasiques, problèmes à interfaces et changement de phase." Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4751/document.
Full textThis work deals with the numerical simulation of compressible multiphase flows in velocity disequilibrium. A HLLC-type two-phase Riemann solver is developed and validated against exact solutions and experimental data. This solver is robust, simple, accurate and entropy preserving. The numerical method is then implemented in 3D unstructured meshes. Furthermore, a numerical technique consisting in enforcing the correct energy partition at a discrete level in agreement with the multiphase shock relations is built. The multiphase extension of the HLLC-type Riemann solver is realized and allows the simulation of a wide range of applications. Finally, a droplet heat and mass transfer model with large range of validity is derived. It is valid in any situation: evaporation, flashing and condensation. It accounts for coupled heat and mass diffusion in the gas phase, thermodynamics of the multi-component gas mixture and heat diffusion inside the liquid droplet, enabling in this way consideration of both droplets heating and cooling phenomena
Obame, Mve Herbert. "Compréhension des écoulements et optimisation des transferts de chaleur et de masse au sein d’une structure capillaire." Thesis, Lyon, INSA, 2014. http://www.theses.fr/2014ISAL0052/document.
Full textAbstract The automotive air conditioning is a major challenge for the automotive manufacturers insofar it causes a release of 10 g/CO2/km, engenders an extrafuel consumption of 5 % and will be taken into account in the balance sheet in 2020 MEVG. In this perspective, the automotives constructor PSA Peugeot Citroën has developed a new process, absorption air conditioning of water vapor by lithium bromide solution, which marks a break with the classic vapor-compression system. This manuscript is focused at the main body of the system, an innovative evaporator/absorber where both fluids are flowing down and confined between two finely meshed plastic wire screens and maintained between them by capillary effects. The heat and mass transfers in this system occur at the liquid/vapour interface formed by complex menisci that represent the surface of transfer. An experimental test bench allowing the description of three-dimensional shape of menisci using confocal microscopy has been carried. The volume of fluid model has been used for the numerical reconstruction of the liquid/vapour interface. The comparison between numerical and experimental data has shown a good agreement. Numerical simulations have shown that the flow is influenced by the geometry that promotes the creation of stagnant layer solution and vorticity zones. A numerical optimization has been carried with as objective function the heat rate that di uses through the interface. This one has allowed to get out the optimal parameters allowing to have an heat rate of more than 2.5 times higher compared to the reference case. This optimization has highlighted a preferential zone in which heat transfers are maximum. The work has also dealt with the e ect of the shape of the wires and the effect of the shape of menisci on the transfer, showing that it is preferable to work with hydrophobic materials and with cylindrical wires
Stemmelen, Didier. "Ébullition en milieu poreux capillaire : modélisation et expérimentation." Vandoeuvre-les-Nancy, INPL, 1991. http://docnum.univ-lorraine.fr/public/INPL_T_1991_STEMMELEN_D.pdf.
Full textPekdemir, Turgay. "Convective mass transfer from stationary and rotating cylinders in a jet flow." Thesis, University of Exeter, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.260621.
Full textGoulet, Remi. "Development and analysis of an innovative evaporator/absorber for automotive absorption-based air conditioning systems : investigation on the simultaneous heat and mass transfer." Thesis, Lyon, INSA, 2011. http://www.theses.fr/2011ISAL0099.
Full textAutomotive air conditioning systems are based on the vapour compression cycle that requires mechanical energy for its operation. This mechanical energy is provided by the engine, which engenders year-averaged fuel extra consumptions, and thereby extra pollutant emissions, of the order of 5 %. Absorption cooling technology is of interest as this system could be driven by the engine waste heat.The absorption air conditioning technology has been under the scope of the R&D services of the french manufacturer PSA Peugeot Citroën for a decade. PSA's major innovation concerns the evaporator/absorber: a new system based on the confinement inside capillary structures of refrigerant and absorbent falling films has been patented. This new layout aims at avoiding unwanted mixing of the fluids. Experimental analysis of this original component has shown that the refrigerating effect is limited by the absorption phenomenon. It was proved that the refrigerating effect produced by the system is equal to one third of the maximal effect that could be achieved. A simple model of the absorption part has been proposed. It provides a guideline to improve the design of the component. A literature review has revealed that the absorption models are based on assumptions whose reliability is not obvious. Especially, most of the authors assume that the thermophysical properties are constant. The impact of this assumption has been clarified in the simple case of pool absorption. Modeling the simultaneous heat and mass transfer that takes place in the liquid absorbent requires to account for the increase of the liquid volume. This was achieved by means of a finite-volume treatment of the governing equations over a dynamic grid. Two procedures for the grid deformation have been implemented and compared. The numerical results have been compared to experimental results obtained on a bench developed on purpose and to experimental data from the literature. Finally, the impact of the non-absorbable gases on the absorption rate has been investigated numerically and experimentally, in the pool absorption case. This study enabled to confirm the phenomena at the origin of the decrease of the absorption rate. However, we could not clarify with certainty the importance of gravity-driven flows in the vapour phase, in the presence of non-absorbable gases
Jia, Dening. "Heat and mass transfer in pulsed fluidized bed of biomass." Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/61087.
Full textApplied Science, Faculty of
Chemical and Biological Engineering, Department of
Graduate
Parra, Saldivar Maria Luisa. "Heat and mass transfer behaviours of building materials and structures." Thesis, Cranfield University, 2005. http://hdl.handle.net/1826/4019.
Full textKadylak, David Erwin. "Effectiveness method for heat and mass transfer in membrane humidifiers." Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/7092.
Full textFrancis, Nicholas Donald. "Heat and mass transfer in a semi-porous textile composite." Diss., Georgia Institute of Technology, 1994. http://hdl.handle.net/1853/17085.
Full textRoberts, David Nigel. "Heat and mass transfer studies in sodium-argon filled enclosures." Thesis, London South Bank University, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.245136.
Full textARAÚJO, PAULO MURILLO DE SOUZA. "HEAT AND MASS TRANSFER BETWEEN LIQUID FILM AND AIR STREAM." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1986. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=20587@1.
Full textThe combined momentum, heat and mass transfer is analysed in a two domensional inclined channnel for a countercurrent, or co-current turbulent air strem flowing past a liquid falling film. The film flow, supposed to be laminar, consists of a weak, or co-current tubulent air stream flowing past a liquid falling film. The film flow, supposed to be laminar, consists of a weak, or degenerate, solution of triethylene glycol and water. The film flow, supposed to be laminar, consists of a weak, or degenerate, solution of triethylene glycol and water. The lower plate of the channel is maintained at a constant, relatively high from the liquid to the gas phase. The stream of air is usually turbulent, thus assuring convenient rates of tranferred mass of water. Nevertheless, the possibility of laminar flow in the gas is not avoided. The second plate of the channel is considered as adiabatic and both plates are impervious to water. The hydrodynamic part of the problem is solved separately, and the determination of temperature and concentration of water profiles in the two phases is of major importance. The apparatus above described is intended to be a regenerator of the hygroscopic liquid, previously used in an air dryer, for industrial or agricultural purposes. The tash suggested by the problem is then to simulate the conditions, under which this mass exchanger will operate. Following the simulation, heat and mass transfer coefficientes can be predicted for a large range of flow rates of both gas an liquid phases. In fact, in recent years several investigators have manifested an increasing interest in developing studies of such equipment. In situations where a source of energy at low temperature is freely available, and this is the case of solar energy or industrial rejects, the employment of liquid dehumidifier regenerators is particularly attractive for evaporative cooling air conditioning systems. The partial differential equations of the problem, accompanied by suitable boundary conditions, are solved by a finite difference scheme, based on the volume of control approach. There are iterative procedures involved and solutions is reached in a mainframe computer. The results seem to be in accordance with the expected analoggy between heat and mass transfer. Some correlations are presented for the principal parameters of the problem. Lastly, a methodology is proposed for the design of the equipment. In spite of the complexity of the problem, it is possible to provide the user with a few simple analytic equations, which can be solved in any micro-computer or even in a pocket calculation. Theses equations arise from the employment of the penetration theorym briefly discussed and compared with numerical results. Indubitably, the use of this theory must be in compliance with the previously obtained numerical correlations.
Mattingly, Brett T. (Brett Thomas). "Containment analysis incorporating boundary layer heat and mass transfer techniques." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/84749.
Full text