Dissertations / Theses on the topic 'Heat pipe solar collector'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Heat pipe solar collector.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Zhao, Xudong. "Investigation of a novel heat pipe solar collector/CHP system." Thesis, University of Nottingham, 2003. http://eprints.nottingham.ac.uk/11255/.
Full textAlammar, Ahmed Ali Ghulfus. "Enhancing thermal performance of heat pipe based solar thermal collector." Thesis, University of Birmingham, 2018. http://etheses.bham.ac.uk//id/eprint/8207/.
Full textEndalew, Abebe. "Numerical Modeling and Experimental Validation of Heat Pipe Solar Collector for Water Heating." Thesis, KTH, Tillämpad termodynamik och kylteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-77378.
Full textShafieian, Dastjerdi Abdellah. "A solar‐driven membrane‐based water desalination/purification system." Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2020. https://ro.ecu.edu.au/theses/2323.
Full textKužel, Kristián. "Návrh systému řízení a diagnostiky ohřevu vody s využitím solární energie." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2013. http://www.nusl.cz/ntk/nusl-230895.
Full textTiari, Saeed. "EXPERIMENTAL AND NUMERICAL STUDY OF LATENT HEAT THERMAL ENERGY STORAGE SYSTEMS ASSISTED BY HEAT PIPES FOR CONCENTRATED SOLAR POWER APPLICATION." Diss., Temple University Libraries, 2016. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/403481.
Full textPh.D.
A desirable feature of concentrated solar power (CSP) with integrated thermal energy storage (TES) unit is to provide electricity in a dispatchable manner during cloud transient and non-daylight hours. Latent heat thermal energy storage (LHTES) offers many advantages such as higher energy storage density, wider range of operating temperature and nearly isothermal heat transfer relative to sensible heat thermal energy storage (SHTES), which is the current standard for trough and tower CSP systems. Despite the advantages mentioned above, LHTES systems performance is often limited by low thermal conductivity of commonly used, low cost phase change materials (PCMs). Research and development of passive heat transfer devices, such as heat pipes (HPs) to enhance the heat transfer in the PCM has received considerable attention. Due to its high effective thermal conductivity, heat pipe can transport large amounts of heat with relatively small temperature difference. The objective of this research is to study the charging and discharging processes of heat pipe-assisted LHTES systems using computational fluid dynamics (CFD) and experimental testing to develop a method for more efficient energy storage system design. The results revealed that the heat pipe network configurations and the quantities of heat pipes integrated in a thermal energy storage system have a profound effect on the thermal response of the system. The optimal placement of heat pipes in the system can significantly enhance the thermal performance. It was also found that the inclusion of natural convection heat transfer in the CFD simulation of the system is necessary to have a realistic prediction of a latent heat thermal storage system performance. In addition, the effects of geometrical features and quantity of fins attached to the HPs have been studied.
Temple University--Theses
Mahdavi, Mahboobe. "NUMERICAL AND EXPERIMENTAL ANALYSIS OF HEAT PIPES WITH APPLICATION IN CONCENTRATED SOLAR POWER SYSTEMS." Diss., Temple University Libraries, 2016. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/400193.
Full textPh.D.
Thermal energy storage systems as an integral part of concentrated solar power plants improve the performance of the system by mitigating the mismatch between the energy supply and the energy demand. Using a phase change material (PCM) to store energy increases the energy density, hence, reduces the size and cost of the system. However, the performance is limited by the low thermal conductivity of the PCM, which decreases the heat transfer rate between the heat source and PCM, which therefore prolongs the melting, or solidification process, and results in overheating the interface wall. To address this issue, heat pipes are embedded in the PCM to enhance the heat transfer from the receiver to the PCM, and from the PCM to the heat sink during charging and discharging processes, respectively. In the current study, the thermal-fluid phenomenon inside a heat pipe was investigated. The heat pipe network is specifically configured to be implemented in a thermal energy storage unit for a concentrated solar power system. The configuration allows for simultaneous power generation and energy storage for later use. The network is composed of a main heat pipe and an array of secondary heat pipes. The primary heat pipe has a disk-shaped evaporator and a disk-shaped condenser, which are connected via an adiabatic section. The secondary heat pipes are attached to the condenser of the primary heat pipe and they are surrounded by PCM. The other side of the condenser is connected to a heat engine and serves as its heat acceptor. The applied thermal energy to the disk-shaped evaporator changes the phase of working fluid in the wick structure from liquid to vapor. The vapor pressure drives it through the adiabatic section to the condenser where the vapor condenses and releases its heat to a heat engine. It should be noted that the condensed working fluid is returned to the evaporator by the capillary forces of the wick. The extra heat is then delivered to the phase change material through the secondary heat pipes. During the discharging process, secondary heat pipes serve as evaporators and transfer the stored energy to the heat engine. Due to the different geometry of the heat pipe network, a new numerical procedure was developed. The model is axisymmetric and accounts for the compressible vapor flow in the vapor chamber as well as heat conduction in the wall and wick regions. Because of the large expansion ratio from the adiabatic section to the primary condenser, the vapor flow leaving the adiabatic pipe section of the primary heat pipe to the disk-shaped condenser behaves similarly to a confined jet impingement. Therefore, the condensation is not uniform over the main condenser. The feature that makes the numerical procedure distinguished from other available techniques is its ability to simulate non-uniform condensation of the working fluid in the condenser section. The vapor jet impingement on the condenser surface along with condensation is modeled by attaching a porous layer adjacent to the condenser wall. This porous layer acts as a wall, lets the vapor flow to impinge on it, and spread out radially while it allows mass transfer through it. The heat rejection via the vapor condensation is estimated from the mass flux by energy balance at the vapor-liquid interface. This method of simulating heat pipe is proposed and developed in the current work for the first time. Laboratory cylindrical and complex heat pipes and an experimental test rig were designed and fabricated. The measured data from cylindrical heat pipe were used to evaluate the accuracy of the numerical results. The effects of the operating conditions of the heat pipe, heat input, and portion of heat transferred to the phase change material, main condenser geometry, primary heat pipe adiabatic radius and its location as well as secondary heat pipe configurations have been investigated on heat pipe performance. The results showed that in the case with a tubular adiabatic section in the center, the complex interaction of convective and viscous forces in the main condenser chamber, caused several recirculation zones to form in this region, which made the performance of the heat pipe convoluted. The recirculation zone shapes and locations affected by the geometrical features and the heat input, play an important role in the condenser temperature distributions. The temperature distributions of the primary condenser and secondary heat pipe highly depend on the secondary heat pipe configurations and main condenser spacing, especially for the cases with higher heat inputs and higher percentages of heat transfer to the PCM via secondary heat pipes. It was found that changing the entrance shape of the primary condenser and the secondary heat pipes as well as the location and quantity of the secondary heat pipes does not diminish the recirculation zone effects. It was also concluded that changing the location of the adiabatic section reduces the jetting effect of the vapor flow and curtails the recirculation zones, leading to higher average temperature in the main condenser and secondary heat pipes. The experimental results of the conventional heat pipe are presented, however the data for the heat pipe network is not included in this dissertation. The results obtained from the experimental analyses revealed that for the transient operation, as the heat input to the system increases and the conditions at the condenser remains constant, the heat pipe operating temperature increases until it reaches another steady state condition. In addition, the effects of the working fluid and the inclination angle were studied on the performance of a heat pipe. The results showed that in gravity-assisted orientations, the inclination angle has negligible effect on the performance of the heat pipe. However, for gravity-opposed orientations, as the inclination angle increases, the temperature difference between the evaporator and condensation increases which results in higher thermal resistance. It was also found that if the heat pipe is under-filled with the working fluid, the capillary limit of the heat pipe decreases dramatically. However, overfilling of the heat pipe with working fluid degrades the heat pipe performance due to interfering with the evaporation-condensation mechanism.
Temple University--Theses
Pech, Ondřej. "Energetická simulace provozu solárních kolektorů v nízkoenergetickém rodinném domě s teplovzdušným vytápěním." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2010. http://www.nusl.cz/ntk/nusl-228992.
Full textAbdullahi, Bala. "Development and optimization of heat pipe based compound parabolic collector." Thesis, University of Birmingham, 2015. http://etheses.bham.ac.uk//id/eprint/6106/.
Full textZhang, Xingxing. "Investigation of a novel solar photovoltaic/loop-heat-pipe heat pump system." Thesis, University of Hull, 2014. http://hydra.hull.ac.uk/resources/hull:8422.
Full textHess, Stefan. "Low-concentrating, stationary solar thermal collectors for process heat generation." Thesis, De Montfort University, 2014. http://hdl.handle.net/2086/10874.
Full textJohansson, Helena. "Nocturnal cooling : Study of heat transfer from a flat-plate solar collector." Thesis, Karlstad University, Faculty of Technology and Science, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-1523.
Full textThis thesis investigates the possibility of using an unglazed flat-plate solar collector as a cooling radiator. The solar collector will be connected to the condenser of a heat pump and used as cooler during nighttime. Daytime the solar collector will be connected to the evaporator of the heat pump and used as heat source. The two widely differing fields of application make special demands on the solar collector. The task is given by the heat pump manufacturer Thermia and the main objective is to find out whether a solar collector should be used as a cooler or not. The performance of the solar collector under varying environmental conditions is investigated using COMSOL Multiphysics 3.3. Only the cooling properties are investigated here. The performance of the solar collector as a heat exchanger is estimated using the effectiveness-NTU method, and the solar collector is found to be a good heat exchanger at low wind speeds. The heat transfer coefficients of the convection and radiation are determined for varying temperature and wind speeds. The convective heat transfer coefficient is lowered by tubes above the absorber plate and for a high convective heat transfer rate the solar collector surface should be smooth. For a high radiative heat transfer rate the surface needs to have a high emissivity. The cooling rate is higher from a warm surface than from a cold and since no temperature change of the heat carrier is necessary the solar collector should be kept at a high temperature. To increase the cooling rate alterations need to be made to the solar collector that makes its heating performance deteriorate. A solar collector that can be used for cooling is not an efficient solar collector.
Yagoub, Waleed. "Exploitation of solar thermal technologies using a novel heat pipe design." Thesis, University of Nottingham, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.404043.
Full textAlwaer, Ayad Almakhzum Mohamed. "A prototype desalination system using solar energy and heat pipe technology." Thesis, Cape Peninsula University of Technology, 2016. http://hdl.handle.net/20.500.11838/2455.
Full textThe water desalination process needs large quantities of energy, either directly from fossil fuel or electricity from the national grid. However, these sources of energy significantly contribute to problems such as global warming in addition to creating a drain on the economy, due to their high cost. This dissertation is a description of the research undertaken with the aim of producing a water desalination prototype; a novel approach that was designed using state-of-the-art solar water heating equipment, incorporating the technologies of evacuated tubes and heat pipes. During the execution of the project, various modifications to the original commercially-available solar water heating system were attempted, each aimed at increasing the production of pure water. Finally, the system proved capable of producing a reasonable amount of pure water after twelve lengthy indoor experiments conducted in a laboratory in the department of Mechanical Engineering at the Cape Peninsula University of Technology, Bellville Campus, Cape Town, South Africa. Each experiment lasted five days on the basis of seven hours of exposure to an average amount of simulated solar radiation, followed by seventeen hours daily of inactivity and partial cooling down of the system.
Kleyn, Gysbert. "A comparative study of performance and efficiency of a tube and fin type domestic solar water heat collector." Thesis, Nelson Mandela Metropolitan University, 2015. http://hdl.handle.net/10948/7959.
Full textDavid, Hertel Julian. "Study on the general applicability of the collector efficiency model to solar process heat collectors." Doctoral thesis, Universitat de les Illes Balears, 2019. http://hdl.handle.net/10803/671483.
Full text[cat] Segons diversos estudis, la capacitat instal·lada de captadors solars tèrmics pel subministrament de calor en processos industrials s’incrementarà significativament en els propers anys. La gran diversitat de dissenys i temperatures de treball d’aquest tipus de captador fa difícil l’avaluació dels seus rendiments. Encara que el mètode experimental quasi dinàmic s’ha desenvolupat per la major part de models de captador, segueix tenint limitacions o imprecisions a l’hora d’avaluar captadors específics per calor de procés. Aquesta tesi analitza algunes d’aquestes limitacions, centrant-se principalment en l’avaluació de l’eficiència òptica. Per l’anàlisi òptica, en aquesta tesi s’ha desenvolupat un algoritme avançat de ray-tracing. L’algoritme ha servit per realitzar una anàlisi de sensibilitat d’un captador Fresnel, que ha permès conèixer quins son els paràmetres que tenen una major influència en la qualitat dels resultats obtinguts en les simulacions de ray-tracing. S’ha arribat a dues conclusions: En primer lloc, simulacions espectrals no son rellevants per aplicacions solars tèrmiques, a no ser que la dispersió del mirall depengui significativament de la longitud d’ona. En segon llos és imprescindible especificar al dependència de l’angle d’incidència dels materials òptics per generar resultats acurats. En el cas de captadors concentradors biaxials, s’aplica el model de factorització del modificador d’angle d’incidència. Aquesta factorització te sempre associat un cert error, ja que l’IAM no és en general factoritzable. S’ha caracteritzat l’error per quatre geometries de captadors diferents, comparant el models de factorització amb les simulacions ray-tracing. Els resultats s’han presentat en funció de la latitud geogràfica. La factorització a l’espai θi-θT es la que ofereix més bons resultats en gairebé tots els casos analitzats. Quatre geometries diferents de captador foren analitzades per determinar la dependència amb la temperatura de l’error de factorització. S’ha demostrat que a mesura que s’incrementa la temperatura de treball, s’incrementa l’error relatiu del la factorització, malgrat això, dins del rang de temperatures econòmicament viables, l’error es manté constant. Això és degut a que a mesura s’incrementa la temperatura, es redueixen les hores de treball, i per tant també les hores on el captador treballa sota els angles més desfavorables per la factorització
[spa] Según varios estudios, la capacidad instalada de captadores solares térmicos para proveer calor en procesos industriales se va a incrementar significativamente a lo largo de las próximas décadas. La gran variedad de diseños y temperaturas de este tipo de captadores hace complicada la evaluación de sus rendimientos. Aunque el métdodo experimental quasi-dinámico ha sido diseñado para la mayoría de modelos de captadores, sigue teniendo limitaciones o imprecisiones a la hora de evaluar captadores de mediana escala. Esta tesis analiza algunas de dichas limitaciones, centrándose principalmente en la evaluación de la eficiencia óptica. Para el análisis óptico en esta tesis se ha desarrollado un algoritmo avanzado de raytracing. El algoritmo ha servido para realizar un análisis de sensibilidad de un captador Fresnel, para conseguir con ello un mayor conocimiento de los parámetros más influyentes en las simulaciones ray-tracing. Se ha llegado a dos conclusiones: En primer lugar, simulaciones espectrales no son relevantes para aplicaciones solares térmicas, a no ser que la dispersión del espejo dependa significativamente de la longitud de onda. En segundo lugar, es imprescindible especificar la dependencia del ángulo de incidencia de los materiales ópticos para generar resultados precisos. En el caso de captadores concentradores biaxiales, se aplica el modelo de factorización del ‘incidence angle modifier’. Por defecto, este modelo introduce errores factorizando funciones que no son factorizables. Se ha caracterizado el error para cuatro geometrías de captadores diferentes comparando el modelo de factorización con las simulaciones ray-tracing. Los resultados han sido presentados como función de la latitud geográfica. La factorización en el espacio θi-θT ha demostrado los mejores resultados para casi todos los casos. Cuatro geometrías diferentes fueron sometidas a simulaciones de ray-tracing para analizar la dependencia térmica del mismo error de factorización. Se ha demostrado que a medida que aumenta la temperatura del proceso, aumenta también el error relativo de factorización, sin embargo, dentro del rango económicamente viable de temperaturas, el error se mantiene constante. Esto se debe a que a medida se incrementa la temperatura, el captador deja de operar primero en los momentos de ángulos más desfavorables para la factorización.
Wang, Zhangyuan. "Investigation of a novel façade-based solar loop heat pipe water heating system." Thesis, University of Nottingham, 2012. http://eprints.nottingham.ac.uk/12343/.
Full textDeshpande, Dhananjay D. "Computer Modeling Of A Solar Thermal System For Space Heating." Wright State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=wright1484142894264319.
Full textŠumić, Mersiha. "Thermal Performance of a Solarus CPC-Thermal Collector." Thesis, Högskolan Dalarna, Energi och miljöteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:du-14526.
Full textSingh, Harjit. "An experimental study of natural convective heat flow phenomena in concentrating compound parabolic solar collector cavities." Thesis, University of Ulster, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.516521.
Full textMohammed, Hussein A. Mohammed. "Heat Transfer Enhancement in a Parabolic Trough Solar Collector (PTSC) Using Passive Technique and Nanofluids/ Hybrid Nanofluids." Thesis, Curtin University, 2021. http://hdl.handle.net/20.500.11937/87667.
Full textAbbott, Ashley Burnett. "Analysis of Thermal Energy Collection from Precast Concrete Roof Assemblies." Thesis, Virginia Tech, 2004. http://hdl.handle.net/10919/10082.
Full textMaster of Science
Okafor, Izuchukwu Francis. "Influence of Circumferential Spans of Heat Flux Distributions on Secondary Flow, Heat Transfer and Friction Factors for a Linear Focusing Solar Collector Type Absorber Tube." Thesis, University of Pretoria, 2017. http://hdl.handle.net/2263/64173.
Full textThesis (PhD)--University of Pretoria, 2017.
Advanced Engineering Centre of Excellence at the University of Pretoria, NRF, TESP, NAC, and SOLAR Hub with the Stellenbosch University, EEDSM Hub and CSIR is highly acknowledged and duly appreciated.
Mechanical and Aeronautical Engineering
PhD
Unrestricted
Sari, Ozgur Gokmen. "Exergy Analysis Of A Solar Assisted Absorption Heat Pump For Floor Heating System." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/2/12604765/index.pdf.
Full textMalan, Daniel Johannes. "Latent heat thermal energy storage for solar water heating using flat heat pipes and aluminum fins as heat transfer enhancers." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/96140.
Full textENGLISH ABSTRACT: Solar energy is a time dependent, high-temperature radiant energy resource. The utility of a solar thermal energy system increases if the hot temperature source is available when it is needed most. This is realized by the thermal storage of the solar energy. Thermal storage gives greater versatility to a solar energy system by decoupling the heat source from the heat sink. A large quantity of energy may be stored during the melting process in a phase change material (PCM) within a small temperature range. This molten PCM can then deliver its absorbed heat at a constant temperature in a heating application. In this study a phase change storage system (PCS) is developed and proposed for a solar water heating application. This PCS system stores more heat per unit mass than would be possible with water across the same temperature range. The heat transfer rate in and out of many PCMs is slow because of the low thermal conductivity of the PCM. However, heat transfer enhancers (HTE), such as heat pipes and fins may be added to enhance heat absorption and heat removal rates. Heat pipes have the inherent capability to transfer heat at high rates across large distances, even where the temperature difference is small. In this thesis a description is given of a PCS system consisting of paraffin wax as the PCM and which uses rectangular heat pipes in conjunction with aluminium fins to enhance heat transfer. The storage design is modular and each module has the characteristic that enhanced heat transfer in and out of the PCM is possible when the module is heated or cooled. It also has the capability to quickly absorb or alternatively to supply heat at a nearly constant temperature during the phase change of the module. A rectangular module was designed and built. The module was then analysed under controlled heat absorption and heat removal cycles. The heat up experiment involved an electrical kettle as the hot temperature source. The heat sink was a mains water heat exchanger. The experimental results were compared to those of a transient numerical model, which calculates theoretically how the module will perform thermally under the given test conditions. The numerical model of the experimental set-up was validated when it was found that the numerical model results resemble the experimental results. The numerical model was then adapted to simulate a novel solar water heater (SWH) with an additional PCS container. The improvement over previous designs is that the additional storage container can be heated to a higher temperature than the allowable geyser temperature. The system also heats up and cools down at a faster rate than would be possible without the HTEs. From the numerical simulation the size and performance of such a system is determined. This numerical analysis indicated that a phase change storage system in a SWH application will increase the hot water delivered by a given solar collector and geyser by increasing the storage capacity and by heating up the geyser overnight for early morning hot water use.
AFRIKKANSE OPSOMMING: Son energie is ‘n tyd afhanklike, hoë temperatuur radiasie energiebron. Die bruikbaarheid van ‘n sontermiese energie sisteem verhoog indien die hoë temperatuur bron beskikbaar is wanneer dit die meeste benodig word. Dit kan verwesenlik word deur die sonenergie termies te stoor. Termiese storing bied groter veelsydigheid aan ‘n sontermiese stelsel deur effektief die hittebron te ontkoppel van die hitte sink. ‘n Groot hoeveelheid energie kan, gedurende die smeltingsproses in ‘n faseveranderingsmateriaal binne ‘n nou temperatuurband gestoor word. Hierdie gesmelte materiaal kan weer op sy beurt in die waterverhittingstoepassing, die geabsorbeerde hitte teen ‘n konstante temperatuur oordra. In hierdie studie word ‘n sonwaterverwarmer stelsel wat aangepas is deur ‘n addisionele latente hittestoor daaraan te heg, voorgestel. Hierdie faseverandering hittestoor kan meer hitte stoor as wat water in dieselfde temperatuur band sou kon. Die hitteoordrag tempo na en van baie van die faseveranderingsmateriale (FVM) is egter as gevolg van die lae termiese geleidingskoëfisient, stadig. Hierdie eienskap kan gelukkig verbeter word deur hittepype en hitteoordrag verhogings materiaal soos vinne by te voeg. Hittepype het die inherente eienskap om hitte teen ‘n hoë tempo oor groot afstande, oor te dra, selfs oor ‘n klein temperatuurverskil. In hierdie tesis word ‘n ondersoek rakende ‘n faseverandering storingsisteem wat bestaan uit paraffien was as die FVM en reghoekige hittepype wat te same met met aluminium finne gebruik word om die hitteoordragtempo te verhoog, beskryf. Die stoorontwerp is modulêr en elke module het die kenmerk van hoë hitteoordrag na en van die FVM. Die module het verder ook die eienskap om vining hitte te absorbeer of hitte af te gee. Dit gebeur teen ‘n konstante temperatuur gedurende die faseverandering van die FVM. Presies so ‘n reghoekige module is ontwerp en gebou en onder beheerde hitte absorbering- en hitte verwyderingsiklusse analiseer. Tydens die verhittings eksperiment is ‘n elektriese ketel van gebruik gemaak wat gedien het as die hoë temperatuur bron. Die hitte sink was ‘n hitteruiler wat kraanwater van ‘n konstante hoogte tenk ontvang het. Die resultate van die volledige toets is met die resultate van tydafhanklike numeriese model vergelyk. Hierdie numeriese model bereken teoreties wat die module se storing verrigting onder gegewe toets omstandighede sal wees. Die numeriese model se resultate het goed vergelyk met die resultate van die eksperimente. Die numeriese model van die module is toe aangepas om ‘n sonwaterverwarmer met addisionele stoortenk wat fase verandering materiaal gebruik, te simuleer. Hierdie ontwerp is anders as vorige ontwerpe in die sin dat hoër temperature as wat die warmwatertoestel kan hanteer, in die faseverandering storingstenk, bereik kan word. Die sisteem kan ook as gevolg van die hitteoordrag verhoging materiaal, vinniger verhit of afkoel en teen ‘n vinniger tempo. Die simulasie van die sonwaterverwarmer met FVM word gebruik om die grootte en verrigting van die sisteem te bepaal. Hierdie numeriese model toon aan dat wanneer ‘n addisionele faseverandering storingstelsel in ‘n sonwaterverwarmer toepassing gebruik word, die warm water wat die verbruiker uit die sisteem kan verkry, kan verhoog. Die rede hiervoor is dat meer hitte gestoor kan word, wat beskikbaar gemaak word aan die warm water tenk.
Saini, Puneet Kumar. "A Preliminary Optimisation and Techno-economic Analysis of Solar Assisted Building Heating System Using Transpired Air Solar Collector and Heat Pump in Sweden." Thesis, Högskolan Dalarna, Energiteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:du-30537.
Full textCaglar, Ahmet. "Theoretical And Experimental Performance Analysis Of A Solar Assisted Heat Pump." Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/3/12607898/index.pdf.
Full textKamiński, Kazimierz. "Correlation analysis between the design and thermophysical properties of solar collector on the heat transfer effectiveness : PhD thesis summary." Rozprawa doktorska, [s.n.], 2015. http://dlibra.tu.koszalin.pl/Content/1061.
Full textGil, Camilo. "An Optimal Control Approach for Determiniation of the Heat Loss Coefficient in an ICS Solar Domestic Water Heating System." Doctoral diss., University of Central Florida, 2010. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2567.
Full textPh.D.
School of Electrical Engineering and Computer Science
Engineering and Computer Science
Electrical Engineering PhD
Listén, Lars-Åke, and Harald Wallin. "Luftvärmeväxlare med låg ljudnivå : Även i symbios med solfångare." Thesis, Karlstad University, Division for Engineering Sciences, Physics and Mathematics, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-732.
Full textRapporten handlar om ett examensarbete omfattande 20 p som är utfört för Thermia AB i Arvika. Uppdragsgivaren ville få fram förslag på möjliga åtgärder som kan minska ljudnivån från en luftvärmeväxlare. För bra helhetsbild av projektet, läs även kapitel: 6.
Värmeväxlaren ingår som en komponent i ett värmepumpssystem, Thermia Aer 5, som använder uteluften som värmekälla. Huvudmålet med projektet blev alltså att undersöka och utvärdera ljudbildningen från värmeväxlaren samt att komma fram till olika förslag på möjliga åtgärder som har potential att sänka ljudnivån. Värmeväxlarens förmåga att uppta energi fick ej heller försämras.
I projektets slutskede tillverkades det också en enkel prototyp på ett av designförslagen där den störande ljudnivån blev lägre. Läs mer om detta längre ner.
Ett delmål som vi själva formulerade, var också att undersöka olika möjligheter att öka värmepumpssystemets totala kapacitet för energiupptagning genom att kombinera systemet med någon form av solfångare. Kombinationen solfångare och luftvärmeväxlare innebär också en lägre ljudnivå eftersom fläkten i värmeväxlaren mer sällan behöver gå på full effekt. I viss mån har även estetiska aspekter på formgivningen beaktats.
Nedan presenteras fyra olika förslag på idéer för att öka luftvärmeväxlarens prestanda:
Av det första förslaget tillverkades en prototyp där luftvärmeväxlarens utblås är riktat uppåt, istället för som nu åt sidan, vilket minskar risken att omgivningen nås av högfrekvent ljud. Högfrekvent ljud sprids nämligen inte så mycket i sidled.
Batteridelen på värmeväxlaren har fått en större area, vilket möjliggör ett minskat volymflöde av luft, utan att den tappar i effekt, jämfört med nuvarande värmeväxlare.
Dessa två åtgärder reducerar det avgivna ljudet med ca10 dB.
En större batteriarea är även positivt ur energisynpunkt då värmefaktorn (COP) ökar på grund av ett minskat antal nödvändiga avfrostningar.
Förslag nummer två inbegriper en solfångarlösning som, tack vare avsaknaden av direktförångning, även går att direktkoppla till köldbäraren (brinen) eller direkt mot värmepumpens ackumulatortank.
Solfångaren täcker hela effektbehovet på sommaren och ger ett tillskott resten av året.
Det tredje förslaget är en s.k. väggplacerad luftsolfångare som förvärmer insugsluften till värmeväxlaren. Den uppenbara fördelen med detta alternativ är den synnerligen enkla konstruktionen vilket gör att kostnaden kan hållas nere, se bild 4.4.4-2.
Det fjärde förslaget, är att låta hela husets tak fungera som en solfångare som bilderna 6-1 visar. Inströmmande luft till värmeväxlaren förvärms av de soluppvärmda takpannorna som kan vara av tegel, betong eller ännu hellre av glas. Dessutom tillvaratas förlustvärme från hustak och ventilation. Detta förslag ger ett mycket gott energiutbyte.
Ytterligare ett intressant sätt att sänka ljudbildningen är att driva fram luften genom värmeväxlaren, helt eller delvis, med hjälp av en hög elektrisk spänning, se kapitel: 6.6.
This report is a candidate degree and the assignment is done in the interest of Thermia AB in Arvika, Sweden. The company wanted proposals of preventive measures aiming to reduce sound emission from a heat exchanger. For a good general impression of the project, see chapter 6. The heat exchanger forms a part of a component in a heat pump system, called Thermia Aer 5, which uses air from outside as a heat source.
The main target of the project was to examine and evaluate sound emission from the heat exchanger and to get different proposals on possible preventive measures in order to lower sound emission. It was not allowed to reduce the heat exchangers ability to collect energy.
In the end of the project a simple prototype was built which took advantage of some of the design proposals. The sound emission from the prototype was reduced.
Another target, formulated by ourselves, was to examine different possibilities to increase the capacity of the heat pump system by combining it with solar collectors. The heat pump system combined with solar collectors also produces reduced sound emission.
Even some aesthetic aspects have been taken into consideration.
Below, four different proposals of ideas are introduced that can increase the performance of the heat exchanger:
The first solution was to direct the air exhaust upwards instead of the tangential exhaust on the present heat exchanger. This makes it more improbable that a high frequency sound wave should reach the surrounding area. Sound with high frequency doesn’t spread so much in a sideways direction. An increase of the battery area makes it possible to lower the air volume flow, because of the increased potential for energy output. These two measures reduced the sound level with a proximal amount of about 10 dB. In addition, an increased exchange battery area increases the heat factor (COP) due to the frost distribution on the battery.
Solution number two include a solar panel that, due to the lack of direct vaporization in the heat pump system, is possible to serial connect direct on the brine or indirectly to the water accumulation tank. The solar panel gives hot water in the summer and an additional energy output the rest of the year.
The third solution is a wall mounted air solar panel which gives the air a higher input temperature to the air heat exchanger. This is a very simple and cost effective solution.
The fourth solution is to let the whole roof of the house act as a solar collector as the pictures 6-1 describes. The sun heats the roofing tile which, in turn, heats streaming air that reaches the heat exchanger. The tile can been made of tiling, concrete - or preferably - transparent glass. Furthermore heat loss from the roof and ventilation is prevented.
Another interesting solution that reduces sound emission is to force air through the exchanger with a high electric voltage field. Further information chapter: 6.6.
Schön, Gustav. "NUMERICAL MODELLING OF A NOVEL PVT COLLECTOR AT CELL RESOLUTION." Thesis, KTH, Energiteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-212731.
Full textEn kombinerad solcellspanel och solvärmefångare (PVT) producerar värme och elenergi på samma yta genom att en värmeväxlare upptar värmen från baksidan av solcellspanelen. Den PVT som berörs i denna studien är nyutvecklad och har aldrig tidigare testats, vilket medför att data för hur den beter sig samt dess termo-elektiska prestanda saknas för olika driftförhållanden samt flödeskonfigurationer. Vidare ger mediet som flödar genom värmeväxlaren upphov till en temperaturgradient, vilken kan innebära en påtaglig skillnad i temperatur mellan solcellerna i solcellspanelen vid mediets in- respektive utlopp. Trots solcellers temperaturkänslighet, så sker simulering i allmänhet med avseende på panelens medeltemperatur istället för att hänsyn tas till denna temperaturgradient. I den här studien implementeras en så kallad ”single diode”-modell i en kommersiell numerisk mjukvara termiska beräkningar för att samsimulera termiskt och elektriskt effektuttag ur den nyutvecklade PVT-designen. Designen modelleras statiskt under givna variationer av vindhastighet, inloppstemperatur, omgivande temperatur, flödeshastighet, solinstrålning och konvektionskoefficienter för mediet samt baksidan av modulen. Resultaten visar att kontrollerbara variabler som inloppstemperatur har högst inverkan på den totala effekten samt att en parallell flödeskonfiguration lämpar sig bäst. Studien visar också att skillnaden mellan simulering på cellnivå och modulnivå inte motiverar en numerisk beräkningsmetod med upplösning satt till solcellsnivå.
Redpath, David A. G. "An experimental investigation of thermosyphon heat pipe evacuated tube solar water heaters subjected to a northern maritime climate." Thesis, Ulster University, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.487166.
Full textCluff, C. Brent, Robert B. Kinney, and F. Eskandani. "Final Report on An Evaluation of Annual Heat Storage of Solar Energy for Arizona Subdivisions Using an Azimuth Tracking Floating Collector." Solar Energy Research Facility, Engineering Experiment Station, University of Arizona (Tucson, AZ), 2013. http://hdl.handle.net/10150/296913.
Full textFarah, Hamad. "Hybrid solar system for heat and electric demands in a simple housing within Sweden and China." Thesis, Högskolan i Halmstad, Akademin för ekonomi, teknik och naturvetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-40596.
Full textEfterfrågan på tillgången till idealisk uppvärmning och effektiva tekniker har alltid varithög. Detta beror främst på utvecklingen inom arkitektur och den kalla naturen i vissaregioner som har lett till en ökad popularitet av värmemarknaden och moderniseradevärmeteknologiert. De nuvarande fjärrvärme-systemen använder kraftvärmeverk förproduktion av kraft och elektricitet. Dessa kraftvärmeanläggningar drivs till stor delgenom biomassa och under vinterperioderna ökar efterfrågan på uppvärmning mycket.Det största problemet med att förlita sig på biomassa enbart är det ständiga behovet avatt bränna avfallsprodukter som inte bara resulterar i att öka efterfrågan på konsumtionav fler avfallsprodukter utan också resulterar i att producera rester (biprodukter) sominte kan brytas ned ytterligare och därmed kan kräva användning av markutrymme fördeponering. solar-moduler å andra sidan har ökat popularitet under de senaste åren.Detta beror främst på deras extremt höga flexibla förmåga att konvertera solbestrålningtill elektrisk och termisk energi. Denna studie kommer att försöka tillhandahålla enomfattande studie av användningen av ett hybridsolsystem som kombinerar en standardPV-modul med en flatplate collector för att simulera en solar-modul samt caselera enfristående version genom att uppskatta energikraven för en enkel bostad i Sverige ochKina. Detta kommer att vara huvudmålet med studien, men möjligheterna att integreradetta hybrida solsystem tillsammans med nuvarande DH-system kommer mestadels attdiskuteras i de första avsnitten för att bevisa möjligheten att utföra ett sådant system. Detteoretiska arbetet som utförs kommer endast att innehålla simuleringar av att bara ha enfristående PV- och flatplate collector module, men att utforma ett hybrid sol- och DHsystemkommer inte att vara huvudfokus för denna studie. Resultaten i slutet avrapporten drog överraskande slutsatsen att den elektriska produktionen för den svenskacaselen var märkbart högre än den för den kinesiska caselen trots att de båda caselernabibehöll samma belastningsvärden och högre solbestrålning för den kinesiska caselen.Detta kan förklaras av skillnaden i modulpriser vid simulering genom PVsyst därinvesteringskostnaden för den svenska PV-modulen (elektrisk komponent) var ungefär3,6 gånger större än den för kinesiska, vilket innebär att PVsyst antar ett störremodulområde för svensk modul och därmed mer energiproduktion. Men när det kom tillvärmeenergiproduktionen, var det möjligt att anta olika samlarfall och följaktligen valdesett område på 7m2 för det svenska perspektivet medan ett område på 4m2 har beaktatsför den kinesiska och värmevärden för användbar energi där jämfördes sedan med dekrav som krävs för uppvärmning i båda fallen. Slutligen drog avhandlingen slutsatsen attdet inte fanns något krav på att ha ett integrerat DH-nätverk i de fristående husen ochdärför kan det vara mer fördelaktigt att ha ett integrerat DH och solsystem i tätarebebyggda bostadsområden.
Popov, Petr. "Návrh řízení průtoku teplovodním výměníkem solárního systému." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2008. http://www.nusl.cz/ntk/nusl-228300.
Full textГаврилишин, Ростислав Іванович, and Rostyslav Havrylyshyn. "Енергоефективність акумулювання сонячної енергії в приватному секторі." Master's thesis, ТНТУ імені Івана Пулюя, 2019. http://elartu.tntu.edu.ua/handle/lib/29912.
Full textThe thesis is devoted to the calculation and assessment of energy efficiency of solar energy storage in the private sector. In the course of the work, the efficiency of the component systems is analyzed. Such as solar collector, vacuum tubular collector, heat accumulator. The influence of weather on the performance of such systems is analyzed. The amount of electricity generated has been calculated and distributed by months for ease of further analysis. The result of the work is a finished analysis of the feasibility and possibility of installing solar panels in the Ternopil region.
ПЕРЕЛІК УМОВНИХ ПОЗНАЧЕНЬ...6 ВСТУП...7 1. ЛІТЕРАТУРНИЙ ОГЛЯД 1.1. Перспективи сонячної енергетики...10 1.2. Розвиток фотовольтаїчної індустрії...12 1.3.Типи сонячних колекторів...15 1.4. Накопичувачі енергії...18 1.5. Вибір акумулятора для системи накопичення електричної енергії...20 1.6. Енергонезалежний будинок...23 1.7. Висновки...25 2. ОСНОВНА ЧАСТИНА 2.1. Ефективність перетворення сонячної енергії у електричну...26 2.2. Ефективність перетворення сонячної енергії у теплову...29 2.3. Втрати при акумулюванні електричної енергії...33 2.4. Втрати при акумулюванні теплової енергії...37 2.5. Використання акумульованої енергії. Втрати при її конвертуванні...41 2.6. Розрахунок втрат будинку...46 2.7. Висновки...50 3. СПЕЦІАЛЬНА ЧАСТИНА 3.1. Оцінка погодних умов у Тернополі...51 3.2. Кількість енергії, що потрапляє на поверхню від Сонця...52 3.3. Кількість генерованої електроенергії з сонячного випромінювання...54 3.4. Кількість генерованого тепла з сонячного випромінювання...55 3.5. Потреби у електроенергії та теплі середньостатистичного приватного будинку...56 3.6. Висновки...60 4. ОБҐРУНТУВАННЯ ЕКОНОМІЧНОЇ ЕФЕКТИВНОСТІ 4.1. Економічна ефективність і окупність сонячної станції...61 4.2. Розрахунок річної економії коштів згідно теоретично розрахованій кількості річної генерації тепла сонячними колекторами...62 4.3. Розрахунок річної економії коштів згідно теоретично розрахованій кількості річної генерації електроенергії сонячними панелями...63 4.4. Розрахунок річних витрат пов’язаних з експлуатацією сонячних колекторів та панелей...64 4.5. Висновки...65 5. ОХОРОНА ПРАЦІ ТА БЕЗПЕКА В НАДЗВИЧАЙНИХ СИТУАЦІЯХ 5.1 Охорона праці...66 5.1.1 Актуальність проблеми електробезпеки...66 5.1.2 Система попередження пожеж...67 5.2 Безпека в надзвичайних ситуаціях...71 5.2.1 Організація цивільного захисту на об’єктах енергетики...71 5.2.2 Захист обладнання для акумулювання сонячної енергії в приватному секторі, від ушкоджень що викликані електромагнітним імпульсом (ЕМІ) ядерних вибухів...73 6. ЕКОЛОГІЯ 6.1 Енергетичні ресурси навколишнього середовища...77 6.2 Нетрадиційні й відновлювані джерела енергії...80 ВИСНОВКИ...84 СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ...85
Oliveira, Santiago del Rio. "Otimização exergetica de um sistema coletor-armazenador de calor latente." [s.n.], 2008. http://repositorio.unicamp.br/jspui/handle/REPOSIP/263492.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica
Made available in DSpace on 2018-08-12T14:21:28Z (GMT). No. of bitstreams: 1 Oliveira_SantiagodelRio_D.pdf: 2035815 bytes, checksum: 7d72e5c223058fb0ce3675f4600214f5 (MD5) Previous issue date: 2008
Resumo: O objetivo desse trabalho é fazer uma otimização exergética de um sistema térmico de energia solar. Esse sistema é composto por um coletor solar e por um tanque armazenador de água retangular que contém material de mudança de fase distribuído em um conjunto de barras. Esse estudo leva em consideração ambas transferências de calor por condução e convecção para a água no coletor solar, e também o processo de mudança de fase para o PCM no armazenador térmico. Assim, no coletor solar são determinadas a temperatura ótima de saída e vazão mássica ótima da água em função das condições de radiação solar. Além disso, para o tanque armazenador, são determinadas a temperatura ótima de fusão do PCM e o máximo trabalho que pode ser obtido levando em consideração o processo de mudança de fase. O processo de fusão do PCM é analisado por meio de uma solução analítica aproximada. Finalmente, foram feitas uma análise energética e exergética de cada componente do sistema bem como de todo o sistema e foram calculadas eficiências de primeira e segunda lei da termodinâmica. Resultados numéricos de um estudo de caso são apresentados e discutidos.
Abstract: This work deals with the exergetic optimization of a solar thermal energy system. This consists of a solar collector and a rectangular water storage tank that contains a phase change material distributed in an assembly of slabs. The study takes into account both conduction and convection heat transfer modes for water in the solar collector, and also the phase change process for the PCM in the storage tank. Thus, in the solar collector, optimal output temperature and optimal mass flow rate are determined as a function of solar radiation conditions. Moreover, for the storage tank, optimal melting temperature and the maximum power output taking into account the phase change process are determined. The melting process in a PCM is analyzed by means of an approximated analytical solution. Finally, energetic and exergetic analysis were done for each system component and for the overall system, and efficiencies of first and second law of thermodynamics were calculated. Results of a numerical case study are presented and discussed.
Doutorado
Termica e Fluidos
Doutor em Engenharia Mecânica
Cseri, Peter. "Systém řízení slunečních kolektorů." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2011. http://www.nusl.cz/ntk/nusl-218907.
Full textShah, Hassim. "Integration of solar thermal collectors in the dairy industry: A techno-economic assessment : A case study of Dubai." Thesis, Uppsala universitet, Institutionen för elektroteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-446212.
Full textOsório, Tiago Vaz Pato. "Linear solar concentrators: new testing tools and facilities, application to novel CPC-type collectors for industrial process heat." Doctoral thesis, Universidade de Évora, 2019. http://hdl.handle.net/10174/25797.
Full textПономарчук, І. А., Р. О. Ворончук, and В. В. Багрій. "Аналіз ефективності використання комбінованих систем теплопостачання багатоповерхової житлової будівлі." Thesis, ВНТУ, 2018. http://ir.lib.vntu.edu.ua//handle/123456789/24333.
Full textThis report will show the combined use of solar collectors and geothermal heat pumps and describe their effectiveness
Šmardová, Eva. "Energetický posudek solární soustavy." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2018. http://www.nusl.cz/ntk/nusl-372048.
Full textEbrahim, Mila. "Performance Evaluation of a Photovoltaic/Thermal (PVT) Collector with Numerical Modelling." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-302122.
Full textEn panel med kombinerad teknik av både solceller och termisk solfångare (PVT) kan producera både elektricitet och värme samtidigt. Forskning har visat att det kan finnas flera fördelar med att integrera PVT-paneler med ett bergvärmesystem, eftersom det mjliggör lagring av termisk energi över året. Dessutom leder ett sådant system till lägre drifttemperaturer som kan öka PVT-panelens effektivitet och livslängd. Syftet med studien är att presentera den elektriska och termiska prestandan av en PVT-panel utvecklat av Solhybrid i Småland AB för olika driftförhållanden som kan uppstå på grund av olika väderförhållanden och inlopps-temperaturer när panelerna är kopplade till ett bergvärmesystem. Vidare utvärderas prestandan för denna panel med ASHRAEmetoden (standard 93-2003), för att möjliggöra jämförelse med andra PVT-paneler. Modelleringsverktyget som använts i studien är mjukvaran COMSOL Multiphysics, som använder finita elementmetoden för att lösa partiella differentialekvationer i värmeöverförings-och flödesproblem. Baserat på prestandakurvorna som presenteras i resultatet, är den termiska och elektriska verkningsgraden approximativt 48.0-53.4% respektive 19.0-19.2% för en reducerad temperatur med värdet noll, en solstrålning mellan 800-1000 W/m2, för en massflödeshastighet på 0.026 kg/sm2 som beslutades som den mest lämpliga för att öka den termiska prestandan. Resultaten resulterade i en värmeavledningsfaktor (FR) och total värmeförlustkoefficient (UL) på 0.56-0.62 respektive 53.4-53.5 W/m2 K. Resultaten på PVT-panelens prestanda under olika väderförhållanden visar att vattnets inloppstemperatur kan påverka drifttiden och mängden termisk energi som kan extraheras under året avsevärt, speciellt i nordiskt klimat. För att bedöma korrektheten i resultaten och den skapade modellen rekommenderas experimentell testning av den studerade PVT-panelen.
Lainka, Pavel. "Využití termických panelů pro zvýšení účinnosti chladiciho okruhu TČ." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2016. http://www.nusl.cz/ntk/nusl-254311.
Full textГрушицький, Олександр Вікторович, and Oleksandr Hrushytskyi. "Теплопродуктивність системи сонячного гарячого водопостачання." Master's thesis, ТНТУ імені Івана Пулюя, 2019. http://elartu.tntu.edu.ua/handle/lib/30171.
Full textIt is established that up to 90% of all thermal losses of a solar collector occur through transparent insulation, so when designing solar collectors considerable attention should be paid to the choice of transparent insulation with high heat transfer resistance. Therefore, it is proposed to use vacuum windows as more effective than single and double glazing transparent insulation in flat solar collectors and solar collectors with reflectors. Vacuum windows have higher heat transfer resistance than single and double glazing. However, the thickness of the VSP is not much more than a single glazing - about 6 mm. Measures are proposed to improve the method of determining the thermal characteristics of solar collectors with evacuated double-glazed windows, which includes a calculation and experimental method for determining the pressure inside the vacuum gap. The optimal characteristics of the evacuated glass unit have been calculated. From which it follows that in order for the heat transfer resistance of the evacuated glass unit to exceed the resistance of the heat transfer of single and double glazing with selective coating, it is necessary to apply one selective coating with a radiating capacity of 0.1 to the inner surface of the glass vacuum-forming glass 3 mm . vols. At these values, the heat transfer resistance of the evacuated glass unit will be 0.77 (m2 • K) / W, which is more than one glass with a selective coating 3 times than a double glass with a selective coating 2 times.
ПЕРЕЛІК ПОЗНАЧЕНЬ ТА СКОРОЧЕНЬ ВСТУП РОЗДІЛ І. ЛІТЕРАТУРНИЙ ОГЛЯД...16 1.1. Актуальність та перспективи сонячної теплоенергетики в Україні...16 1.2. Нагрівання води сонячним випромінюванням...20 1.3. Типи сонячних колекторів...22 1.4. Плоскі сонячні колектори...22 1.4.1. Рідинні сонячні колектори...22 1.4.2. Повітряні сонячні колектори...26 1.5. Сонячні колектори з вакуумною трубкою...29 1.6. Сонячні колектори з відбивачам...30 1.7. Типи прозорої ізоляції для сонячних колекторів...34 1.7.1. Одинарне, подвійне скління...34 1.7.2. Скло з селективними покриттями...35 1.7.3. Прозора ізоляція з полімерних матеріалів...36 1.8. Вакуумні склопакети...39 1.8.1. Конструкція вакуумних склопакетів...39 1.8.2. Вплив товщини скла на коефіцієнт теплопередачі ВСП...40 1.8.3. Вплив селективного покриття на ефективність ВСП...41 1.9. Висновки до розділу...42 РОЗДІЛ 2. ОСНОВНА ЧАСТИНА...44 2.1. Методика розрахунку сонячного колектора з вакуумованим склопакетом...44 2.1.1. Постановка завдання...44 2.1.2. Тепловий баланс сонячного колектора з вакуумованим склопакетом...45 2.1.3. Залежність коефіцієнта теплопровідності розрідженого газу від тиску в вакуумному зазорі вакуумованого склопакету...53 2.2. Розрахунок характеристик вакуумованих склопакетів, які забезпечують підвищення енергоефективності сонячних колекторів...58 2.3. Розрахунок сонячних колекторів з відбивачами...66 2.4. Графоаналітичний метод розрахунку оптичного ККД системи «концентратор-приймач»...68 2.5. Метод розрахунку коефіцієнта концентрації по балансу променистих потоків...74 2.6. Розрахунок енергетичних характеристик сонячного колектора з ©-подібними відбивачами...79 2.6.1. Геометричні параметри ©-подібного відбивача...79 2.6.2. Розрахунок оптичного ККД і коефіцієнта концентрації теплового модуля з ©-подібними відбивачами...80 2.7. Визначення ексергії сонячного колектора з ©-подібними відбивачами...82 2.8. Висновки до розділу...84 РОЗДІЛ 3. СПЕЦІАЛЬНА ЧАСТИНА...86 3.1. Використання редактора формул у MS Word для виконання роботи магістра...86 3.2. Команди меню редактора формул...89 РОЗДІЛ 4. ОБГРУНТУВАННЯ ЕКОНОМІЧНОЇ ЕФЕКТИВНОСТІ...93 4.1. Обґрунтування використання сонячних колекторів...93 4.2. Техніко-економічне обґрунтування системи опалювання і нагріву води на базі геліоколектора...97 4.3. Висновки до розділу...99 РОЗДІЛ 5. ОХОРОНА ПРАЦІ ТА БЕЗПЕКА В НАДЗВИЧАЙНИХ СИТУАЦІЯХ...100 5.1. Основні вимоги безпеки до улаштування та експлуатації технологічного обладнання...100 5.2. Сигнально-попереджувальні пристрої і фарбування...102 5.3. Особливості проведення рятувальних та інших невідкладних робіт при ліквідації наслідків великих виробничих аварій і катастроф...103 РОЗДІЛ 6. ЕКОЛОГІЯ...106 6.1. Класифікація забруднень довкілля...106 6.2. Матеріальні та енергетичні забруднення...108 6.3. Висновки до розділу...110 ВИСНОВКИ...111 ПЕРЕЛІК ПОСИЛАНЬ...113
Dahmén, Viktor, Martin Holgersson, Aron Larsson, and Joel Norman. "How bright does the sun shine over Storvreta IK? : Mapping the energy use of a local Swedish sports club." Thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-295100.
Full textВоронцов, Михайло Геннадійович, and Mykhailo Vorontsov. "Ефективність застосування геліопанелей періодичної дії, суміщених із покриттям будівель." Master's thesis, ТНТУ імені Івана Пулюя, 2019. http://elartu.tntu.edu.ua/handle/lib/29984.
Full textThe thesis is devoted to the efficiency of the heat supply system with heliop panels for a private house, which made it possible to reduce the cost of the energy received for the solar heating system. In the work for the first time the solar panel solar panel construction, constructively connected with the panel covering the building, which is characterized by high heat accumulation properties, was proposed for the first time.
ПЕРЕЛІК УМОВНИХ СКОРОЧЕНЬ...8 ВСТУП...9 РОЗДІЛ 1 ЛІТЕРАТУРНИЙ ОГЛЯД...13 1.1. Аналіз сучасних конструкцій сонячних установок...13 1.1.1. Плоскі сонячні колектори...15 1.1.2. Вакуумні сонячні колектори...17 1.1.3. Концентруючі сонячні колектори...20 1.1.4. Комбіновані сонячні колектори...21 1.2. Аналіз сучасних систем сонячного теплопостачання...23 1.2.1. Системи з активним використанням сонячної енергії...24 1.2.2. Панівні сонячні системи...27 1.2.3. Комбіновані сонячні системи...28 1.3. Методи розрахунку сонячної енергії та досліджень сонячних колекторів...31 1.4. Висновки до розділу 1...36 РОЗДІЛ 2. ОСНОВНА ЧАСТИНА...38 2.1. Аналітичні дослідження термоакумуляції геліопанеллю...38 2.2. Розрахунок теплопоглинання геліопанелі...46 2.3. Дослідження ефективності системи сонячного теплопостачання із геліопанелями...50 2.4. Дослідження ССТ із геліопанелями...60 2.5. Застосування систем сонячного теплопостачання із геліопанелями...66 2.6. Використання геліопанелей для гарячого водопостачання...68 2.7. Висновки до розділу 2...71 РОЗДІЛ 3. СПЕЦІАЛЬНА ЧАСТИНА...73 3.1. Методика розрахунку параметрів системи сонячного теплопостачання...73 3.2. Програма розрахунку параметрів системи сонячного теплопостачання з геліопокрівлею...78 3.3. Висновки до розділу 3...89 РОЗДІЛ 4. ОБГРУНТУВАННЯ ЕКОНОМРІНОЇ ЕФЕКТИВНОСТІ...91 4.1. Техніко-економічннй аналіз ефективності застосування геліопокрівлі...91 4.2. Розрахунок економічного ефекту від використання геліопокрівлі...93 4.3. Висновки до розділу 4...98 РОЗДІЛ 5. ОХОРОНА. ПРАЩ ТА БЕ ЗПЕКА В НАДЗВИЧАЙНИХ СИТУАЦІЯХ...99 5.1. Охорона праці та техніка безпеки при будівництві та експлуатації систем опалення...99 5.1.1. Охорона праці та техніка безпеки при монтажі систем опалення...99 5.1.2. Правила безпеки при експлуатації систем опалення...102 5.2. Аналіз факторів ризику при експлуатації систем сонячного теплопостачання...106 5.3. Заходи для забезпечення електробезпеки...108 5.4. Заходи для запобігання виникнення пожежі...110 5.5. Фактори, що впливають на протипожежну стійкість об'єкту...111 РОЗДІЛ 6. ЕКОЛОГІЯ...115 6.1. Вплив систем сонячного теплопостачання на навколишнє середовище...115 6.2. Забезпечення екологічної безпеки систем сонячного теплопостачання...117 ВИСНОВКИ...123 ПЕРЕЛІК ПОСИЛАНЬ...125
Moummi, Abdelhafid. "Etude globale et locale du rôle de la géométrie dans l'optimisation des capteurs solaires plans à air." Valenciennes, 1994. https://ged.uphf.fr/nuxeo/site/esupversions/3e717f2f-e09a-4b1a-af50-e618b869f5dc.
Full textZeman, Radek. "Spojení kondenzačního kotle se solárními kolektory pro zásobování RD tepelnou energií." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2016. http://www.nusl.cz/ntk/nusl-254319.
Full textKučera, Miroslav. "Moderní energie a snížení energetické náročnosti budov." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2009. http://www.nusl.cz/ntk/nusl-217951.
Full text