Academic literature on the topic 'Heat Recovery Steam Generator'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Heat Recovery Steam Generator.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Heat Recovery Steam Generator"
Vivek, P., and P. Vijaya kumar. "Heat Recovery Steam Generator by Using Cogeneration." International Journal of Engineering Research 3, no. 8 (August 1, 2014): 512–16. http://dx.doi.org/10.17950/ijer/v3s8/808.
Full textWalter, Heimo, and Wladimir Linzer. "Flow Stability of Heat Recovery Steam Generators." Journal of Engineering for Gas Turbines and Power 128, no. 4 (March 1, 2004): 840–48. http://dx.doi.org/10.1115/1.2179469.
Full textOng'iro, A., V. I. Ugursal, A. M. Al Taweel, and J. D. Walker. "Modeling of heat recovery steam generator performance." Applied Thermal Engineering 17, no. 5 (May 1997): 427–46. http://dx.doi.org/10.1016/s1359-4311(96)00052-x.
Full textNorouzi, Elnaz, Majid Amidpour, and Mashallah Rezakazemi. "Heat recovery steam generator: Constructal thermoeconomic optimization." Applied Thermal Engineering 148 (February 2019): 747–53. http://dx.doi.org/10.1016/j.applthermaleng.2018.11.094.
Full textRavi, Kumar, Krishna Rama, and Rama Sita. "Thermodynamic analysis of heat recovery steam generator in combined cycle power plant." Thermal Science 11, no. 4 (2007): 143–56. http://dx.doi.org/10.2298/tsci0704143r.
Full textKaviri, Ganjeh, M. N. Mohd Jafar, and M. L. Tholudin. "Modeling and Optimization of Heat Recovery Heat Exchanger." Applied Mechanics and Materials 110-116 (October 2011): 2448–52. http://dx.doi.org/10.4028/www.scientific.net/amm.110-116.2448.
Full textHessler, George F. "Issues in heat recovery steam generator system noise." Journal of the Acoustical Society of America 101, no. 5 (May 1997): 3038. http://dx.doi.org/10.1121/1.418601.
Full textNAKAMOTO, Masashi, Keiko SHIMIZU, Hiroshi FUKUDA, and Shiro HINO. "H∞Control for a Heat Recovery Steam Generator." Transactions of the Institute of Systems, Control and Information Engineers 7, no. 5 (1994): 176–84. http://dx.doi.org/10.5687/iscie.7.176.
Full textSharma, Meeta, and Onkar Singh. "Parametric Evaluation of Heat Recovery Steam Generator (HRSG)." Heat Transfer-Asian Research 43, no. 8 (December 13, 2013): 691–705. http://dx.doi.org/10.1002/htj.21106.
Full textAltosole, Marco, Giovanni Benvenuto, Raphael Zaccone, and Ugo Campora. "Comparison of Saturated and Superheated Steam Plants for Waste-Heat Recovery of Dual-Fuel Marine Engines." Energies 13, no. 4 (February 22, 2020): 985. http://dx.doi.org/10.3390/en13040985.
Full textDissertations / Theses on the topic "Heat Recovery Steam Generator"
Horkeby, Kristofer. "Simulation of Heat Recovery Steam Generator in a Combined Cycle Power Plant." Thesis, Linköpings universitet, Institutionen för systemteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-75836.
Full textVytla, Veera Venkata Sunil Kumar. "CFD Modeling of Heat Recovery Steam Generator and its Components Using Fluent." UKnowledge, 2005. http://uknowledge.uky.edu/gradschool_theses/336.
Full textPINTO, RAPHAEL GUIMARAES DUARTE. "SIMULATION OF HEAT RECOVERY STEAM GENERATOR OPERATING IN A COMBINED CYCLE PLANT." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2012. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=20769@1.
Full textA evolução das turbinas a gás industriais resultou em um processo de combustão mais eficiente que permitiu a elevação da temperatura dos gases na exaustão dessa máquina. Assim, caldeiras de recuperação de calor cada vez mais complexas foram desenvolvidas com o intuito de aproveitar ao máximo o potencial energético na exaustão das turbinas. Dessa forma, modelos computacionais capazes de prever as condições de operação do equipamento se mostraram necessários de maneira a analisar o comportamento da máquina em diferentes situações, visando à máxima eficiência do processo. Esta dissertação descreve um modelo computacional capaz de simular o funcionamento fora do ponto de projeto, em regime permanente, de uma caldeira de recuperação de calor operando em uma usina de ciclo combinado, enfatizando sua utilização em sistemas de diagnóstico. As rotinas foram desenvolvidas em FORTRAN e os trocadores de calor presentes na HRSG foram modelados individualmente e calibrados através de um sistema de otimização utilizando algoritmos genéticos, responsável por minimizar o desvio do modelo. O programa desenvolvido foi validado contra dados de operação de uma usina real e mostrou resultados satisfatórios, que confirmam a robustez e fidelidade do modelo de simulação.
The heavy duty gas turbines evolution and, consequently, a more efficient combustion process, allowed the temperature rising of the machines’ exhaust gases. Thus, more complex heat recovery steam generators were developed in order to maximize the use of that energy potential. Therefore, computational models capable to predict the operational conditions of the equipment may be needed in order to analyze the machine’s behavior for different situations, in a way to maximize the process efficiency. This thesis describes a computational model able to simulate the off-design behavior of a heat recovery steam generator operation in a combined cycle plant, emphasizing its utilization in diagnostics systems. The routines were developed using FORTRAN, each heat exchanger inside the Heat Recovery Steam Generator (HRSG) was designed individually and the calibration was done by a genetic algorithm responsible for minimizing the model’s deviations. The developed program was validated against operational data from a real plant and showed satisfactory results, confirming the robustness and fidelity of this simulation model.
Kysel, Stanislav. "Energetický paroplynový zdroj na bázi spalování hutnických plynů." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2011. http://www.nusl.cz/ntk/nusl-229801.
Full textKysel, Stanislav. "Energetický paroplynový zdroj na bázi spalování hutnických plynů." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2012. http://www.nusl.cz/ntk/nusl-230245.
Full textKadáková, Nina. "Návrh paroplynového zdroje elektřiny." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-417426.
Full textWipplinger, Karl Paul Martin. "Utilising a high pressure, cross flow, stainless steel fintube heat exchanger for direct steam generation from recovered waste heat." Thesis, Stellenbosch : Stellenbosch University, 2004. http://hdl.handle.net/10019.1/50217.
Full textENGLISH ABSTRACT: Around the world the implementation of heat recovery systems is playing an increasingly important role in the engineering inqustry. The recovered energy is utilised in the plants and saves companies millions in expenses per year. Not only is this seen on the grand scale of industry, but also in everyday life, where for instance turbochargers are used to boost the performance of automobiles by utilising the wasted energy expelled along with exhaust gasses. The aim of this project is to investigate a small scale waste heat recovery system, and to determine the optimum method by which to convert the recovered energy into electrical energy, which can be used as a secondary energy source. The research contained in this thesis, centres on the main components and theory needed for the construction of a small scale waste heat recovery system. Also included, is a theoretical analysis concerning the design and construction of the system, utilising researched theory and a simulation program of the recovery system. The simulation is control volume-based and generates property data on the fluid and exhaust gas throughout the heat exchanger. The final design included a finite element stress analysis of certain parts of the system to ensure safe testing at high pressures and temperatures. The final design resulted in a high pressure, cross flow, stainless steel fintube heat exchanger that, by using a continuous combustion unit as energy source and water as the working fluid, reached efficiencies of up to 74% in direct steam generation testing. The tube-side of the heat exchanger was designed to withstand pressures of up to 2MPa (20bar), which is imperative for the implementation of the next phase, where a turbocharger will be connected to the heat exchanger. The completion of this part of the project has paved the way for further development and implementation of the heat recovery system.
AFRIKAANSE OPSOMMING: Die herwinning van energie begin 'n toenemend belangrike rol in die ingenieurs industrie speel. Die herwonne energie word in fabrieke ben ut en spaar maatskappye milj oene aan uitgawes per jaar. Hierdie beginsel word nie net in die grootskaalse nywerhede toegepas nie, maar ook in die allerdaagse lewe, soos byvoorbeeld in voertuie waar turbo-aanjaers gebruik word om die energie-uitset van enjins te verhoog deur bloot gebruik te maak van die verlore energie wat saam met die uitlaatgasse in die atmosfeer gepomp word. Die doel van hierdie projek is om 'n kleinskaalse energieherwinningstelsel te ondersoek en die mees effektiewe metode te vind om die herwinde energie na elektriese energie om te skakel wat as 'n sekondere energiebron gebruik kan word. Die navorsing bevat in die tesis, kyk na al die hoofkomponente en teoretiese kennis wat nodig is vir die konstruksie van 'n kleinskaalse hitteherwinningstelsel. Ook ingesluit is 'n teoretiese analise ten opsigte van die ontwerp en konstruksie van die sisteem. Dit behels die gebruik van nagevorsde teorie saam met 'n simulasie program van die herwinnings stelsel. Die simulasie program is op kontrole volumes gebasseet en genereer uitlaatgas- en water eienskappe soos dit deur die hitteruiler vloei. Die finale ontwerp bevat 'n eindige element spannmgs analise van sekere kritiese komponente in die stelsel om die veilige gebruik van die sisteem by hoe drukke en temperature te verseker. Die finale ontwerp was 'n hoedruk, kruisvloei, vlekvrye staal finbuis hitteruiler. Deur 'n konstante verbrandingseenheid as energiebron te gebruik saam met water as werksvloeier, het die hitteruiler effektiwiteite van tot 74% in direkte stoomgenerasie-toetse bereik. Die hitteruiler is ontwerp om hoe drukke van tot 2MPa (20bar) te hanteer wat baie belangrik is vir die implementasie van die volgende fase van die projek waar 'n turbo-aanjaer aan die stelsel gekoppel sal. Die suksesvolle voltooiing van hierdie fase van die projek het die weg gebaan vir die verdere ontwikkeling en implimentasie van die energieherwinningsstelsel.
Weerasiri, Udayani Priyadarshana. "A waste heat recovery steam power generation system for ACE Power Embilipitiya (Pvt) Ltd, Sri Lanka." Thesis, KTH, Kraft- och värmeteknologi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-157832.
Full textKolarčík, Vojtěch. "Dvoutlaký horizintální kotel na odpadní teplo za spalovací turbinu;131kg/s spalin, 558° C." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-231073.
Full textPetrů, Lukáš. "Návrh dvoutlakého kotle na odpadní teplo za spalovací turbinu, 150 kg/s spalin, 600 °C." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-231222.
Full textBooks on the topic "Heat Recovery Steam Generator"
Industrial boilers and heat recovery steam generators: Design, applications, and calculations. New York: Marcel Dekker, 2003.
Find full textKuznecov, Vyacheslav, and Oleg Bryuhanov. Gasified boiler units. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1003548.
Full textA, Hassan Y., Cho S. M, American Society of Mechanical Engineers. Heat Transfer Division., and National Heat Transfer Conference (29th : 1993 : Atlanta, Ga.), eds. Steam generator thermal hydraulics: Presented at the 29th National Heat Transfer Conference, Atlanta, Georgia, August 8-11, 1993. New York: American Society of Mechanical Engineers, 1993.
Find full textCastaldini, Carlo. Environmental assessment of an enhanced oil recovery steam generator equipped with a low-NOx burner. Research Triangle Park, NC: U.S. Environmental Protection Agency, Air and Energy Engineering Research Laboratory, 1986.
Find full textAdumene, Sidum, and Yungang Wang. Heat Recovery Steam Generator Technology. Excelic Press LLC, 2018.
Find full textEriksen, Vernon L. Heat Recovery Steam Generator Technology. Elsevier Science & Technology, 2017.
Find full textL&K International Training. Gas Turbine Generation: Heat Recovery Steam Generator (Hrsg). Institute of Electrical & Electronics Enginee, 1999.
Find full textNational Fire Protection Association (NFPA). NFPA 8506, Standard on Heat Recovery Steam Generator Systems: 1998 Edition. National Fire Protection Association, 1999.
Find full textIndustrial Boilers and Heat Recovery Steam Generators. New York: Marcel Dekker, Inc., 2003.
Find full textBook chapters on the topic "Heat Recovery Steam Generator"
Sharma, Achintya, Meeta Sharma, Anoop Kumar Shukla, and Nitin Negi. "Evaluation of Heat Recovery Steam Generator for Gas/Steam Combined Cycle Power Plants." In Lecture Notes in Mechanical Engineering, 189–200. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6416-7_18.
Full textPleshanov, Konstantin A., Kirill Sterkhov, Dmitry A. Khokhlov, and Mikhail N. Zaichenko. "Pressurized Heat Recovery Steam Generator Design for CCGT with Gas Turbine GT-25PA and Steam Turbine T-100." In Lecture Notes in Mechanical Engineering, 27–37. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9376-2_3.
Full textAmeri, Mohammad, and Pourya Ahmadi. "The Study of Ambient Temperature Effects on Exergy Losses of a Heat Recovery Steam Generator." In Challenges of Power Engineering and Environment, 55–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-76694-0_9.
Full textBartnik, Ryszard. "Selection of the Structure of the Heat Recovery Steam Generator for the Repowered Power Unit." In The Modernization Potential of Gas Turbines in the Coal-Fired Power Industry, 45–51. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4860-9_6.
Full textCattant, François. "Steam Generator Tubes, Plugs, Sleeves and Heat Exchangers." In Materials Ageing in Light-Water Reactors, 471–738. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-85600-7_6.
Full textKuroki, T., K. Kabeya, K. Makino, H. Kaibe, H. Hachiuma, and A. Fujibayashi. "Waste Heat Recovery in Steelworks Using a Thermoelectric Generator." In Proceedings of the 11th European Conference on Thermoelectrics, 143–49. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07332-3_17.
Full textHuang, Kuo, Yuying Yan, Guohua Wang, Bo Li, and Adeel Arshad. "Transient Performance Improvement for Thermoelectric Generator Used in Automotive Waste Heat Recovery." In Advances in Heat Transfer and Thermal Engineering, 833–37. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4765-6_141.
Full textRachman, Adhitia, Wahmisari Priharti, and Mohamad Ramdhani. "Performance Comparison of Three Thermoelectric Generator Types for Waste Heat Recovery." In Proceedings of the 1st International Conference on Electronics, Biomedical Engineering, and Health Informatics, 131–40. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6926-9_12.
Full textKhanchi, Abhishek, Harkirat Sandhu, Mani Kanwar Singh, Satbir S. Sehgal, and Bharat Bajaj. "Identification and Inquisition of Thermoelectric Generator Unit for Efficient Waste Heat Recovery." In Lecture Notes in Mechanical Engineering, 307–16. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6416-7_29.
Full textTjoa, H., B. Plochmann, and G. Fischerauer. "Modeling and Design of Tubular Thermoelectric Generator Used for Waste Heat Recovery." In Proceedings of the 11th European Conference on Thermoelectrics, 219–26. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07332-3_26.
Full textConference papers on the topic "Heat Recovery Steam Generator"
Walter, Heimo, and Wladimir Linzer. "Flow Stability of Heat Recovery Steam Generators." In ASME Turbo Expo 2004: Power for Land, Sea, and Air. ASMEDC, 2004. http://dx.doi.org/10.1115/gt2004-53040.
Full textVedanth, S. "Study and Design of Heat Recovery Steam Generators." In 2002 International Joint Power Generation Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/ijpgc2002-26017.
Full textPlis, Marcin, and Henryk Rusinowski. "Mathematical modelling of single pressure heat recovery steam generator." In 2015 16th International Carpathian Control Conference (ICCC). IEEE, 2015. http://dx.doi.org/10.1109/carpathiancc.2015.7145112.
Full textBrusca, S., and R. Lanzafame. "Heat Recovery Steam Generator Optimization Using Analysis of Variance." In ASME 2005 Power Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/pwr2005-50008.
Full textArbiyani, Filian, Stefanus Randy Raharja, and Wegie Ruslan. "Cogeneration Plant : Optimization of Heat Recovery Steam Generator (HRSG)." In 2019 IEEE 2nd International Conference on Power and Energy Applications (ICPEA). IEEE, 2019. http://dx.doi.org/10.1109/icpea.2019.8818511.
Full textBetz, Fred, Chris Damm, David Archer, and Brian Goodwin. "Biodiesel Fueled Engine Generator With Heat Recovery." In ASME 2008 2nd International Conference on Energy Sustainability collocated with the Heat Transfer, Fluids Engineering, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/es2008-54131.
Full textSanaye, Sepehr, Omid Hamidkhani, Mostafa Shabanian, Rohollah Espanani, and Abdolreza Hoshyar. "Thermoeconomic Optimization of Heat Recovery Steam Generators." In ASME Turbo Expo 2007: Power for Land, Sea, and Air. ASMEDC, 2007. http://dx.doi.org/10.1115/gt2007-28297.
Full textPasha, Akber. "Acceptance Criteria for Heat Recovery Steam Generators Behind Gas Turbines." In ASME 1986 International Gas Turbine Conference and Exhibit. American Society of Mechanical Engineers, 1986. http://dx.doi.org/10.1115/86-gt-201.
Full textShukla, P., M. Izadi, P. Marzocca, and D. K. Aidun. "A Heat Recovery Study: Application of Intercooler as a Feed-Water Heater of Heat Recovery Steam Generator." In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-38917.
Full textKhokhlov, D. A., M. N. Zaichenko, K. V. Sterkhov, and K. A. Pleshanov. "Computational Model for High-Pressurized Heat Recovery Steam Generator Heat Transfer Study." In 2020 V International Conference on Information Technologies in Engineering Education ( Inforino ). IEEE, 2020. http://dx.doi.org/10.1109/inforino48376.2020.9111734.
Full textReports on the topic "Heat Recovery Steam Generator"
Panicker, Nithin, Marco Delchini, Thomas Sambor, and Adrian Sabau. COMPUTATIONAL FLUID DYNAMICS SIMULATIONS TO PREDICT OXIDATION IN HEAT RECOVERY STEAM GENERATOR TUBES. Office of Scientific and Technical Information (OSTI), March 2022. http://dx.doi.org/10.2172/1888933.
Full textMelanie, Haupt, and Hellweg Stefanie. Synthesis of the NRP 70 joint project “Waste management to support the energy turnaround (wastEturn)”. Swiss National Science Foundation (SNSF), January 2020. http://dx.doi.org/10.46446/publication_nrp70_nrp71.2020.2.en.
Full textNassersharif, Bahram, Thurlow Washburn Howell Caffey, Russell P. Jedlicka, Gabe V. Garcia, and Gary Eugene Rochau. Continuous-wave radar to detect defects within heat exchangers and steam generator tubes. Office of Scientific and Technical Information (OSTI), January 2003. http://dx.doi.org/10.2172/917470.
Full textHendricks, Terry, and William T. Choate. Engineering Scoping Study of Thermoelectric Generator Systems for Industrial Waste Heat Recovery. Office of Scientific and Technical Information (OSTI), November 2006. http://dx.doi.org/10.2172/1218711.
Full textJ. K. Wright. Next Generation Nuclear Plant Steam Generator and Intermediate Heat Exchanger Materials Research and Development Plan. Office of Scientific and Technical Information (OSTI), September 2010. http://dx.doi.org/10.2172/993192.
Full textContinuous-Wave Radar to Detect Defects Within Heat Exchangers and Steam Generator Tubes ; Revised September 3, 2003. Office of Scientific and Technical Information (OSTI), May 2003. http://dx.doi.org/10.2172/814688.
Full text