Academic literature on the topic 'Heat recovery turbines'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Heat recovery turbines.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Heat recovery turbines"
Fujii, S., K. Kaneko, K. Otani, and Y. Tsujikawa. "Mirror Gas Turbines: A Newly Proposed Method of Exhaust Heat Recovery." Journal of Engineering for Gas Turbines and Power 123, no. 3 (October 1, 2000): 481–86. http://dx.doi.org/10.1115/1.1366324.
Full textRice, I. G. "Thermodynamic Evaluation of Gas Turbine Cogeneration Cycles: Part I—Heat Balance Method Analysis." Journal of Engineering for Gas Turbines and Power 109, no. 1 (January 1, 1987): 1–7. http://dx.doi.org/10.1115/1.3240001.
Full textHoffmann, Simon P., Frank U. Rückert, Danjana Theis, Alexander G. Ruffino, Daniel Lehser-Pfeffermann, and Dirk Hübner. "A Software Tool for Automatic Geometry Generation of a Micro Turbine." Mechanics and Mechanical Engineering 22, no. 2 (August 24, 2020): 465–78. http://dx.doi.org/10.2478/mme-2018-0038.
Full textMrzljak, Vedran, Igor Poljak, Jasna Prpić-Oršić, and Maro Jelić. "Exergy analysis of marine waste heat recovery CO2 closed-cycle gas turbine system." Pomorstvo 34, no. 2 (December 21, 2020): 309–22. http://dx.doi.org/10.31217/p.34.2.12.
Full textNakagaki, T., T. Ogawa, H. Hirata, K. Kawamoto, Y. Ohashi, and K. Tanaka. "Development of Chemically Recuperated Micro Gas Turbine." Journal of Engineering for Gas Turbines and Power 125, no. 1 (December 27, 2002): 391–97. http://dx.doi.org/10.1115/1.1520158.
Full textRostamzadeh, Hadi, Saeed Rostami, Majid Amidpour, Weifeng He, and Dong Han. "Seawater Desalination via Waste Heat Recovery from Generator of Wind Turbines: How Economical Is It to Use a Hybrid HDH-RO Unit?" Sustainability 13, no. 14 (July 6, 2021): 7571. http://dx.doi.org/10.3390/su13147571.
Full textMaunsbach, K., A. Isaksson, J. Yan, G. Svedberg, and L. Eidensten. "Integration of Advanced Gas Turbines in Pulp and Paper Mills for Increased Power Generation." Journal of Engineering for Gas Turbines and Power 123, no. 4 (January 1, 2001): 734–40. http://dx.doi.org/10.1115/1.1359773.
Full textAltosole, Marco, Giovanni Benvenuto, Ugo Campora, Michele Laviola, and Alessandro Trucco. "Waste Heat Recovery from Marine Gas Turbines and Diesel Engines." Energies 10, no. 5 (May 18, 2017): 718. http://dx.doi.org/10.3390/en10050718.
Full textGladshtein, V. I., V. V. Ermolaev, A. I. Shklyar, L. A. Vinokurova, A. A. Simanovskii, and V. A. Dolgalev. "Recovery heat treatment of casing parts during modernization of turbines." Thermal Engineering 54, no. 4 (April 2007): 262–66. http://dx.doi.org/10.1134/s0040601507040039.
Full textLangston, Lee S. "Cogeneration: Gas Turbine Multitasking." Mechanical Engineering 134, no. 08 (August 1, 2012): 50. http://dx.doi.org/10.1115/1.2012-aug-4.
Full textDissertations / Theses on the topic "Heat recovery turbines"
Alshammari, Fuhaid. "Radial turbine expander design, modelling and testing for automotive organic Rankine cycle waste heat recovery." Thesis, Brunel University, 2018. http://bura.brunel.ac.uk/handle/2438/16007.
Full textTristan, Alejandro. "Comprehensive Analysis of Organic Rankine Cycles for Waste heat recovery applications in Gas Turbines and IC Engines." Thesis, KTH, Elkraftteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-184133.
Full textSsebabi, Brian. "Experimental evaluation of a low temperature and low pressure turbine." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/86563.
Full textENGLISH ABSTRACT: The potential benefits from saving energy have driven most industrial processing facilities to pay more attention to reducing energy wastage. Because the industrial sector is the largest user of electricity in South Africa (37.7% of the generated electricity capacity), the application of waste heat recovery and utilisation (WHR&U) systems in this sector could lead to significant energy savings, a reduction in production costs and an increase in the efficiency of industrial processes. Turbines are critical components of WHR&U systems, and the choice of an efficient and low cost turbine is crucial for their successful implementation. The aim of this thesis project is therefore to validate the use of a turbine for application in a low grade energy WHR&U system. An experimental turbine kit (Infinity Turbine ITmini) was acquired, assembled and tested in a specially designed and built air test bench. The test data was used to characterise the turbine for low temperature (less than 120 Celsius) and pressure (less than 10 bar) conditions. A radial inflow turbine rotor was designed, manufactured and then tested with the same test bench, and its performance characteristics determined. In comparison with the ITmini rotor, the as-designed and manufactured rotor achieved a marginally better performance for the same test pressure ratio range. The as-designed turbine rotor performance characteristics for air were then used to scale the turbine for a refrigerant-123 application. Future work should entail integrating the turbine with a WHR&U system, and experimentally determining the system’s performance characteristics.
AFRIKAANSE OPSOMMING: Die potensiële voordele wat gepaard gaan met energiebesparing het die fokus van industrie laat val op die bekamping van energievermorsing. Die industriële sektor is die grootse verbruiker van elektrisiteit in Suid-Afrika (37.7% van die totale gegenereerde kapasiteit). Energiebesparing in die sektor deur die toepassing van afval-energie-herwinning en benutting (AEH&B) sisteme kan lei tot drastiese vermindering van energievermorsing, ‘n afname in produksie koste en ‘n toename in die doeltreffendheid van industriële prosesse. Turbines is kritiese komponente in AEH&B sisteme en die keuse van ‘n doeltreffende lae koste turbine is noodsaaklik in die suksesvolle implementering van dié sisteme. Die doelwit van hierdie tesisprojek is dus om die toepassing van ‘n turbine in ‘n lae graad energie AEH&B sisteem op die proef te stel. ‘n Eksperimentele turbine stel (“Infinity Turbine ITmini”) is aangeskaf, aanmekaargesit en getoets op ‘n pasgemaakte lugtoetsbank. Die toetsdata is gebruik om die turbine te karakteriseer by lae temperatuur (minder as 120 Celsius) en druk (minder as 10 bar) kondisies. ‘n Radiaalinvloeiturbinerotor is ook ontwerp, vervaardig en getoets op die lugtoetsbank om die rotor se karakteristieke te bepaal. In vergelyking met die ITmini-rotor het die radiaalinvloeiturbinerotor effens beter werkverrigting gelewer by diselfde toetsdruk verhoudings. Die werksverrigtingkarakteristieke met lug as vloeimedium van die radiaalinvloeiturbinerotor is gebruik om die rotor te skaleer vir ‘n R123 verkoelmiddel toepassing. Toekomstige werk sluit in om die turbine met ‘n AEH&B sisteem te integreer en die sisteem se werksverrigtingkarakteristieke te bepaal.
Vytla, Veera Venkata Sunil Kumar. "CFD Modeling of Heat Recovery Steam Generator and its Components Using Fluent." UKnowledge, 2005. http://uknowledge.uky.edu/gradschool_theses/336.
Full textAbabatin, Yasser. "RECOVERY OF EXHAUST WASTE HEAT FOR A HYBRID CAR USING STEAM TURBINE." OpenSIUC, 2015. https://opensiuc.lib.siu.edu/theses/1653.
Full textKadáková, Nina. "Návrh paroplynového zdroje elektřiny." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-417426.
Full textMoyer, Jeremy William. "Energy Efficiency Improvements for a Large Tire Manufacturing Plant." OpenSIUC, 2011. https://opensiuc.lib.siu.edu/theses/756.
Full textKysel, Stanislav. "Energetický paroplynový zdroj na bázi spalování hutnických plynů." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2012. http://www.nusl.cz/ntk/nusl-230245.
Full textKysel, Stanislav. "Energetický paroplynový zdroj na bázi spalování hutnických plynů." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2011. http://www.nusl.cz/ntk/nusl-229801.
Full textRahbar, Kiyarash. "Development and optimization of small-scale radial inflow turbine for waste heat recovery with organic rankine cycle." Thesis, University of Birmingham, 2016. http://etheses.bham.ac.uk//id/eprint/6523/.
Full textBooks on the topic "Heat recovery turbines"
L&K International Training. Gas Turbine Generation: Heat Recovery Steam Generator (Hrsg). Institute of Electrical & Electronics Enginee, 1999.
Find full textBook chapters on the topic "Heat recovery turbines"
Alzaili, Jafar, Martin White, and Abdulnaser Sayma. "Developments in Solar Powered Micro Gas Turbines and Waste Heat Recovery Organic Rankine Cycles." In New Technologies, Development and Application II, 439–52. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18072-0_51.
Full textBartnik, Ryszard. "Selection of the Structure of the Heat Recovery Steam Generator for the Repowered Power Unit." In The Modernization Potential of Gas Turbines in the Coal-Fired Power Industry, 45–51. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4860-9_6.
Full textBontemps, A., and M. Brun. "Development of a Compact Heat Exchanger for Gas Turbine Heat Recovery." In Design and Operation of Heat Exchangers, 269–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84450-8_25.
Full textMeor Said, Mior Azman, and Muhammad Helmi Zin Zawawi. "Waste Heat Recovery from a Gas Turbine: Organic Rankine Cycle." In Sustainable Thermal Power Resources Through Future Engineering, 37–47. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2968-5_3.
Full textKikuyama, K., Y. Hasegawa, G. Augusto, K. Nishibori, and S. Nakamura. "The Swirling Inlet Flow Effects on the Pressure Recovery of a Low Head Water Turbine Draft Tube." In Hydraulic Machinery and Cavitation, 875–84. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-010-9385-9_89.
Full textLatarche, Malcolm. "Waste heat recovery." In Pounder's Marine Diesel Engines and Gas Turbines, 359–64. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-08-102748-6.00012-8.
Full text"Fans, Pumps, and Steam Turbines." In Industrial Boilers and Heat Recovery Steam Generators. CRC Press, 2002. http://dx.doi.org/10.1201/9780203910221.ch9.
Full textCarapellucci, Roberto, and Lorena Giordano. "The Recovery of Exhaust Heat from Gas Turbines." In Efficiency, Performance and Robustness of Gas Turbines. InTech, 2012. http://dx.doi.org/10.5772/37920.
Full textGusarov, Valentin, Leonid Yuferev, Zahid Godzhaev, and Aleksandr Parachnich. "Gas Turbine Power Plant of Low Power GTP-10S." In Advances in Environmental Engineering and Green Technologies, 85–106. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-5225-9420-8.ch004.
Full textGiampaolo, Tony. "Waste Heat Recovery." In Gas Turbine Handbook: Principles and Practice, 193–229. River Publishers, 2020. http://dx.doi.org/10.1201/9781003151821-12.
Full textConference papers on the topic "Heat recovery turbines"
Al Ketbi, Waneya, Saqib Sajjad, and Eisa Al Jenaibi. "Waste Heat Recovery From Gas Turbines." In Abu Dhabi International Petroleum Exhibition & Conference. Society of Petroleum Engineers, 2020. http://dx.doi.org/10.2118/202697-ms.
Full textPierobon, Leonardo, Rambabu Kandepu, and Fredrik Haglind. "Waste Heat Recovery for Offshore Applications." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-86254.
Full textSaab, Richard, and Rob van den Bosch. "Standardized Offshore Waste Heat Recovery Behind Industrial Gas Turbines." In Offshore Technology Conference. Offshore Technology Conference, 2020. http://dx.doi.org/10.4043/30630-ms.
Full textCatalano, Luciano Andrea, Fabio De Bellis, Riccardo Amirante, and Matteo Rignanese. "A High-Efficiency Heat Exchanger for Closed Cycle and Heat Recovery Gas Turbines." In ASME Turbo Expo 2010: Power for Land, Sea, and Air. ASMEDC, 2010. http://dx.doi.org/10.1115/gt2010-22509.
Full textPasha, Akber. "Acceptance Criteria for Heat Recovery Steam Generators Behind Gas Turbines." In ASME 1986 International Gas Turbine Conference and Exhibit. American Society of Mechanical Engineers, 1986. http://dx.doi.org/10.1115/86-gt-201.
Full textShukla, P., M. Izadi, P. Marzocca, and D. K. Aidun. "A Heat Recovery Study: Application of Intercooler as a Feed-Water Heater of Heat Recovery Steam Generator." In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-38917.
Full textPillai, P., C. Meher-Homji, and F. Meher-Homji. "Waste Heat Recovery in LNG Liquefaction Plants." In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-42006.
Full textYan, Jinyue, Lars Eidensten, and Gunnar Svedberg. "An Investigation of the Heat Recovery System in Externally Fired Evaporative Gas Turbines." In ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/95-gt-072.
Full textRomanov, Vyacheslav V., Sergey N. Movchan, Vladimir N. Chobenko, Oleg S. Kucherenko, Valeriy V. Kuznetsov, and Anatoliy P. Shevtsov. "Performances and Application Perspectives of Air Heat Recovery Turbine Units." In ASME Turbo Expo 2010: Power for Land, Sea, and Air. ASMEDC, 2010. http://dx.doi.org/10.1115/gt2010-23129.
Full textBahador, Mehdi, Takamasa Ito, and Bengt Sunde´n. "Thermal Analysis of a Heat Recovery System for Externally Fired Micro Gas Turbines." In ASME Turbo Expo 2007: Power for Land, Sea, and Air. ASMEDC, 2007. http://dx.doi.org/10.1115/gt2007-28076.
Full textReports on the topic "Heat recovery turbines"
Barthelemy, N. M., and S. Lynn. Improved heat recovery and high-temperature clean-up for coal-gas fired combustion turbines. Office of Scientific and Technical Information (OSTI), July 1991. http://dx.doi.org/10.2172/5136331.
Full textRussell, J., and S. Lynn. Development and evaluation of a superior heat recovery design for gas-turbine systems using gasified coal. Office of Scientific and Technical Information (OSTI), August 1989. http://dx.doi.org/10.2172/5274632.
Full text