Academic literature on the topic 'Heat transfer coefficient U'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Heat transfer coefficient U.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Heat transfer coefficient U"
Sablani, S. S., and H. S. Ramaswamy. "Note. End-over-end agitation processing of cans containing liquid particle mixtures. Influence of continuous versus oscillatory rotation / Nota. Agitación por volteo de latas con una mezcla de líquido y partículas en suspensión. Influencia de la agitación en continuo y oscilatoria." Food Science and Technology International 5, no. 5 (October 1999): 385–89. http://dx.doi.org/10.1177/108201329900500503.
Full textWang, Longfei, Songtao Wang, Xun Zhou, Fengbo Wen, and Zhongqi Wang. "Numerical Prediction of 45° Angled Ribs Effects on U-shaped Channels Heat Transfer and Flow under Multi Conditions." International Journal of Turbo & Jet-Engines 37, no. 1 (March 26, 2020): 41–59. http://dx.doi.org/10.1515/tjj-2017-0008.
Full textDai, Chuan Shan, Shuai Wang, and Wei Xing Qin. "U-Tube Diameter Dependence of Heat Output for Borehole Heat Exchangers." Applied Mechanics and Materials 170-173 (May 2012): 2613–16. http://dx.doi.org/10.4028/www.scientific.net/amm.170-173.2613.
Full textCui, Yu Zhou. "Analysis on Heat Transfer Energy Efficiency of U-Tube Buried Pipe under Variable Entering Water Temperature Conditions." Advanced Materials Research 960-961 (June 2014): 603–8. http://dx.doi.org/10.4028/www.scientific.net/amr.960-961.603.
Full textGarrote, R. L., E. R. Silva, R. D. Roa, and R. A. Bertone. "Note. Overall Heat Transfer Coefficient to Canned Liquid During End-over-end Sterilisation." Food Science and Technology International 12, no. 6 (December 2006): 515–20. http://dx.doi.org/10.1177/1082013206072940.
Full textKrasoń, Joanna, Przemysław Miąsik, Lech Lichołai, Bernardeta Dębska, and Aleksander Starakiewicz. "Analysis of the Thermal Characteristics of a Composite Ceramic Product Filled with Phase Change Material." Buildings 9, no. 10 (October 12, 2019): 217. http://dx.doi.org/10.3390/buildings9100217.
Full textAlagha, Mohamed Sobhi, Botond Szucs, and Pal Szentannai. "Numerical study of mixing and heat transfer of SRF particles in a bubbling fluidized bed." Journal of Thermal Analysis and Calorimetry 142, no. 2 (December 13, 2019): 1087–96. http://dx.doi.org/10.1007/s10973-019-09135-2.
Full textYu, Guo Qing, Gang Feng Gao, and Xin Feng Lin. "Identification of Building Envelope Overall Coefficient of Heat Transfer Using Recursive Least Squares Algorithm." Advanced Materials Research 250-253 (May 2011): 3239–44. http://dx.doi.org/10.4028/www.scientific.net/amr.250-253.3239.
Full textAndrzejczyk, Rafal, Tomasz Muszynski, and Przemysław Kozak. "Experimental investigation on straight and u-bend double tube heat exchanger with active and passive enhancement methods." MATEC Web of Conferences 240 (2018): 02001. http://dx.doi.org/10.1051/matecconf/201824002001.
Full textRasheed, Adnan, Jong W. Lee, and Hyun W. Lee. "Development of a model to calculate the overall heat transfer coefficient of greenhouse covers." Spanish Journal of Agricultural Research 15, no. 4 (February 7, 2018): e0208. http://dx.doi.org/10.5424/sjar/2017154-10777.
Full textDissertations / Theses on the topic "Heat transfer coefficient U"
Lazar, Kovačević. "Primena metoda inverznog inženjerstva u cilju pronalaženja graničnih uslova pri livenju u peščanim kalupima." Phd thesis, Univerzitet u Novom Sadu, Fakultet tehničkih nauka u Novom Sadu, 2015. http://www.cris.uns.ac.rs/record.jsf?recordId=95359&source=NDLTD&language=en.
Full textIn this study a new experimental technique and apparatus for estimation ofboundary conditions in sand casting process were developed. It is shownthat thermocouple positioning errors can be nullified by introducing a conceptof apparent heat diffusivity of the mold material. In this way, total error of theheat transfer estimation can be reduced. Additionally, it was found that theprocess of precipitation of intermetallic compounds can influence the value ofachieved metal-mold heat transfer. A novel empirical correlation function isproposed. This function has the ability to accurately describe the change ininterfacial heat transfer with the casting surface temperature.
Soukupová, Veronika. "Vliv provedení zateplení rodinného domu v Brodku u Prostějova na výdaje spojené s jeho provozem." Master's thesis, Vysoké učení technické v Brně. Ústav soudního inženýrství, 2018. http://www.nusl.cz/ntk/nusl-390157.
Full textBergh, Jonas, and Oscar Klockars. "Mall för jämförelse av ytterväggar i byggprojekt : Examensarbete i jämförande av ytterväggar för byggprojekt av flerbostadshus med en Excelmall." Thesis, KTH, Byggteknik och design, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-213506.
Full textThe construction industry has many different exterior walls in projects. It is often difficult and time consuming to find out which of the exterior wall options is best for a specific project. In the bachelor thesis a template has been developed to compare prefabricated outer walls; Heat transfer coefficient (U value), working hours, materials and labor costs, waste in production, differences in usage area and difference in revenue depending on the thickness of the wall. Through tests using programs for cost calculation and U-value calculation, the template has been examined to match those values. As a result, total costs differed 0.002-2.395%, duration of the project 0-0.007% and U-value 2.4%. Comparison between two different wall types has been made to Järntorget's request. The single wall is a prefabricated infill wall consisting of mineral wool insulation with steel bars and the other a load-bearing concrete wall with PIR insulation. The result of the comparison showed that the prefabricated infill wall was the most profitable option. A third exterior wall was also added to the comparison to find a better alternative. It is a prefabricated infill wall with PIR insulation with low proportion of continuous steel studs. The result showed that the prefabricated infill wall with PIR insulation is the better option
Skarin, Erik, and Andreas Carlsson. "ANVÄNDNING AV VAKUUMISOLERING I EN NÄRA-NOLLENERGIVILLA; MÖJLIGHETER OCH BEGRÄNSNINGAR." Thesis, Tekniska Högskolan, Högskolan i Jönköping, JTH, Byggnadsteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-29695.
Full textMål uppsatta av EU innebär att samtliga byggnader som uppförs vid år 2020 måste vara nära-nollenergihus. För väggarna i konstruktionen innebär det att tjockare lager av isolering måste adderas vilket ger bredare väggkonstruktioner. Bredare väggkonstruktioner innebär även att boarean minskas. Vakuumisolering är ett högeffektivt isoleringsmaterial som genom sin låga värmeledningsförmåga har möjligheten att minska tjockleken vid väggkonstruktioner på grund av dess tunna skikt. Arbetet utreder ett förslag att applicera vakuumisolering i enplansvillor. För att uppnå arbetets mål har ett förslag på enplansvilla tagits fram. Beräkningar har gjorts och förslaget är framtaget som ett alternativ för att visa hur en villa innehållande vakuumisolering kan utformas. Det empiriska materialet har samlats in genom intervjuer, dokumentanalyser samt litteraturstudier. Empirin analyseras sedan tillsammans med det framtagna teoretiska ramverket genom litteraturstudier och dokumentanalyser. Att skapa en väggkonstruktion med vakuumisolering som primär isolering betyder oftast att väggen blir avsevärt mycket tunnare än en väggkonstruktion av traditionell isolering, vilket betyder att boarea kan sparas. Vakuumisolering måste skyddas på rätt sätt i väggkonstruktioner eftersom materialet lätt punkteras varpå det förlorar den största delen av sin isoleringsförmåga. Idag är inte vakuumisolering utbrett på den svenska byggmarknaden vilket beror på många faktorer, bland annat dess höga pris. Vakuumisolering är en väldigt bra problemlösare som med fördel kan användas i burspråk för att vinna extra utrymme. Det kan även användas i trånga utrymmen som elnischar. Ur ekonomisk synpunkt ger vakuumisolering störst fördel i städer där boarea per kvadratmeter är högre än motsvarande på landsbygden. För att ta del av arbetet krävs inga förkunskaper om vakuumisolering. Arbetet fokuserar endast på väggkonstruktioner i enplansvillor, därför har inga fördjupningar skett på golv- och takkonstruktioner eller andra byggnadstyper. Enbart nybyggnationer av trästommar är utrett. Beräkningar är inte gjorda för fukt och produktionskostnader.
Stromecký, Jiří. "Vliv provedení zateplení objektu rodinného domu v obci Újezd u Rosic na výdaje spojené s provozem této nemovitosti." Master's thesis, Vysoké učení technické v Brně. Ústav soudního inženýrství, 2016. http://www.nusl.cz/ntk/nusl-254198.
Full textSartori, Ana Paola. "Desenvolvimento e caracterização de compósitos sanduíche para isolamento térmico." reponame:Repositório Institucional da UCS, 2009. https://repositorio.ucs.br/handle/11338/453.
Full textSubmitted by Marcelo Teixeira (mvteixeira@ucs.br) on 2014-05-29T19:30:53Z No. of bitstreams: 1 Dissertacao Ana Paola Sartori.pdf: 3882091 bytes, checksum: c7530ac27f11dffba880ed97ee828f31 (MD5)
Made available in DSpace on 2014-05-29T19:30:53Z (GMT). No. of bitstreams: 1 Dissertacao Ana Paola Sartori.pdf: 3882091 bytes, checksum: c7530ac27f11dffba880ed97ee828f31 (MD5)
A sandwich panel consists essentially of two face sheets and may even have metal reinforcements and a core formed, usually by a cellular polymer. The faces of this type of panel may be joined by a structural adhesive or in cases where the core is a rigid polyurethane foam injected directly on the substrates the union will occur naturally. The most relevant property of the sandwich panels for the transport of frozen (0ºC a -30ºC) or chilled (7ºC a 1ºC) cargo is thermal conductivity (k). Within this context the objective of this work is to obtain and characterize sandwich panels which can be used in refrigerated chambers. This work presents four alternatives for composite sandwich, sample 1 (PRFV/PU/PRFV), sample 2 (AG/PU/AG), sample 3 (Al Crimpy/PU/PRFV) and sample 4 (Al /PU/Al), were PRFV is a glass fibre reinforced plastics, PU is a rigid polyurethane, AG is galvanized steel, Al Crimpy is crimpy aluminum and Al is aluminum. These composites were characterized by physicalmechanical, thermal, morphologic and cost. It could be concluded that the AG/PU/AG showed the best cost versus performance.
Palkovič, Peter. "Možnosti snížení nákladů za energie pro RD." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-231826.
Full textWebber, Helen. "Compact heat exchanger heat transfer coefficient enhancement." Thesis, University of Bristol, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.540881.
Full textMacbeth, Tyler James. "Conjugate Heat Transfer and Average Versus Variable Heat Transfer Coefficients." BYU ScholarsArchive, 2016. https://scholarsarchive.byu.edu/etd/5801.
Full textHussein, Mohammed Sabah. "Coefficient identification problems in heat transfer." Thesis, University of Leeds, 2016. http://etheses.whiterose.ac.uk/12291/.
Full textBooks on the topic "Heat transfer coefficient U"
Al-Ahmadi, Adel Bin Musaed Sulaiman. Electrohydrodynamic (EHD) enhancement of condensation heat transfer - development of correlation for heat transfer coefficient for tubular systems. Birmingham: University of Birmingham, 2003.
Find full textNazeri, Habib. The measurement of the heat transfer coefficient between cryolite and ledge. Ottawa: National Library of Canada, 1994.
Find full textEicker, Ursula. Solar Technologies for Buildings. New York: John Wiley & Sons, Ltd., 2006.
Find full textImpact of the heat transfer coefficient on pressurized thermal shock. Washington, DC: Division of Systems Technology, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1999.
Find full textT, Dickson, U.S. Nuclear Regulatory Commission. Office of Nuclear Regulatory Research. Division of Systems Technology, and Oak Ridge National Laboratory, eds. Impact of the heat transfer coefficient on pressurized thermal shock. Washington, DC: Division of Systems Technology, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1999.
Find full textCarletti, Horazio G. Determination of metal-mold heat transfer coefficient for aluminum alloys. 2006.
Find full textLester, Donald J. Jr. Indirect measurement of local condensing heat-transfer coefficient around horizontal finned tubes. 1987.
Find full textTransient liquid-crystal technique used to produce high-resolution convective heat-transfer-coefficient maps. [Washington, DC: National Aeronautics and Space Administration, 1993.
Find full textE, Poinsatte Philip, and United States. National Aeronautics and Space Administration., eds. Transient liquid-crystal technique used to produce high-resolution convective heat-transfer-coefficient maps. [Washington, DC: National Aeronautics and Space Administration, 1993.
Find full textBook chapters on the topic "Heat transfer coefficient U"
Herwig, Heinz. "Wärmedurchgangskoeffizient k* (overall heat transfer coefficient U*)." In Wärmeübertragung A-Z, 320–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-56940-1_72.
Full textShang, De-Yi, and Liang-Cai Zhong. "Skin-Friction Coefficient." In Heat and Mass Transfer, 81–90. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94403-6_7.
Full textVenkateshan, S. P. "Heat Flux and Heat Transfer Coefficient." In Mechanical Measurements, 205–40. Chichester, UK: John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781119115571.ch6.
Full textVenkateshan, S. P. "Heat Flux and Heat Transfer Coefficient." In Mechanical Measurements, 221–57. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73620-0_6.
Full textHerwig, Heinz. "Wärmeübergangskoeffizient α* (heat transfer coefficient h*)." In Wärmeübertragung A-Z, 377–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-56940-1_83.
Full textDixon, John M., and Francis A. Kulacki. "Measurement of the Heat Transfer Coefficient." In Mixed Convection in Fluid Superposed Porous Layers, 47–60. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50787-3_4.
Full textPham, Q. Tuan. "Heat Transfer Coefficient and Physical Properties." In Food Freezing and Thawing Calculations, 5–24. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0557-7_2.
Full textFujikawa, Shigeo, Takeru Yano, and Masao Watanabe. "Vapor Pressure, Surface Tension, and Evaporation Coefficient for Nanodroplets." In Heat and Mass Transfer, 111–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-18038-5_4.
Full textShang, De-Yi, and Liang-Cai Zhong. "Skin-Friction Coefficient." In Heat Transfer of Laminar Mixed Convection of Liquid, 129–38. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27959-6_9.
Full textKumar, Ramanuj, Amlana Panda, Ashok Kumar Sahoo, and Deepak Singhal. "Analysis of Heat Transfer Coefficient in Turning Process." In Lecture Notes in Mechanical Engineering, 655–63. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7831-1_61.
Full textConference papers on the topic "Heat transfer coefficient U"
Hu, Yang, and David H. Archer. "Steady State Heat Transfer Models of CO2 Condensing in a Vertical U-Tube." In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-39112.
Full textHelmns, Andrea, and Van P. Carey. "Modeling of Intramatrix Heat Transfer in Thermal Energy Storage for Asynchronous Cooling." In ASME 2017 Heat Transfer Summer Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/ht2017-4870.
Full textAlkhalidi, Ammar, Suhil Kiwan, and Haya Hamasha. "A Comparative Study Between Jordanian Overall Heat Transfer Coefficient (U-Value) and International Building Codes." In 2019 10th International Renewable Energy Congress (IREC). IEEE, 2019. http://dx.doi.org/10.1109/irec.2019.8754639.
Full textMadani, Hatef, Jose Acun˜a, Joachim Claesson, Per Lundqvist, and Bjo¨rn Palm. "The Ground Source Heat Pump: A System Analysis With a Particular Focus on The U-Pipe Borehole Heat Exchanger." In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-22395.
Full textBashar, Mohammad, and Kamran Siddiqui. "Effect of Heat Source Geometry on the Transient Heat Transfer During Melting Process of a PCM." In ASME 2016 Heat Transfer Summer Conference collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/ht2016-7232.
Full textAmmari, H. D., N. Hay, and D. Lampard. "Effect of Acceleration on the Heat Transfer Coefficient on a Film Cooled Surface." In ASME 1990 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1990. http://dx.doi.org/10.1115/90-gt-008.
Full textShiau, Chao-Cheng, Andrew F. Chen, Je-Chin Han, and Robert Krewinkel. "Detailed Heat Transfer Coefficient Measurements on a Scaled Realistic Turbine Blade Internal Cooling System." In ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-90097.
Full textSourbron, Maarten G., and Nesrin Ozalp. "Determination of Heat Transfer Characteristics of Solar Thermal Collectors as Heat Source for a Residential Heat Pump." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-51461.
Full textCurbelo, Andres, Jayanta S. Kapat, Steven J. Thorpe, and Michael Maurer. "Optimization of Inserts to Minimize Cross-Flow Impact in Impingement Heat Transfer." In ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-91068.
Full textDing, Liang, Shuqing Tian, and Hongwu Deng. "Heat Transfer in a Rotating Rib-Roughened Wedge-Shaped U-Duct." In ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-64508.
Full textReports on the topic "Heat transfer coefficient U"
Leslie, P., R. Wood, F. Sigler, A. Shapiro, and A. Rendon. Heat transfer coefficient in serpentine coolant passage for CCDTL. Office of Scientific and Technical Information (OSTI), December 1998. http://dx.doi.org/10.2172/345040.
Full textDonovan, William F. Determination of Heat Transfer Coefficient in a Gun Barrel from Experimental Data. Fort Belvoir, VA: Defense Technical Information Center, January 1985. http://dx.doi.org/10.21236/ada151815.
Full textHoward, Isaac, Thomas Allard, Ashley Carey, Matthew Priddy, Alta Knizley, and Jameson Shannon. Development of CORPS-STIF 1.0 with application to ultra-high performance concrete (UHPC). Engineer Research and Development Center (U.S.), April 2021. http://dx.doi.org/10.21079/11681/40440.
Full textHorizontal nucleate flow boiling heat transfer coefficient measurements and visual observations for R12, R134a, and R134aEster lubricant mixtures. Gaithersburg, MD: National Institute of Standards and Technology, 1993. http://dx.doi.org/10.6028/nist.ir.5144.
Full text