Academic literature on the topic 'Heating and cooling networks'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Heating and cooling networks.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Heating and cooling networks"
Zeh, Robin, Björn Ohlsen, David Philipp, David Bertermann, Tim Kotz, Nikola Jocić, and Volker Stockinger. "Large-Scale Geothermal Collector Systems for 5th Generation District Heating and Cooling Networks." Sustainability 13, no. 11 (May 27, 2021): 6035. http://dx.doi.org/10.3390/su13116035.
Full textHeller, Daniel, Alex Heller, Samir Moujaes, Shelley J. Williams, Ryan Hoffmann, Paul Sarkisian, Kaveh Khalili, et al. "Research: Testing of a Novel Portable Body Temperature Conditioner Using a Thermal Manikin." Biomedical Instrumentation & Technology 50, no. 5 (September 1, 2016): 336–48. http://dx.doi.org/10.2345/0899-8205-50.5.336.
Full textCharlebois, Daniel A., Kevin Hauser, Sylvia Marshall, and Gábor Balázsi. "Multiscale effects of heating and cooling on genes and gene networks." Proceedings of the National Academy of Sciences 115, no. 45 (October 19, 2018): E10797—E10806. http://dx.doi.org/10.1073/pnas.1810858115.
Full textBrennenstuhl, Marcus, Robin Zeh, Robert Otto, Ruben Pesch, Volker Stockinger, and Dirk Pietruschka. "Report on a Plus-Energy District with Low-Temperature DHC Network, Novel Agrothermal Heat Source, and Applied Demand Response." Applied Sciences 9, no. 23 (November 23, 2019): 5059. http://dx.doi.org/10.3390/app9235059.
Full textdel Hoyo Arce, Itzal, Saioa Herrero López, Susana López Perez, Miika Rämä, Krzysztof Klobut, and Jesus A. Febres. "Models for fast modelling of district heating and cooling networks." Renewable and Sustainable Energy Reviews 82 (February 2018): 1863–73. http://dx.doi.org/10.1016/j.rser.2017.06.109.
Full textSporleder, Maximilian, Max Burkhardt, Thomas Kohne, Daniel Moog, and Matthias Weigold. "Optimum Design and Control of Heat Pumps for Integration into Thermohydraulic Networks." Sustainability 12, no. 22 (November 12, 2020): 9421. http://dx.doi.org/10.3390/su12229421.
Full textKim, Min-Hwi, Deuk-Won Kim, Dong-Won Lee, and Jaehyeok Heo. "Experimental Analysis of Bi-Directional Heat Trading Operation Integrated with Heat Prosumers in Thermal Networks." Energies 14, no. 18 (September 17, 2021): 5881. http://dx.doi.org/10.3390/en14185881.
Full textNjawah Achiri, Humphrey Mokom, Vaclav Smidl, Zdenek Peroutka, and Lubos Streit. "Least Squares Method for Identification of IGBT Thermal Impedance Networks Using Direct Temperature Measurements." Energies 13, no. 14 (July 21, 2020): 3749. http://dx.doi.org/10.3390/en13143749.
Full textLiu, Lan Bin, Ai Juan Zou, Jia Jun Liao, and Ya Meng Liu. "The Optimization of Large Scale Heating and Cooling Network." Applied Mechanics and Materials 525 (February 2014): 616–20. http://dx.doi.org/10.4028/www.scientific.net/amm.525.616.
Full textCristea, Mariana, Sorin Ibanescu, Constantin N. Cascaval, and Dan Rosu. "Dynamic Mechanical Analysis of Polyurethane-Epoxy Interpenetrating Polymer Networks." High Performance Polymers 21, no. 5 (September 8, 2009): 608–23. http://dx.doi.org/10.1177/0954008309339940.
Full textDissertations / Theses on the topic "Heating and cooling networks"
Uhrík, Patrik. "Implementace kogeneracni jednotky do siti "Smart Heating and Cooling Networks"." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2017. http://www.nusl.cz/ntk/nusl-318635.
Full textSAMUELSSON, ANDERS, and DANIEL STEUER. "Model predictive control in heating and cooling networks : A case study of an urban district in Stockholm." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-299439.
Full textDet här arbetet presenterar ett Model Predictive Control system för planering av värme- och kyltillförsel i ett urbant värme- och kylnät. Distribuerade energiresurser och termisk värmelagring leder till ökad komplexitet i planering och drift av framtidens värme- och kylnät. Prediktiv optimering hanterar komplexitet med en optimeringsstrategi som tar hänsyn till framtida efterfrågan, priser och tillgänglighet av energiresurser. Model Predictive Control systemet är integrerat i en modell uppbyggt i en Co-Simulation miljö. Co-Simulation möjliggör detaljerad modellering av olika delsystem i dess specifika simulerings miljö för att bevara dess detaljnivå. Modellen är anpassad till en fallstudie av ett urbant distrikt under uppbyggnad i norra Stockholm. Årliga simuleringar av distriktet genomfördes. Därefter jämfördes resultat mellan simuleringar med Model Predictive Control systemet med ett konventionellt regel-baserat kontrollsystem. Tre målfunktioner var formulerade för Model Predictive Control systemet. Den första att minska driftkostnader för systemet, den andra att minska koldioxidutsläpp och det sista att minska importen från fjärrvärmenätet. Den första målfunktionen ger en minskning på 9.7 % i driftkostnader, den andra ger minskade koldioxidutsläpp på 18.8 %. Den tredje och sista däremot uppnår inte målet och ökar importen från fjärrvärmesystem jämfört med det konventionella regel-baserade kontrollsystemet. Utöver det så är en känslighetsanalys genomförd för att visa på robusthet av kontrollsystemen. Den visar att det Model Predictive Control systemet anpassar sig till förändringar i parametrar bättre än det andra kontrollsystemet. Framtida arbeten inom området kan inkludera mer detaljerade modellering av de olika teknologierna inkluderade i studien. En annan möjlighet är utveckling av ett återkopplingssystem från byggnadernas inomhustemperatur. Det skulle möjliggöra användningen av byggnadens termiska massa som termisk energilagringssystem. Slutligen, mer detaljerad ekonomiska beräkningar och miljöberäkningar, såsom life-cycle analysis eller investeringskalkylering skulle utveckla resultaten från arbetet också.
Yuwardi, Yuwardi. "Absorption cooling in district heating network: Temperature difference examination in hot water circuit." Thesis, KTH, Kraft- och värmeteknologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-125068.
Full textJaved, Abbas. "Random neural network based smart controller for heating, cooling and ventilation in domestic and non-domestic buildings." Thesis, Glasgow Caledonian University, 2016. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.743891.
Full textOppelt, Thomas. "Modell zur Auslegung und Betriebsoptimierung von Nah- und Fernkältenetzen." Doctoral thesis, Universitätsbibliothek Chemnitz, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-179211.
Full textDistrict cooling can provide economic and ecological benefits while supplying the increasing cooling demand for air conditioning. In the present thesis, a dynamic thermo-hydraulic model “ISENA” is presented which may be used in order to answer questions arising during design and operation of district cooling networks—e. g., that are related to economic and energy efficiency. The network model consists of a quasi-static hydraulic module and a transient thermal module being based on the tracking of water segments through the entire network (Lagrangian method). With this approach, numerical errors and inaccuracies in the balance of conserved quantities could be avoided, which eventually leads to a better reliability of the results as compared to that obtained from other network models. Additionally, a new sub-model has been developed for predicting the transient heat flux through the walls of buried pipes in order to model thermal gains and losses. This model covers un-insulated, insulated and combinations of insulated as well as un-insulated pipes. Calculations performed for the purpose of validation and verification are presented in order to demonstrate that ISENA provides reliable results and hence is suitable for practical applications. Finally, example simulations show the various possibilities provided by the new model—for example, concerning the comparison of different strategies for pump control, the influence of pipe insulation and soil properties on thermal gains and losses as well as the connection of buildings equipped with high temperature cooling systems to the return line of the network
Soderlund, Matthew Roger. "Congeneration dedicated to heating and cooling." Thesis, Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/17672.
Full textSikora, Michal. "Inovace systému chlazení točivých elektrických strojů s využitím CFD metod." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2011. http://www.nusl.cz/ntk/nusl-233962.
Full textDong, Bing. "Integrated Building Heating, Cooling and Ventilation Control." Research Showcase @ CMU, 2010. http://repository.cmu.edu/dissertations/4.
Full textBol, Bullen A. D. "A pervaporation membrane absorption cooling heating system." Thesis, University of Nottingham, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.289081.
Full textPoulis, P. D. A. "Radiant wall and floor heating and cooling." Thesis, Open University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.384588.
Full textBooks on the topic "Heating and cooling networks"
Colmenar-Santos, Antonio, David Borge-Díez, and Enrique Rosales-Asensio. District Heating and Cooling Networks in the European Union. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57952-8.
Full textBejan, Adrian, and Giuseppe Grazzini, eds. Shape and Thermodynamics. Florence: Firenze University Press, 2008. http://dx.doi.org/10.36253/978-88-8453-836-9.
Full textKillinger, Jerry. Heating and cooling essentials. Tinley Park, Ill: Goodheart-Willcox, 2003.
Find full textKillinger, Jerry. Heating and cooling essentials. Tinley Park, Ill: Goodheart-Willcox, 1999.
Find full textHealey, Joseph F., Mary F. Babington, Lori L. Mort, and Tonia Ferrell. Comfort heating & cooling equipment. Cleveland: Freedonia Group, 2000.
Find full textKillinger, Jerry. Heating and cooling essentials. Tinley Park, Ill: Goodheart-Willcox, 2003.
Find full textconsultant, O'Mahony Patrick, ed. Experiments with Heating and Cooling. London: Raintree, 2015.
Find full textTrost, J. Efficient buildings: Heating and cooling. College Station, Tex: A-C Publications, 1987.
Find full textBook chapters on the topic "Heating and cooling networks"
Colmenar-Santos, Antonio, David Borge-Díez, and Enrique Rosales-Asensio. "Introduction." In District Heating and Cooling Networks in the European Union, 1–5. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57952-8_1.
Full textColmenar-Santos, Antonio, David Borge-Díez, and Enrique Rosales-Asensio. "District Heating and Cogeneration in the EU-28: Current Situation, Potential and Proposed Energy Strategy for Its Generalisation." In District Heating and Cooling Networks in the European Union, 7–29. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57952-8_2.
Full textColmenar-Santos, Antonio, David Borge-Díez, and Enrique Rosales-Asensio. "Cogeneration and District Heating Networks: Measures to Remove Institutional and Financial Barriers that Restrict Their Joint Use in the EU-28." In District Heating and Cooling Networks in the European Union, 31–54. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57952-8_3.
Full textColmenar-Santos, Antonio, David Borge-Díez, and Enrique Rosales-Asensio. "Reconciliation of Social Discount Rate and Private Finance Initiative: Application to District Heating Networks in the EU-28." In District Heating and Cooling Networks in the European Union, 55–70. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57952-8_4.
Full textColmenar-Santos, Antonio, David Borge-Díez, and Enrique Rosales-Asensio. "Evaluation of the Cost of Using Power Plant Reject Heat in Low-Temperature District Heating and Cooling Networks." In District Heating and Cooling Networks in the European Union, 71–102. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57952-8_5.
Full textPicón-Núñez, Martín. "Heating and Cooling System Analysis Based on Complete Process Network." In Handbook of Food Process Design, 299–334. Oxford, UK: Wiley-Blackwell, 2012. http://dx.doi.org/10.1002/9781444398274.ch12.
Full textLi, Chengdong, Weina Ren, Jianqiang Yi, Guiqing Zhang, and Fang Shang. "Data-Driven Optimization of SIRMs Connected Neural-Fuzzy System with Application to Cooling and Heating Loads Prediction." In Advances in Neural Networks – ISNN 2015, 499–507. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25393-0_55.
Full textLeff, Harvey S. "Working, Heating, Cooling." In Energy and Entropy, 213–50. Boca Raton : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429330018-8.
Full textKazmer, David O. "Heating and Cooling." In Plastics Manufacturing Systems Engineering, 47–83. München: Carl Hanser Verlag GmbH & Co. KG, 2009. http://dx.doi.org/10.3139/9783446430143.003.
Full textKranzl, Lukas, Marcus Hummel, Wolfgang Loibl, Andreas Müller, Irene Schicker, Agne Toleikyte, Gabriel Bachner, and Birgit Bednar-Friedl. "Buildings: Heating and Cooling." In Economic Evaluation of Climate Change Impacts, 235–55. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12457-5_13.
Full textConference papers on the topic "Heating and cooling networks"
Lundell, Fredrik, Bernard Thonon, and Jean Antoine Gruss. "Constructal Networks for Efficient Cooling/Heating." In ASME 2004 2nd International Conference on Microchannels and Minichannels. ASMEDC, 2004. http://dx.doi.org/10.1115/icmm2004-2400.
Full textSaurav, Kumar, Anamitra Roy Choudhury, Vikas Chandan, Peter Lingman, and Nicklas Linder. "Building modelling methodologies for virtual district heating and cooling networks." In 2017 IEEE International Conference on Smart Grid Communications (SmartGridComm). IEEE, 2017. http://dx.doi.org/10.1109/smartgridcomm.2017.8340737.
Full textMans, Michael, Tobias Blacha, Peter Remmen, and Dirk Müller. "Automated model generation and simplification for district heating and cooling networks." In The 13th International Modelica Conference, Regensburg, Germany, March 4–6, 2019. Linköing University Electronic Press, 2019. http://dx.doi.org/10.3384/ecp19157179.
Full textBhattacharya, Saptarshi, Vikas Chandan, Vijay Arya, and Koushik Kar. "Thermally-fair demand response for district heating and cooling (DHC) networks." In e-Energy'16: The Seventh International Conference on Future Energy Systems. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2934328.2934343.
Full textFang, Xinxin, and Xing He. "Optimal operation of residential cooling heating and power system integrated with DR programs." In 2017 International Workshop on Complex Systems and Networks (IWCSN). IEEE, 2017. http://dx.doi.org/10.1109/iwcsn.2017.8276501.
Full textBandyopadhyay, Sambaran, Jagabondhu Hazra, and Shivkumar Kalyanaraman. "A machine learning based heating and cooling load forecasting approach for DHC networks." In 2018 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). IEEE, 2018. http://dx.doi.org/10.1109/isgt.2018.8403331.
Full textCao, Shuxiu, Juping Gu, Xinsong Zhang, and Ping Lu. "Optimal Dispatch of Combined Cooling, Heating and Power Microgrid Considering Thermal Characteristics of Heating Network." In 2019 34rd Youth Academic Annual Conference of Chinese Association of Automation (YAC). IEEE, 2019. http://dx.doi.org/10.1109/yac.2019.8787640.
Full textZeng, Jing, Qun Xu, Youzhi Ning, and Xiuling Zhang. "Pipe Network Optimization in District Cooling/Heating System: A Review." In 2019 International Conference on Robots & Intelligent System (ICRIS). IEEE, 2019. http://dx.doi.org/10.1109/icris.2019.00042.
Full textColella, Whitney G. "Optimizing Operation of Stationary Fuel Cell Systems (FCS) Within District Cooling and Heating Networks." In ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2010. http://dx.doi.org/10.1115/fuelcell2010-33134.
Full textLiu, Xinglei, Jun Liu, and Xia Zhao. "Energy Flow Calculation Method of Combined Cooling, Heating and Power System with Terminal Cooling Network Model." In 2020 IEEE Power & Energy Society General Meeting (PESGM). IEEE, 2020. http://dx.doi.org/10.1109/pesgm41954.2020.9281675.
Full textReports on the topic "Heating and cooling networks"
Leoni, Paolo. Techno-economic comparison of the collected examples. IEA SHC Task 55, November 2020. http://dx.doi.org/10.18777/ieashc-task55-2020-0012.
Full textSchmidt, Ralf-Roman, Paolo Leoni, and Hamid Aghaie. The future of DH and the role of solar thermal energy. IEA SHC Task 55, October 2020. http://dx.doi.org/10.18777/ieashc-task55-2020-0007.
Full textLeoni, Paolo, Ralf-Roman Schmidt, Roman Geyer, and Patrick Reiter. SWOT analysis of ST integration in DHC systems. IEA SHC Task 55, February 2020. http://dx.doi.org/10.18777/ieashc-task55-2020-0002.
Full textDamman, Dennis. Cab Heating and Cooling. Office of Scientific and Technical Information (OSTI), October 2005. http://dx.doi.org/10.2172/903061.
Full textTeotia, A. P. S., D. E. Karvelas, E. J. Daniels, and J. L. Anderson. District heating and cooling market assessment. Office of Scientific and Technical Information (OSTI), June 1993. http://dx.doi.org/10.2172/10157992.
Full textHoltz, M. IEA solar heating and cooling program. Office of Scientific and Technical Information (OSTI), April 1989. http://dx.doi.org/10.2172/6925318.
Full textGarton, Byron. Heating and Cooling Cost Model user’s guide. Information Technology Laboratory (U.S.), July 2019. http://dx.doi.org/10.21079/11681/33591.
Full textBurdick, Arlan. Strategy Guideline. Accurate Heating and Cooling Load Calculations. Office of Scientific and Technical Information (OSTI), June 2011. http://dx.doi.org/10.2172/1219203.
Full textLowe, James William. Ground Source Geothermal District Heating and Cooling System. Office of Scientific and Technical Information (OSTI), October 2016. http://dx.doi.org/10.2172/1329477.
Full textHoffman, D. P. Mold heating and cooling microprocessor conversion. Final report. Office of Scientific and Technical Information (OSTI), July 1995. http://dx.doi.org/10.2172/95354.
Full text