Academic literature on the topic 'Heating load'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Heating load.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Heating load"
Wang, Chao, Chun Hua Sun, Cheng Ying Qi, Feng Yun Jin, and Bo Shao. "The Experimental Analysis on the Regularity of Heating Load in Buildings Using Heat Meters with On-Off Time and Area Method in Shijiazhuang Area." Applied Mechanics and Materials 694 (November 2014): 272–75. http://dx.doi.org/10.4028/www.scientific.net/amm.694.272.
Full textBi, Yuehong, Lingen Chen, and Fengrui Sun. "Heating load, heating-load density and COP optimizations of an endoreversible air heat-pump." Applied Energy 85, no. 7 (July 2008): 607–17. http://dx.doi.org/10.1016/j.apenergy.2007.09.007.
Full textHoušová, J., and K. Hoke. "Microwave heating – the influence of oven and load parameters on the power absorbed in the heated load." Czech Journal of Food Sciences 20, No. 3 (November 18, 2011): 117–24. http://dx.doi.org/10.17221/3521-cjfs.
Full textHajabdollahi, Hassan, and Zahra Hajabdollahi. "Economic feasibility of trigeneration plants for various prime movers and triple load demands." Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 231, no. 3 (July 31, 2015): 371–82. http://dx.doi.org/10.1177/0954408915597832.
Full textYang, Yunbo, Rongling Li, and Tao Huang. "Smart Meter Data Analysis of a Building Cluster for Heating Load Profile Quantification and Peak Load Shifting." Energies 13, no. 17 (August 21, 2020): 4343. http://dx.doi.org/10.3390/en13174343.
Full textChen, S. S., N. T. Wright, and J. D. Humphrey. "Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal, Isotonic Shrinkage." Journal of Biomechanical Engineering 120, no. 3 (June 1, 1998): 382–88. http://dx.doi.org/10.1115/1.2798005.
Full textFox, B., A. I. McCartney, and B. M. McCann. "Scheduling of radio-controlled heating load." IEE Proceedings - Generation, Transmission and Distribution 145, no. 6 (1998): 641. http://dx.doi.org/10.1049/ip-gtd:19982356.
Full textVan Der Meulen, S. F. "Load management in district heating systems." Energy and Buildings 12, no. 3 (November 1988): 179–89. http://dx.doi.org/10.1016/0378-7788(88)90063-1.
Full textLi, Hongwei, and Stephen Jia Wang. "Load Management in District Heating Operation." Energy Procedia 75 (August 2015): 1202–7. http://dx.doi.org/10.1016/j.egypro.2015.07.155.
Full textLu, Yu, and Rui Li. "Analysis of Influencing Factors of Heat Load of Heating Power Station." E3S Web of Conferences 252 (2021): 01042. http://dx.doi.org/10.1051/e3sconf/202125201042.
Full textDissertations / Theses on the topic "Heating load"
Jerome, David. "Building load analysis and graphical display as a design tool." Thesis, Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/16410.
Full textCleaveland, John P. "Loadcal : a microcomputer simulation for estimating heating and cooling loads for commercial buildings." Thesis, Georgia Institute of Technology, 1985. http://hdl.handle.net/1853/23099.
Full textRodriguez, German Darío Rivas. "Decentralized Architecture for Load Balancing in District Heating Systems." Thesis, Blekinge Tekniska Högskola, Sektionen för datavetenskap och kommunikation, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-3329.
Full text(+46) 709706206
Sultan, Sahira. "Cost Evaluation of Building Space Heating; District Heating and Heat Pumps." Thesis, Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-37137.
Full textUrban, Graeme John. "Probabalistic load modelling of electrical demand of residential water heating." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/20071.
Full textENGLISH ABSTRACT: Energy efficiency and the move to renewable energy resources are of vital importance in growing profitable and sustainable economies. In recent years, greater emphasis has been placed on institutions, companies and individuals to reduce their electrical energy demand through energy management. In an attempt to reduce the demand, the electrical power utility in South Africa, Eskom, has introduced Demand Side Management programs and substantial increases in electricity tariffs. In addition to these, tax incentives have been offered to help off-set the capital costs associated with the investments made in replacing old electrical equipment with new electrically efficient equipment. Thus the need for accurate Measurement and Verification of electrical energy demand reduction, to substantiate fiscal claims, has become imperative. The main purpose of Measurement and Verification is to investigate the actual monetary performance of an energy savings project. Energy savings assessments, based on purely deterministic baseline demand, do not adequately represent the statistical nature of the savings impacts of many practical load systems, as disclosed in a reporting period. This thesis presents the development of a generic probabilistic methodology to determine the demand profiles of preand post-Energy Conservation Measures (ECMs) for practical load systems. The difference between the simulated demand of the pre- and post-ECMs for a particular set of variables represent the electrical demand impact. The electrical demand of the pre- and post-ECMs is defined in terms of Probability Density Functions, and derived using a multivariate kernel density estimation algorithm. The approach is tested using a simulation model of a waterheating geyser implemented in MATLAB. Three different ECMs are simulated using the geyser model and demand density estimation. The results of the demand impacts of the ECMs are presented and evaluated. With regards to possible future research this methodology could be applied to the evaluation of the demand impacts of heat pump technologies and solar water heaters.
AFRIKAANSE OPSOMMING: en die skuif na hernubare energiebronne is van deurslaggewende belang vir die ontwikkeling van winsgewende en volhoubare ekonomieë. Onlangs is meer klem geplaas op instansies, maatskappye en individue om hul aanvraag na energie te verminder met behulp van energiebestuur. In ‘n poging om die aanvraag te verlaag, het Eskom, Suid-Afrika se elektrisiteitsverskaffer, aansienlike elektrisiteitstariefverhogings ingelyf en Aanvraagbestuursprogramme van stapel gestuur. Bykomend hiertoe is belastingaansporings ook aangebied, waarteen kapitale kostes, geassosieer met die vervanging van ou elektriese toerusting met nuwe elektries doeltreffende toerusting, afgeset kan word. Derhalwe het die behoefte aan akkurate Meting en Verifikasie van elektriese energie aanvraagvermindering, om finansiële eise te staaf, noodsaaklik geword. Die hoofdoel van Meting en Verifikasie is om die werklike finansiële prestasie van energiebesparingsprojek te ondersoek soos bekend gemaak word tydens ’n verslagdoeningstydperk. Energiebesparingassesserings wat slegs gebaseer word op die suiwer deterministiese basislyn aanvraag na elektrisiteit, verteenwoordig nie die werklike statistiese aard van die besparingsimpakte van baie praktiese lasstelsels nie. Hierdie tesis stel die ontwikkeling van generiese waarskynlikheids-metodologie voor, om die voor- en na- Energiebesparings-maatreëls se aanvraagprofiele vir sulke praktiese lasstelsels, vas te stel. Die verskil tussen die gesimuleerde aanvraag van die voor- en na- Energiebesparings-maatreëls vir spesifieke stel veranderlikes verteenwoordig die elektriese aanvraag impak. Die voor- en na- Energiebesparings-maatreëls van die energieverbruik profieldata word gedefinieer in terme van Waarskynlikheidsdigtheidsfunksies en afgelei deur gebruik te maak van meerveranderlike kerndigtheidafskattingsalgoritme. Die benadering is getoets deur gebruik te maak van simuleringsmodel van warmwaterstelsel geïmplimenteer in MATLAB. Drie verskillende voor- en na- Energiebesparings-maatreëls is gesimuleer met behulp van die warmwaterstelselmodel en aanvraag digtheidafskatting. Die resultate van die elektriese aanvraag impakte van die voor- en na- Energiebesparings-maatreëls word vervolgens bespreek en geëvalueer. Met betrekking tot moontlike toekomstige navorsing kan hierdie metodologie toegepas word om die aanvraag impakte van hittepomp- en sonwaterverwarmingstegnologieë te evalueer.
Tabarra, M. "Load factor effects on thermally stratified solar storage tanks." Thesis, De Montfort University, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.356458.
Full textFernandez, del Castillo Lisa. "Design of a novel test bench for induction heating load characterization." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/90135.
Full text26
"June 2014." Cataloged from PDF version of thesis.
Includes bibliographical references (pages 87-89).
Magnetic materials used in induction heating applications have nonlinear magnetic properties with respect to field strength and frequency, which can be effectively characterized using experimental techniques. To this end, we present a test bench inverter optimized for induction heating experimentation, capable of driving an inductive load across a 1-100 kHz frequency range with up to 2 kW power. Harmonic distortion of the inverter is minimized with a novel multilevel topology and modulation scheme, thus allowing near-sinusoidal excitations to be obtained at varying field strengths and frequencies. To demonstration the capabilities of the test bench, we characterize the power dissipation of a loaded induction heating coil across a range of frequencies and power levels.
by Lisa Fernandez del Castillo.
S.M.
Provatas, Spyridon. "An Online Machine Learning Algorithm for Heat Load Forecasting in District Heating Systems." Thesis, Blekinge Tekniska Högskola, Institutionen för datalogi och datorsystemteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-3475.
Full textAmrhein, Andrew Aloysius. "Induction Heating of Aluminum Cookware." Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/77400.
Full textMaster of Science
Landis, Mark J. "Development of a Parametric Data-Driven Fixed Shading Device Design Workflow." University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1553250987067742.
Full textBooks on the topic "Heating load"
Introduction to heating, ventilation, and air conditioning: How to calculate heating and cooling loads. Troy, Mich: Business News Pub. Co., 1995.
Find full textAmerican Society of Heating, Refrigerating and Air-Conditioning Engineers. Cooling and heating load calculation manual. 2nd ed. Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers., 1992.
Find full textD, Spitler Jeffrey, and American Society of Heating, Refrigerating, and Air-Conditioning Engineers., eds. Cooling and heating load calculation manual. 2nd ed. New York: ASHRAE, 1994.
Find full textAmerican Society of Heating, Refrigerating and Air-Conditioning Engineers, ed. Load calculation applications manual. Atlanta: ASHRAE, 2014.
Find full textSpitler, Jeffrey D. Load calculation applications manual. Atlanta, GA: American Society of Heating, Refrigerating, and Air-Conditioning Engineers, 2010.
Find full textLoad calculation applications manual. Atlanta, GA: American Society of Heating, Refrigerating, and Air-Conditioning Engineers, 2008.
Find full textLoad calculation applications manual. Atlanta, GA: American Society of Heating, Refrigerating, and Air-Conditioning Engineers, 2010.
Find full textSpitler, Jeffrey D. Load calculation applications manual. Atlanta, GA: American Society of Heating, Refrigerating, and Air-Conditioning Engineers, 2010.
Find full textAnalyzing field measurements: Air conditioning & heating. 2nd ed. Lilburn, GA: Fairmont Press, 1997.
Find full textAmerican Society of Heating, Refrigerating, and Air-Conditioning Engineers., ed. Annotated guide to load calculation models and algorithms. Atlanta: American Society of Heating, Refrigeratin and Air-Conditioning Engineers, Inc., 1996.
Find full textBook chapters on the topic "Heating load"
Bianchi, Federico, Francesco Masillo, Alberto Castellini, and Alessandro Farinelli. "XM_HeatForecast: Heating Load Forecasting in Smart District Heating Networks." In Machine Learning, Optimization, and Data Science, 601–12. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-64583-0_53.
Full textJacob, Maria, Cláudia Neves, and Danica Vukadinović Greetham. "Short Term Load Forecasting." In Forecasting and Assessing Risk of Individual Electricity Peaks, 15–37. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-28669-9_2.
Full textWang, Ruiting, Fulin Wang, Zhaohan Nan, Minjie Xiao, and Aijun Ding. "Precise Control for Heating Supply to Households Based on Heating Load Prediction." In Environmental Science and Engineering, 855–63. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-9524-6_89.
Full textJia, Meng, Chunhua Sun, Shanshan Cao, and Chengying Qi. "District Heating System Load Prediction Using Machine Learning Method." In Environmental Science and Engineering, 581–88. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-9524-6_61.
Full textDaub, Dennis, Sebastian Willems, Burkard Esser, and Ali Gülhan. "Experiments on Aerothermal Supersonic Fluid-Structure Interaction." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 323–39. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53847-7_21.
Full textFarid, Mohammed, Amar Auckaili, and Gohar Gholamibozanjani. "Energy Saving, Peak Load Shifting and Price-Based Control Heating." In Thermal Energy Storage with Phase Change Materials, 159–61. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780367567699-12.
Full textCao, Shanshan, Hua Zhao, Xin Xie, and Xiaolin Liu. "District Heating System Adjustment Theoretical Based on Heat Users’ Real Load." In Lecture Notes in Electrical Engineering, 577–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39581-9_57.
Full textBianchi, Federico, Pietro Tarocco, Alberto Castellini, and Alessandro Farinelli. "Convolutional Neural Network and Stochastic Variational Gaussian Process for Heating Load Forecasting." In Machine Learning, Optimization, and Data Science, 244–56. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-64583-0_23.
Full textvan Pruissen, Olaf, and René Kamphuis. "Suppressing Peak Load at Simultaneous Demand of Electric Heating in Residential Areas." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 85–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19322-4_10.
Full textZhao, Han, Qingsong Wang, Yanfei Su, Yu Wang, Guangzheng Shao, Haodong Chen, and Jinhua Sun. "Experimental Investigation on Glass Cracking for Wind Load Combined with Radiant Heating." In Fire Science and Technology 2015, 255–60. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0376-9_25.
Full textConference papers on the topic "Heating load"
Fox, B. "Scheduling of heating load." In IEE Colloquium on The New NIE Energy Management System. IEE, 1998. http://dx.doi.org/10.1049/ic:19980476.
Full textvan Deventer, Jan, Jonas Gustafsson, and Jerker Delsing. "Controlling district heating load through prices." In 2011 IEEE International Systems Conference (SysCon). IEEE, 2011. http://dx.doi.org/10.1109/syscon.2011.5929104.
Full textDzieniakowski, Maciej A., Jan Fabianowski, and Robert Ibach. "LCL-load modular converter for induction heating." In 2008 13th International Power Electronics and Motion Control Conference (EPE/PEMC 2008). IEEE, 2008. http://dx.doi.org/10.1109/epepemc.2008.4635573.
Full textKral, Erik, Alena Kostalova, Petr Capek, and Lubomir Vasek. "Algorithm for Central Heating Heat Load Modelling." In 2018 International Conference on Computational Science and Computational Intelligence (CSCI). IEEE, 2018. http://dx.doi.org/10.1109/csci46756.2018.00279.
Full textHietaharju, Petri, and Mika Ruusunen. "Peak Load Cutting in District Heating Network." In Proceedings of The 9th EUROSIM Congress on Modelling and Simulation, EUROSIM 2016, The 57th SIMS Conference on Simulation and Modelling SIMS 2016. Linköping University Electronic Press, 2018. http://dx.doi.org/10.3384/ecp1714299.
Full textMokeev, Vladimir V. "Prediction of Heating Load and Cooling Load of Buildings Using Neural Network." In 2019 International Ural Conference on Electrical Power Engineering (UralCon). IEEE, 2019. http://dx.doi.org/10.1109/uralcon.2019.8877655.
Full textDu, Wei, Ming Zeng, Yuanfei Li, Shengyuan Zhong, and Xiaoyuan Wang. "The heating load control method of load aggregators based on cluster analysis." In 2020 12th IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). IEEE, 2020. http://dx.doi.org/10.1109/appeec48164.2020.9220357.
Full textSavage, H., J. Kennedy, B. Fox, and D. Flynn. "Managing variability of wind energy with heating load control." In 2008 43rd International Universities Power Engineering Conference (UPEC). IEEE, 2008. http://dx.doi.org/10.1109/upec.2008.4651571.
Full textBaciu, Ionel H., Adrian Taut, Ovidiu Pop, and Serban Lungu. "Advanced simulation of load variation in induction heating systems." In 2009 32nd International Spring Seminar on Electronics Technology (ISSE). IEEE, 2009. http://dx.doi.org/10.1109/isse.2009.5207004.
Full textLi, Jingang, Wenxian Luo, and Chen Chen. "Research on Load Parameter Identification of the Induction Heating." In 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA). IEEE, 2019. http://dx.doi.org/10.1109/iciea.2019.8834357.
Full textReports on the topic "Heating load"
Burdick, Arlan. Strategy Guideline. Accurate Heating and Cooling Load Calculations. Office of Scientific and Technical Information (OSTI), June 2011. http://dx.doi.org/10.2172/1219203.
Full textBurdick, A. Strategy Guideline: Accurate Heating and Cooling Load Calculations. Office of Scientific and Technical Information (OSTI), June 2011. http://dx.doi.org/10.2172/1018100.
Full textRice, C. Keith, Bo Shen, and Som S. Shrestha. An analysis of representative heating load lines for residential HSPF ratings. Office of Scientific and Technical Information (OSTI), July 2015. http://dx.doi.org/10.2172/1214506.
Full textRice, C. Keith, Bo Shen, and Som S. Shrestha. Revised Heating Load Line Analysis: Addendum to ORNL/TM-2015/281. Office of Scientific and Technical Information (OSTI), July 2016. http://dx.doi.org/10.2172/1287036.
Full textCui, Borui, Jaewan Joe, Jeffrey Munk, Jian Sun, and Teja Kuruganti. Load Flexibility Analysis of Residential HVAC and Water Heating and Commercial Refrigeration. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1564190.
Full textPoerschke, Andrew. Risk Assessment of Heating, Ventilating, and Air-Conditioning Strategies in Low-Load Homes. Office of Scientific and Technical Information (OSTI), February 2016. http://dx.doi.org/10.2172/1239974.
Full textPoerschke, Andrew. Risk Assessment of Heating, Ventilating, and Air-Conditioning Strategies in Low-Load Homes. Office of Scientific and Technical Information (OSTI), February 2016. http://dx.doi.org/10.2172/1240496.
Full textBin, Shen. Test methods for mechanical load on support of close-coupled solar water heating systems. IEA SHC Task 57, September 2018. http://dx.doi.org/10.18777/ieashc-task57-2018-0007.
Full textHirst, E., and R. Goeltz. Electricity use for residential space heating: comparison of the Princeton Scorekeeping Method with end-use load data. Office of Scientific and Technical Information (OSTI), April 1986. http://dx.doi.org/10.2172/5857556.
Full textBarrett, Emily. The Investigation and Optimization of a Two-Heat-Pump System Incorporating Thermal Storage for Shaping Residential Heating Load. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.3020.
Full text