Dissertations / Theses on the topic 'Heavy fermion systems'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Heavy fermion systems.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Mathur, Neil David. "Quantum order in heavy fermion systems." Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.388485.
Full textChilton, John Andrew. "Physical properties of selected heavy fermion systems." Thesis, Imperial College London, 1989. http://hdl.handle.net/10044/1/47379.
Full textYuan, Huiqiu. "Superconductivity in germanium clathrates and heavy fermion systems /." Aachen : Shaker, 2003. http://bibpurl.oclc.org/web/26506.
Full textSolanki-Moser, Myriam E. "Point contact spectroscopy of heavy fermion systems and superconductors /." [S.l.] : [s.n.], 1987. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=8327.
Full textGreen, Alexander Christopher Maurice. "Correlated electrons in heavy fermion and double exchange systems." Thesis, Imperial College London, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.312479.
Full textHill, Robert W. "Measurements of Landau quantum oscillations in heavy fermion systems." Thesis, University of Bristol, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.319091.
Full textLengyel, Edit. "Antiferromagnetism and superconductivity in ce-based heavy-fermion systems." Göttingen Cuvillier, 2007. http://d-nb.info/990402991/04.
Full textBrunton, Rosalind Elizabeth. "Strong correlation effects in heavy fermion and double exchange systems." Thesis, Imperial College London, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.300345.
Full textYuan, Huiqiu [Verfasser]. "Superconductivity in Germanium Clathrates and Heavy-Fermion Systems / Huiqiu Yuan." Aachen : Shaker, 2003. http://d-nb.info/1170542077/34.
Full textHoward, Bruce Kenneth. "Light and heavy quasiparticles in the metamagnet CeRuâ†2Siâ†2." Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.292781.
Full textAdhikari, Ram Bahadur. "Superconductivity and Magnetism in Selected Filled Skutterudites and Heavy Fermion Systems." Kent State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=kent16173874994732.
Full textNomoto, Takuya. "Pairing symmetry and gap structure in heavy fermion superconductors." 京都大学 (Kyoto University), 2017. http://hdl.handle.net/2433/225389.
Full textWalker, I. R. "New experimental methods for the study of anomalous Fermi systems." Thesis, University of Cambridge, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240112.
Full textMiclea, Corneliu Florin. "Investigation of superconducting order parameters in heavy-fermion and low-dimensional metallic systems under pressure." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2006. http://nbn-resolving.de/urn:nbn:de:swb:14-1153315149468-90260.
Full textMiclea, Corneliu Florin. "Investigation of superconducting order parameters in heavy fermion and low dimensional metallic systems under pressure." Doctoral thesis, Göttingen Cuvillier, 2005. http://d-nb.info/990426440/04.
Full textVieyra, Villegas Hugo Abdiel. "Resistivity and thermal conductivity measurements on heavy-fermion superconductors in rotating magnetic fields." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-107550.
Full textDe, Sa Paul Agnelo. "Effects of boundaries and impurities on critical systems." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.282332.
Full textLing, Meng-Chieh [Verfasser], and J. [Akademischer Betreuer] Schmalian. "Impurity Controlled Antiferromagnetic Quantum Criticality in Heavy Fermion Systems / Meng-Chieh Ling ; Betreuer: J. Schmalian." Karlsruhe : KIT-Bibliothek, 2016. http://d-nb.info/1122461569/34.
Full textRadu, Maria Teodora. "Thermodynamic characterization of heavy fermion systems and low dimensional quantum magnets near a quantum critical point." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2005. http://nbn-resolving.de/urn:nbn:de:swb:14-1130403549184-89465.
Full textBercx, Martin Helmut [Verfasser], and Fakher [Gutachter] Assaad. "Numerical studies of heavy-fermion systems and correlated topological insulators / Martin Helmut Bercx. Gutachter: Fakher Assaad." Würzburg : Universität Würzburg, 2015. http://d-nb.info/1111508771/34.
Full textWerner, Jan [Verfasser], and Fakher F. [Gutachter] Assaad. "Numerical Simulations of Heavy Fermion Systems: From He-3 Bilayers to Topological Kondo Insulators / Jan Werner. Gutachter: Fakher F. Assaad." Würzburg : Universität Würzburg, 2015. http://d-nb.info/1111783705/34.
Full textMeyer, Karsten. "Flussgleichungen für das Anderson-Gitter zur Beschreibung von Schwer-Fermion-Systemen." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2004. http://nbn-resolving.de/urn:nbn:de:swb:14-1079709122000-46905.
Full textThe physical properties of heavy-fermion systems are examined. These systems are mainly formed by rare earth or actinide compounds. Their essential physics can be characterized by the periodic Anderson model which describes the interplay of itinerant metal electrons and localized, but strongly correlated f-electrons. The present calculations are based on the flow equations approach proposed by Wegner. This method uses a continuous unitary transformation to derive an effective Hamiltonian of an easy to treat structure. Within this framework the electronic structure of heavy-fermion systems is calculated and the influence of external parameters is studied. Beside the derivation of static properties the density of states and dynamic magnetic susceptibilities are investigated in order to characterize the nature of collective excitations
Meyer, Karsten. "Flussgleichungen für das Anderson-Gitter zur Beschreibung von Schwer-Fermion-Systemen." Doctoral thesis, Technische Universität Dresden, 2003. https://tud.qucosa.de/id/qucosa%3A24313.
Full textThe physical properties of heavy-fermion systems are examined. These systems are mainly formed by rare earth or actinide compounds. Their essential physics can be characterized by the periodic Anderson model which describes the interplay of itinerant metal electrons and localized, but strongly correlated f-electrons. The present calculations are based on the flow equations approach proposed by Wegner. This method uses a continuous unitary transformation to derive an effective Hamiltonian of an easy to treat structure. Within this framework the electronic structure of heavy-fermion systems is calculated and the influence of external parameters is studied. Beside the derivation of static properties the density of states and dynamic magnetic susceptibilities are investigated in order to characterize the nature of collective excitations.
Takasan, Kazuaki. "Nonequilibrium phenomena and dynamical controls in strongly correlated quantum systems driven by AC and DC electric fields." Kyoto University, 2019. http://hdl.handle.net/2433/242586.
Full textNakamine, Genki. "Superconducting Spin Susceptibility of Ute₂." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263450.
Full textBagrets, Nadezda [Verfasser], and H. von [Akademischer Betreuer] Löhneysen. "Pressure and concentration tuning of magnetic order in the heavy-fermion systems CeNixPt1-x and CePd1-xNixAl / Nadezda Bagrets. Betreuer: H. v. Löhneysen." Karlsruhe : KIT-Bibliothek, 2009. http://d-nb.info/1014222915/34.
Full textDionicio, Gabriel Alejandro. "Electrical resistivity of YbRh2Si2 and EuT2Ge2 (T = Co, Cu) at extreme conditions of pressure and temperature." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2007. http://nbn-resolving.de/urn:nbn:de:swb:14-1170255664129-64812.
Full textGeselbracht, Philipp [Verfasser], Christian [Akademischer Betreuer] [Gutachter] Pfleiderer, and Philipp [Gutachter] Gegenwart. "Neutron scattering investigation of Ce based heavy fermion systems : from magnetism to unconventional phenomena / Philipp Geselbracht ; Gutachter: Christian Pfleiderer, Philipp Gegenwart ; Betreuer: Christian Pfleiderer." München : Universitätsbibliothek der TU München, 2016. http://d-nb.info/1122738498/34.
Full textDionicio, Gabriel Alejandro. "Electrical resistivity of YbRh2Si2 and EuT2Ge2 (T = Co, Cu) at extreme conditions of pressure and temperature." Doctoral thesis, Technische Universität Dresden, 2006. https://tud.qucosa.de/id/qucosa%3A25011.
Full textLausberg, Stefan. "Quantenkritikalität in ferromagnetisch korrelierten Cer- und Ytterbium-basierten Schwere-Fermionen-Systemen." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-120702.
Full textTshabalala, Kamohelo George. "Electrical resistivity of the kondo systems (Ce1−xREx)In3, RE = Gd, Tb, Dy AND Ce(Pt1−xNix)Si2." Thesis, University of the Western Cape, 2008. http://hdl.handle.net/11394/3789.
Full textThe present study investigates the strength of the hybridization by substituting Ce atom in Kondo lattice CeIn3 with Gd, Tb, and Dy and by changing the chemical environment around the Ce atom in substituting Pt with Ni in CePtSi2. This thesis covers four chapters outline as follows: Chapter 1 introduces the theoretical background in rare earths elements, and an overview of the physics of heavy-fermion and Kondo systems. Chapter 2 presents the experimental details used in this thesis. Chapter 3 report the effect of substituting Ce with moment bearing rare-earth elements RE = Gd, Tb and Dy in CeIn3, through x-ray diffraction (XRD) and electrical resistivity measurements
Dai, Ji. "Low-dimensional electron systems studied by angle- and spin-resolved photoemission spectroscopy." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS345.
Full textMaterials in which many-body interactions, low-dimensional confinement, and/or strong spin-orbit coupling are present show a rich variety of phenomena, but are still poorly understood. Essential information about the origin of such phenomena can be obtained by measuring their electronic structure. This thesis presents an experimental study of the electronic structure of some low-dimensional and/or strongly correlated materials of current fundamental interest, using angle- and spin-resolved photoemission spectroscopy (ARPES and SARPES). In the introductory part, I present my work on two innovative textbook examples showing how interactions affect the band structure of a material: the coupling of electrons with phonons in a Debye distribution in a two-dimensional electron system (2DES) in ZnO, a wide-band-gap oxide semiconductor used in photovoltaic applications, and the splitting induced by strong spin-orbit coupling (SOC) in the bulk valence band of ZnTe, another important semiconductor used in optoelectronic devices. Then, in the rest of this thesis, I discuss my original results in three different low-dimensional systems of current interest: 1.The realisation of a 2DES at the (110) surface of SnO₂, the first of its kind in a rutile structure. Tunability of its carrier density by means of temperature or Eu deposition and robustness against surface reconstructions and exposure to ambient conditions make this 2DES promising for applications. By means of a simple redox reaction on the surface, this work has proven that oxygen vacancies can dope the conduction band minimum at the surface of SnO₂, solving a long-debated issue about their role in n-type doping in SnO₂. 2.The study of topological surface states in M₂Te₂X (with M = Hf, Zr, or Ti; and X = P or As), a new family of three-dimensional topological metals, originating from SOC and being protected by time-reversal symmetry. Their electronic structure and spin texture, studied by ARPES and SARPES, reveal the presence of massless Dirac fermions giving rise to Dirac-node arcs. 3.The investigation of the quasi-one-dimensional heavy-fermion material YbNi₄P₂, which presents a second-order quantum phase transition from a ferromagnetic to a paramagnetic phase upon partial substitution of phosphorous by arsenide. Such a transition is expected to occur only in zero- or one-dimensional systems, but a direct measurement of the electronic structure of ferromagnetic quantum-critical materials was missing so far. By careful in-situ preparation and cleaning of the surface of YbNi₄P₂ single crystals, which are impossible to cleave, their electronic structure has been successfully measured by ARPES, thus effectively unveiling the quasi-one-dimensionality of YbNi₄P₂. Moreover, the protocol used to make this material accessible to ARPES can be readily generalised to other exotic materials lacking a cleavage plane
Phan, Van Nham. "Valence transition and superconductivity in the extended periodic Anderson model." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1242199965571-88317.
Full textIn dieser Arbeit wird mit Hilfe der projektiven Renormierungsmethode (PRM) ein erweitertes periodische Anderson Modell untersucht, das zusätzlich eine Coulomb-Abstoßung zwischen den lokalisierten f-Elektronen und den Leitungselektronen enthält. In einer Dimension zeigt das Modell einen Valenzübergang, wenn sich die Energie des f-Niveaus der Fermienergie nähert. Der Übergang wird ebenfalls schärfer, wenn bei festgehaltener Gesamtelektronenzahl die Hybridisierung V zwischen den lokalisierten und den Leitungselekronen abnimmt. In zwei Dimensionen findet man ein ähnliches Valenzübergangsverhalten. Allerdings kann zusätzlich eine supraleitende Phase im Valenzübergangsgebiet auftreten. Um die supraleitende Phase zu untersuchen, betrachten wir einen Hamiltonoperator mit kleinen zusätzlichen Feldern, die die Eichsymmetrie brechen. Wir leiten Renormierungsgleichungen her, aus denen sich die supraleitenden Paarfunktionen selbstkonsistent bestimmen lassen. Unsere analytischen und numerischen Resultate zeigen, dass im Valenzübergangsgebiet d-Wellen-Supraleitung dominiert. Dies bestätigt eine Vermutung von Miyake, dass Valenzfluktuationen in Ce-basierten Schwerfermionensystemen bei hohen Drücken zur Supraleitung führen können
Westerkamp, Tanja. "Quantenphasenübergänge in den Schwere-Fermionen-Systemen Yb(Rh_{1-x}M_x)_2Si_2 und CePd_{1-x}Rh_x." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1244202394324-81635.
Full textThe investigation of heavy-fermion systems marks an important subject in the research field of solid state physics. The behaviour of heavy-fermion systems is dominated by the strong correlations of the magnetic moments of the unpaired f-electron spins. At low temperatures, experimentally accessible variables are strongly enhanced so that these systems are especially suited to analyse ground state properties. The central topic of this thesis is the investigation of two intermetallic rare-earth compounds with regard to quantum phase transitions. The latter occur at zero temperature as a function of parameters such as magnetic field, pressure or chemical substitution. They are traceable at finite temperature due to deviations of physical variables from the theory of Fermi liquids established by L. D. Landau. For this purpose, low-temperature experiments were performed down to 20mK and in magnetic fields up to 18T. Electrical resistivity, magnetic ac susceptibility, magnetostriction and thermal expansion were measured
Krellner, Cornelius. "Ferromagnetische Korrelationen in Kondo-Gittern: YbT2Si2 und CeTPO (T = Übergangsmetall)." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-24993.
Full textWithin the context of this thesis the Kondo lattices YbT2Si2 (T = Rh, Ir, Co) and CeTPO (T = Ru, Os, Fe, Co) were investigated. In these systems strong ferromagnetic correlations of the 4f-moments together with pronounced Kondo interactions are present, whose theoretical description are pres-ently controversial discussed. Therefore, this work gives an essential experimental contribution to the physics of ferromagnetic Kondo lattices. The main results include the growth of high-quality single crystals of YbRh2Si2 and the first analysis of the critical fluctuations around the magnetic phase transition in a heavy fermion system. Furthermore, the unexpected observation of an electron spin resonance in YbT2Si2 could be ascribed to ferromagnetic correlations. Moreover, a new heavy fermion system CeFePO with strong ferromagnetic correlations was found and with the isoelec-tronic CeRuPO the rare case of a ferromagnetic Kondo-lattice discovered
Westerkamp, Tanja. "Quantenphasenübergänge in den Schwere-Fermionen-Systemen Yb(Rh_{1-x}M_x)_2Si_2 und CePd_{1-x}Rh_x." Doctoral thesis, Technische Universität Dresden, 2008. https://tud.qucosa.de/id/qucosa%3A23821.
Full textThe investigation of heavy-fermion systems marks an important subject in the research field of solid state physics. The behaviour of heavy-fermion systems is dominated by the strong correlations of the magnetic moments of the unpaired f-electron spins. At low temperatures, experimentally accessible variables are strongly enhanced so that these systems are especially suited to analyse ground state properties. The central topic of this thesis is the investigation of two intermetallic rare-earth compounds with regard to quantum phase transitions. The latter occur at zero temperature as a function of parameters such as magnetic field, pressure or chemical substitution. They are traceable at finite temperature due to deviations of physical variables from the theory of Fermi liquids established by L. D. Landau. For this purpose, low-temperature experiments were performed down to 20mK and in magnetic fields up to 18T. Electrical resistivity, magnetic ac susceptibility, magnetostriction and thermal expansion were measured.
Langhammer, Christoph. "Kalorimetrische Untersuchungen zu Magnetismus, Supraleitung und Nicht-Fermi-Flüssigkeits-Effekten in Systemen mit starken Elektronenkorrelationen." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2000. http://nbn-resolving.de/urn:nbn:de:swb:14-991032056140-31582.
Full textWilson, Neil James William. "Heavy fermions : systems for exploring exotic quantum order." Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627430.
Full textKerschl, Peter. "Magnetisierungsmessungen in hohen magnetischen Impulsfeldern." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2006. http://nbn-resolving.de/urn:nbn:de:swb:14-1155114785406-30409.
Full textIn this work, the occurrence and the mechanism of field induced transitions and the related critical fields were investigated. The way of measuring the magnetisation was designed for the existing pulsed field device of the IFW Dresden. The magnetisation was measured in fields up to 48 T. For the first time, the anisotropy coefficient of Sm2Fe17N3 was obtained in the combined measurement of the exchange field via inelastic neutron scattering and the measurement of the anisotropy constant K1 for the same material. For the leading anisotropy coefficient, a value of A20<r²> = -28 meV was found using K1 of about 13 MJ/m³. It was shown that the observed high field transition in SmCo2.5Cu2.5 and SmCo2Cu3 is connected with the microstructure. The laminar microstructure consisting of phases with different Sm-content is a necessary precondition for the occurrence of the transition. The coercivity increases with the Cu-content and reaches high values at low temperature. The coercivity and the transition field show big magnetic viscosity. In DyFe6Al6, the disappearance of the spontaneous magnetisation at low temperature is caused by a strong antiferromagnetic coupling. The magnetic transition at low temperature could be explained by a field induced magnetic moment on a disordered crystal site. For the hexagonal DyMn6Ge6, the temperature dependence of the transition field towards the canted antiferromagnetic structure was measured for the first time. Above 100 K, the applied field causes the transition from the helimagnetic to the fan structure. At low temperature, a spin flop transition occurs, which is supported by the magnetic anisotropy of the Dy-ion. The magnetisation of magnetocaloric materials exhibits a dependence of the field changing rate. This can be explained qualitatively by the measurement condition: The pulsed field measurement is adiabatic, whereas during static measurements, the condition is isothermal. Besides common magnetic compounds, highly correlated electron systems were also investigated. The magnetic transition at 43 T in CeNi2Ge2 can be explained by the suppression of the Kondo effect and the breaking up of the antiferromagnetic structure. Furthermore, magnetisation of high temperature superconductors was measured. The measurements in the pulsed field are a contribution to the determination of the phase diagram of melt textured YBa2Cu3O7-d. The irreversibility field Hirr was measured for bulk samples down to low temperature. Hirr(T) shows an unexpected linear increase down to low temperature. Because of the high field-changing rates and the big differences of magnetisation processes in magnetic materials, there is no uniform description of the magnetic viscosity for field changing rates in the magnitude from 0,001 up to 1000 T/s. By the measurement in the pulsed field, the magnitude of the magnetic viscosity of nanocrystalline barium ferrite was determined. Magnetisation measurement in pulsed fields is a very useful instrument to investigate field and time dependent properties of solids due to their high magnetic field and their high and varying field changing rate
Ernst, Stefan. "Rastertunnelspektroskopie an Schwere-Fermionen-Systemen." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-71041.
Full textRaymond, Stéphane. "Excitations de basse énergie dans les fermions lourds par diffusion inélastique des neutrons." Université Joseph Fourier (Grenoble), 1998. http://www.theses.fr/1998GRE10103.
Full textSchaufuß, Uwe. "Hochfeld/Hochfrequenz-Elektronenspin-Resonanz an Übergangsmetallverbindungen mit starken elektronischen Korrelationen." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-24171.
Full textStrong electronic correlation and the resultant phenomena are object of interest in the modern solid state physics. Such correlation can be found in totally different systems from insulators and semiconductors to metals. This thesis presents HF-ESR studies of such phenomena in two low dimensional transition metal oxides and two intermetallic compounds. In ESR the electron spin is used as a local probe to measure the interaction between electrons and the magnetic properties nearby. With increasing electron-electron (EE) interaction the resonance becomes broader, so higher frequencies and higher magnetic fields as usual in commercial available ESR devices are needed to study strong EE interactions. With the used HF-ESR device with a frequency range $\nu=\vu{20-700}{GHz}$ special questions can be investigated where the excitation energies are in the order of $h\nu$ or the resonance effects in high magnetic fields can be explored. \textbf{CaCu$_2$O$_3$} have the same crystal structure as \chem{SrCu_2O_3}, a textbook example for a 2-leg spin-\textfrac{1}{2}-ladder with a nonmagnetic groundstate and a spin gap separating the excited state. Surprisingly \chem{CaCu_2O_3} shows an antiferromagnetic (afm) ground state with a relatively high transition temperature. To get a deeper insight in the unexpected afm ordering a combined magnetization and HF-ESR study was performed on a set of Zn-doped \chem{CaCu_2O_3} samples. Contrary to the Sr-compound in \chem{CaCu_2O_3} the \chem{Cu_2O_3}-ladder-layers are buckled due to a reduced rung angle. Furthermore it is a nonstoichiometric compound \chem{Ca_{1- x} Cu_{2+x}O_{3- \delta}}, with an excess of Cu in the order of $x\sim 0.16$ which is in the nonmagnetic \chem{Cu^{1+}}-state, sitting close to Ca-sites and a deficiency of oxygen $\delta\sim 0.07$. With this study one can show that (i) in the undoped compound the extra-spins, responsible for the magnetic Curie-Weiss-behavior, do not sit in the chains, they are sitting on low-symmetry interstitial sites. They recruit themselves from excess \chem{Cu^{1+}}, where the position becomes unstable close to a O-vacancy so they shift to a interstitial site and become \chem{Cu^{2+}}, (ii) the interstitial site of the extra-spins couple n.n. ladders inside a layer with a direct afm exchange path which lifts the frustration of the spin-ladders so that a afm order with such a high ordering temperature can happen and (iii) the regular interstitial site of the extra-spins explains the weak commensurate spin structure additionally found to the incommensurate spin structure of the ladder-spins in the afm ordered state The single layered manganate \textbf{LaSrMnO$_4$} is a two dimensional member of the transition metal oxides. In this compound a strong correlation between the orbital and magnetic degree of freedom can be found, so that the afm ordering below $T_N\sim\vu{125}{K}$ comes along with a ferro-orbital ordering of the \chem{Mn^{3+}} $3d$-Orbitals. With HF-ESR we have measured the temperature dependent mixing of the $3d$-orbitals and proved quantitatively the theory of ferro-orbital ordering. In the afm ordered state below $T_\text{stat}\sim\vu{40}{K}<T_N$ a strong field dependent decrease of the microwave transmission was observed. The frequency dependence of this phenomena could be explained by ferromagnetic polarons resulting from the interaction of additional charge carriers with the afm ordered spins. \textbf{GdNi$_2$B$_2$C} The intermetallic borocarbides $R\chem{Ni_2B_2C}$ ($R$ - rare earth metal) attract much attention due to the mutual interaction of superconductivity and afm ordering with complex phase diagrams. One reason for this complexity is the strong magnetic anisotropy coming from the splitting of the $J$-multiplets of the $R$'s $f$-orbitals in the crystal field. The nonsuperconducting \chem{GdNi_2B_2C} was widely explored because \chem{Gd^{3+}} with a half filled $4f$-shell should show no anisotropic behavior. The HF-ESR study on this system showed, that the assumed pure spin magnet have a uncommonly strong anisotropy which could be ascribed to a highly complex band structure. Involving this new information will help to adjust the model to the reality. YbRh$_2$Si$_2$ In this heavy fermion system where the magnetic Yb ($4f$) built up a regular Kondo-lattice here is a competition between electron-electron- and the Ruderman-Kittel-Kasuya-Yosida-(RKKY) interaction. Thats why in this compound a afm ordered state, a (paramagnetic) heavy fermion (LFL) and a non-Fermi-liquid behavior can be established by changing the magnetic field $B$ and/or the temperature $T$. Below the Kondo-temperature $T^*$ a strong hybridization between the conduction electrons and the $4f$-electrons leads to a strong broadening of the otherwise atomic sharp $4f$-states. Thats why the observation of a small electron spin resonance below $T^*$ was very surprising. Because the yet published ESR-measurements are fully in the NFL-state, we performed HF-ESR measurements to study a $B-T$ area where a NFL-LFL crossover appears to get a deeper inside of the physics behind this resonance. The behavior of the measured $T$- and $B$-dependences indicate that this resonance phenomena in \chem{YbRh_2Si_2} is a resonance of heavy fermions
Wykhoff, Jan. "Elektronenspinresonanz in Yb-basierten Kondogitter-Systemen." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-39395.
Full textJesche, Anton. "3d- und 4f-Korrelationen in quaternären Eisenpniktiden: der Sonderfall CeFeAs1-xPxO." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-71518.
Full textPedrero, Ojeda Luis. "Magnetization Study of the Heavy-Fermion System Yb(Rh1-xCox)2Si2 and of the Quantum Magnet NiCl2-4SC(NH2)2." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-115938.
Full textArndt, Julia. "Wechselspiel von Magnetismus und Supraleitung im Schwere-Fermionen-System CeCu2Si2." Doctoral thesis, Max-Planck-Institut für Chemische Physik fester Stoffe, 2009. https://tud.qucosa.de/id/qucosa%3A25298.
Full textThe occurrence of superconductivity in systems with heavy fermions, discovered for the first time in CeCu_2Si_2, is often linked to the vicinity of a quantum critical point. This results in a complex interplay of magnetism and superconductivity, which is studied by means of specific heat and ac susceptibility measurements as well as neutron scattering experiments on different single crystals of CeCu_2(Si_{1-x}Ge_x)_2 in the present thesis. The focus is put on the detailed characterisation of the magnetic excitation spectrum in S-type CeCu_2Si_2. Neutron scattering results strongly imply that the coupling of superconducting Cooper pairs is mediated by overdamped spin fluctuations, which accumulate in the vicinity of a quantum phase transition. By substituting Si by Ge atoms in CeCu_2Si_2 magnetic order is stabilised and superconductivity successively suppressed. Neutron scattering experiments demonstrate that 2 % Ge substitution leads to magnetic order being displaced by superconductivity on decreasing temperature, whereas both coexist microscopically in the case of 10 % Ge substitution.
Arndt, Julia. "Wechselspiel von Magnetismus und Supraleitung im Schwere-Fermionen-System CeCu2Si2." Doctoral thesis, Berlin Logos, 2010. http://d-nb.info/1003247911/04.
Full textFriedemann, Sven. "Elektrischer Transport und Quantenkritikalität in reinem und substituiertem YbRh2Si2." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-39317.
Full textThis work investigates the electrical transport of the heavy-fermion compound YbRh2Si2 in its stoichiometric form as well as with slight isoelectronic substitution of Ir or Co on the Rh site. A quantum critical point is present in YbRh2Si2 which is accessed by tuning the transition temperature of the antiferromagnetic order to absolute zero via the application of a small magnetic field. The central measurements of the Hall coefficient reveal a crossover which sharpens to a discontinuity in the extrapolation to zero temperature implying a reconstruction of the Fermi surface at the quantum critical point. This allows to rule out conventional descriptions of the quantum criticality in YbRh2Si2. A scaling analysis corroborates this on a fundamental basis. In the samples with partial substitution the effect of unit cell volume change on the quantum criticality was investigated by means of resistivity measurements. Surprisingly, the magnetic transition is separated from the Fermi surface reconstruction. For samples with Ir substitution corresponding to negative chemical pressure, a new metallic spin liquid seems to emerge in the intermediate regime
Madeira, Lucas 1991. "Many-body systems : heavy rare-gases adsorbed on graphene substrates and ultracold Fermi gases = Sistemas de muitos corpos: gases nobres pesados adsorvidos em substratos de grafeno e gases de Fermi ultrafrios." [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/276942.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin
Made available in DSpace on 2018-08-28T00:18:16Z (GMT). No. of bitstreams: 1 Madeira_Lucas_M.pdf: 4273856 bytes, checksum: 8543c0dd916e2ec3fc638a5d31b32787 (MD5) Previous issue date: 2015
Resumo: Nessa dissertação nós investigamos dois sistemas de muitos corpos. Na primeira parte nós escolhemos uma abordagem clássica para estudar a adsorção de gases nobres pesados, Ne, Ar, Kr, Xe e Rn, em substratos de grafeno. Nós apresentamos evidências de camadas adsorvidas comensuradas, as quais dependem fortemente da simetria do substrato, para duas estruturas: camadas de Ne na rede sqrt{7} X sqrt{7} e Kr na rede sqrt{3} X sqrt{3}. Para estudar o derretimento nós introduzimos um parâmetro de ordem e sua susceptibilidade. O calor específico e a susceptibilidade em função da temperatura foram calculados para os gases nobres pesados em diversas densidades. A posição e largura característica dos picos do calor específico e da susceptibilidade foram determinadas. Finalmente, nós investigamos a distância dos primeiros vizinhos e a distância entre a camada e o substrato, identificando contribuições relacionadas aos picos do calor específico e da susceptibilidade. A segunda parte da dissertação trata de uma linha de vórtice no gás unitário de Fermi. Gases fermiônicos ultrafrios são notáveis devido à possibilidade experimental de variar as interações interpartículas através de ressonâncias de Feshbach, o que possibilita a observação do crossover BCS-BEC. No meio do crossover encontra-se um estado fortemente interagente, o gás unitário de Fermi. Uma linha de vórtice corresponde a uma excitação desse sistema com unidades de circulação quantizadas. Nós construímos funções de onda, inspiradas na função BCS, para descrever o estado fundamental e também o sistema com uma linha de vórtice. Nossos resultados para o estado fundamental elucidam aspectos da geometria cilíndrica do problema. O perfil de densidade é constante no centro do cilindro e vai a zero suavemente na borda. Nós separamos a contribuição devido à parede da energia do estado fundamental e determinamos a energia por partícula do bulk, epsilon_0=(0.42 +- 0.01) E_{FG}. Nós também calculamos o gap superfluído para essa geometria, Delta=(0.76 +- 0.01) E_{FG}. Para o sistema com a linha de vórtice nós obtivemos o perfil de densidade, o qual corresponde a uma densidade não nula no centro do vórtice, e a energia de excitação por partícula, epsilon_{ex}=(0.0058 +- 0.0003) E_{FG}. Os métodos empregados nessa dissertação, Dinâmica Molecular, Monte Carlo Variacional e Monte Carlo de Difusão, nos dão uma base sólida para a investigação de sistemas relacionados, e outros sistemas, de muitos corpos no futuro
Abstract: In this dissertation we investigated two many-body systems. For the first part we chose a classical approach to study the adsorption of heavy rare-gases, Ne, Ar, Kr, Xe and Rn, on graphene substrates. We presented evidences of commensurate adlayers, which depend strongly on the symmetry of the substrate, for two structures: Ne adlayers in the sqrt{7} X sqrt{7} superlattice and Kr in the sqrt{3} X sqrt{3} lattice. In order to study the melting of the system we introduced an order parameter, and its susceptibility. The specific heat and susceptibility as a function of the temperature were calculated for the heavy noble gases at various densities. The position and characteristic width of the specific heat and susceptibility peaks of these systems were determined. Finally, we investigated the first neighbor distance and the distance between the adlayer and the substrate, identifying contributions related to specific heat and melting peaks. The second part of the dissertation deals with a vortex line in the unitary Fermi gas. Ultracold Fermi gases are remarkable due to the experimental possibility to tune interparticle interactions through Feshbach resonances, which allows the observation of the BCS-BEC crossover. Right in the middle of the crossover lies a strongly interacting state, the unitary Fermi gas. A vortex line corresponds to an excitation of this system with quantized units of circulation. We developed wavefunctions, inspired by the BCS wavefunction, to describe the ground state and also for a system with a vortex line. Our results for the ground state elucidate aspects of the cylindrical geometry of the problem. The density profile is flat in the center of the cylinder and vanishes smoothly at the wall. We were able to separate from the ground state of the system the wall contribution and we have determined the bulk energy as epsilon_0=(0.42 +- 0.01) E_{FG} per particle. We also calculated the superfluid pairing gap for this geometry, Delta=(0.76 +- 0.01) E_{FG}. For the system with a vortex line we obtained the density profile, which corresponds to a non-zero density at the core, and the excitation energy, epsilon_{ex}=(0.0058 +- 0.0003) E_{FG} per particle. The methods employed in this dissertation, Molecular Dynamics, Variational Monte Carlo and Diffusion Monte Carlo, give us a solid basis for the investigation of related and other many-body systems in the future
Mestrado
Física
Mestre em Física
2012/24195-2
FAPESP
Kromer, Frank. "Dilatometrische Untersuchungen an den Schwere-Fermionen-Verbindungen (_UTh)Be13 und CeNi2Ge2." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2001. http://nbn-resolving.de/urn:nbn:de:swb:14-994841103593-84611.
Full text