To see the other types of publications on this topic, follow the link: Heavy fermions.

Journal articles on the topic 'Heavy fermions'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Heavy fermions.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Fisk, Zachary, John L. Sarrao, and Joe D. Thompson. "Heavy fermions." Current Opinion in Solid State and Materials Science 1, no. 1 (February 1996): 42–46. http://dx.doi.org/10.1016/s1359-0286(96)80008-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fulde, Peter. "Heavy Fermions." Europhysics News 16, no. 9 (1985): 14–16. http://dx.doi.org/10.1051/epn/19851609014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Seglich, F. "Heavy fermions." Journal of Physics and Chemistry of Solids 50, no. 3 (January 1989): 225–32. http://dx.doi.org/10.1016/0022-3697(89)90480-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Smith, J. L., A. Michael Boring, and P. Weinberger. "Heavy fermions and heavy atoms." International Journal of Quantum Chemistry 29, no. 3 (March 1986): 315–21. http://dx.doi.org/10.1002/qua.560290305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gschneidner, K. A., J. Tang, S. K. Dhar, and A. Goldman. "False heavy fermions." Physica B: Condensed Matter 163, no. 1-3 (April 1990): 507–10. http://dx.doi.org/10.1016/0921-4526(90)90254-r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hoang, A. H., J. H. Kiihn, and T. Teubner. "Radiation of light fermions in heavy fermion production." Nuclear Physics B 452, no. 1-2 (October 1995): 173–87. http://dx.doi.org/10.1016/0550-3213(95)00308-f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

FAYYAZUDDIN. "ELECTROWEAK UNIFICATION OF QUARKS AND LEPTONS IN A GAUGE GROUP SUC(3) × SU(4) × UX(1)." International Journal of Modern Physics A 27, no. 21 (August 20, 2012): 1250117. http://dx.doi.org/10.1142/s0217751x12501175.

Full text
Abstract:
A model for electroweak unification of quarks and leptons, in a gauge group SUC(3) × SU(4) × UX(1) is constructed. The model requires, three generations of quarks and leptons which are replicas (mirror) of the standard quarks and leptons. The gauge group SU(4) × UX(1) is broken in such a way so as to reproduce standard model and to generate heavy masses for the vector bosons [Formula: see text], the leptoquarks and mirror fermions. It is shown lower limit on mass scale of mirror fermions is [Formula: see text], E- being the lightest mirror fermion coupled to Z boson. As the universe expands, the heavy matter is decoupled at an early stage of expansion and may be a source of dark matter. Leptoquarks in the model connect the standard model and mirror fermions. Baryon genesis in our universe implies antibaryon genesis in mirror universe.
APA, Harvard, Vancouver, ISO, and other styles
8

Bar-Shalom, Shaouly, Michael Geller, Soumitra Nandi, and Amarjit Soni. "Two Higgs Doublets, a 4th Generation and a 125 GeV Higgs: A Review." Advances in High Energy Physics 2013 (2013): 1–28. http://dx.doi.org/10.1155/2013/672972.

Full text
Abstract:
We review the possible role that multi-Higgs models may play in our understanding of the dynamics of a heavy 4th sequential generation of fermions. We describe the underlying ingredients of such models, focusing on two Higgs doublets, and discuss how they may effectively accommodate the low-energy phenomenology of such new heavy fermionic degrees of freedom. We also discuss the constraints on these models from precision electroweak data as well as from flavor physics and the implications for collider searches of the Higgs particles and of the 4th generation fermions, bearing in mind the recent observation of a light Higgs with a mass of~125 GeV.
APA, Harvard, Vancouver, ISO, and other styles
9

Rice, T. M. "Theory of Heavy Fermions." Physica Scripta T19A (January 1, 1987): 246–52. http://dx.doi.org/10.1088/0031-8949/1987/t19a/034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Stajic, Jelena. "Imaging heavy Dirac fermions." Science 366, no. 6470 (December 5, 2019): 1210.6–1211. http://dx.doi.org/10.1126/science.366.6470.1210-f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Zwicknagl, G., A. N. Yaresko, and P. Fulde. "Heavy fermions in UPt3." Physica B: Condensed Matter 312-313 (March 2002): 304–6. http://dx.doi.org/10.1016/s0921-4526(01)01336-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Continentino, Mucio A. "Universality in heavy fermions." Physical Review B 57, no. 10 (March 1, 1998): 5966–71. http://dx.doi.org/10.1103/physrevb.57.5966.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Sluchanko, N. E., V. V. Glushkov, S. V. Demishev, G. S. Burkhanov, O. D. Chistyakov, and D. N. Sluchanko. "Heavy fermions in CeAl3." Physica B: Condensed Matter 378-380 (May 2006): 773–74. http://dx.doi.org/10.1016/j.physb.2006.01.280.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Edwards, D. M. "Magnetism and heavy fermions." Physica B: Condensed Matter 169, no. 1-4 (February 1991): 271–76. http://dx.doi.org/10.1016/0921-4526(91)90239-b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Gol’tsev, A. V. "Kinetics of heavy fermions." Journal of Experimental and Theoretical Physics 86, no. 5 (May 1998): 971–75. http://dx.doi.org/10.1134/1.558568.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Batlogg, B., D. J. Bishop, E. Bucher, B. Golding, A. P. Ramirez, Z. Fisk, J. L. Smith, and H. R. Ott. "Superconductivity and heavy fermions." Journal of Magnetism and Magnetic Materials 63-64 (January 1987): 441–46. http://dx.doi.org/10.1016/0304-8853(87)90632-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

ZHANG, HONG-HAO, YUE CAO, and QING WANG. "THE EFFECTS ON S, T AND U FROM HIGHER-DIMENSIONAL FERMION REPRESENTATIONS." Modern Physics Letters A 22, no. 33 (October 30, 2007): 2533–38. http://dx.doi.org/10.1142/s0217732307022736.

Full text
Abstract:
Inspired by a new class of walking technicolor models recently proposed using higher-dimensional technifermions, we consider the oblique corrections from heavy nondegenerate fermions with two classes of higher-dimensional representations of the electroweak gauge group itself. One is chiral SM-like, and the other is vector-like. In both cases, we obtain explicit expressions for S, T, U in terms of the fermion masses. We find that to keep the T parameter ultraviolet-finite, there must be a stringent constraint on the mass nondegeneracy of a heavy fermion multiplet.
APA, Harvard, Vancouver, ISO, and other styles
18

TRIANTAPHYLLOU, GEORGE. "MASS GENERATION AND THE DYNAMICAL ROLE OF THE KATOPTRON GROUP." Modern Physics Letters A 16, no. 02 (January 20, 2001): 53–61. http://dx.doi.org/10.1142/s0217732301002274.

Full text
Abstract:
Heavy mirror fermions along with a new strong gauge interaction capable of breaking the electroweak gauge symmetry dynamically were recently introduced under the name of katoptrons. Their main function is to provide a viable alternative to the Standard-Model Higgs sector. In such a framework, ordinary fermions acquire masses after the breaking of the strong katoptron group which allows mixing with their katoptron partners. The purpose of this letter is to study the elementary-scalars-free mechanism responsible for this breaking and its implications for the fermion mass hierarchies.
APA, Harvard, Vancouver, ISO, and other styles
19

LIU, K. F., and S. J. DONG. "HEAVY AND LIGHT QUARKS WITH LATTICE CHIRAL FERMIONS." International Journal of Modern Physics A 20, no. 30 (December 10, 2005): 7241–54. http://dx.doi.org/10.1142/s0217751x05022366.

Full text
Abstract:
The feasibility of using lattice chiral fermions which are free of O(a) errors for both the heavy and light quarks is examined. The fact that the effective quark propagators in these fermions have the same form as that in the continuum with the quark mass being only an additive parameter to a chirally symmetric anti-Hermitian Dirac operator is highlighted. This implies that there is no distinction between the heavy and light quarks and no mass dependent tuning of the action or operators as long as the discretization error O(m2a2) is negligible. Using the overlap fermion, we find that the O(m2a2) (and O(ma2)) errors in the dispersion relations of the pseudoscalar and vector mesons and the renormalization of the axial-vector current and scalar density are small. This suggests that the applicable range of ma may be extended to ~0.56 with only 5% error, which is a factor of ~2.4 larger than the corresponding range of the improved Wilson action. We show that the generalized Gell–Mann–Oakes–Renner relation with unequal masses can be utilized to determine the finite ma corrections in the renormalization of the matrix elements for the heavy-light decay constants and semileptonic decay constants of the B/D meson.
APA, Harvard, Vancouver, ISO, and other styles
20

Giannakis, Ioannis, Justin Leshen, Mariam Kavai, Sheng Ran, Chang-Jong Kang, Shanta R. Saha, Y. Zhao, et al. "Orbital-selective Kondo lattice and enigmatic f electrons emerging from inside the antiferromagnetic phase of a heavy fermion." Science Advances 5, no. 10 (October 2019): eaaw9061. http://dx.doi.org/10.1126/sciadv.aaw9061.

Full text
Abstract:
Novel electronic phenomena frequently form in heavy-fermions because of the mutual localized and itinerant nature of f-electrons. On the magnetically ordered side of the heavy-fermion phase diagram, f-moments are expected to be localized and decoupled from the Fermi surface. It remains ambiguous whether Kondo lattice can develop inside the magnetically ordered phase. Using spectroscopic imaging with scanning tunneling microscope, complemented by neutron scattering, x-ray absorption spectroscopy, and dynamical mean field theory, we probe the electronic states in antiferromagnetic USb2. We visualize a large gap in the antiferromagnetic phase within which Kondo hybridization develops below ~80 K. Our calculations indicate the antiferromagnetism and Kondo lattice to reside predominantly on different f-orbitals, promoting orbital selectivity as a new conception into how these phenomena coexist in heavy-fermions. Finally, at 45 K, we find a novel first order–like transition through abrupt emergence of nontrivial 5f-electronic states that may resemble the “hidden-order” phase of URu2Si2.
APA, Harvard, Vancouver, ISO, and other styles
21

PILAFTSIS, APOSTOLOS. "ANOMALOUS FERMION MASS GENERATION AT THREE LOOPS." Modern Physics Letters A 28, no. 22 (July 18, 2013): 1350083. http://dx.doi.org/10.1142/s0217732313500831.

Full text
Abstract:
We present a novel mechanism for generating fermion masses through global anomalies at the three-loop level. In a gauge theory, global anomalies are triggered by the possible existence of scalar or pseudoscalar states and heavy fermions, whose masses may not necessarily result from spontaneous symmetry breaking. The implications of this mass-generating mechanism for model building are discussed, including the possibility of creating low-scale fermion masses by quantum gravity effects.
APA, Harvard, Vancouver, ISO, and other styles
22

Kunszt, Z. "Helicity method for heavy fermions." Acta Physica Hungarica 64, no. 1-3 (September 1988): 157–62. http://dx.doi.org/10.1007/bf03158528.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

KONDO, Jun. "Resistance minimum and heavy fermions." Proceedings of the Japan Academy, Series B 82, no. 9 (2006): 328–38. http://dx.doi.org/10.2183/pjab.82.328.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Coleman, P. "The Lowdown on Heavy Fermions." Science 327, no. 5968 (February 18, 2010): 969–70. http://dx.doi.org/10.1126/science.1186253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Varma, C. M. "Phenomenological Aspects of Heavy Fermions." Physical Review Letters 55, no. 24 (December 9, 1985): 2723–26. http://dx.doi.org/10.1103/physrevlett.55.2723.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Phaf, Lukas, and Stefan Weinzierl. "Dipole formalism with heavy fermions." Journal of High Energy Physics 2001, no. 04 (April 4, 2001): 006. http://dx.doi.org/10.1088/1126-6708/2001/04/006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Continentino, Mucio A. "Universal behavior in heavy fermions." Physical Review B 47, no. 17 (May 1, 1993): 11587–90. http://dx.doi.org/10.1103/physrevb.47.11587.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Continentino, Mucio A. "Dimensional crossover in heavy fermions." Physica B: Condensed Matter 259-261 (January 1999): 172–73. http://dx.doi.org/10.1016/s0921-4526(98)00743-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Moshchalkov, V. V., F. G. Aliev, N. E. Sluchanko, O. V. Petrenko, and I. Ciric. "Heavy fermions in kondo lattices." Journal of the Less Common Metals 127 (January 1987): 321–27. http://dx.doi.org/10.1016/0022-5088(87)90416-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

De Visser, A., A. Menovsky, and J. J. M. Franse. "UPt3, heavy fermions and superconductivity." Physica B+C 147, no. 1 (November 1987): 81–160. http://dx.doi.org/10.1016/0378-4363(87)90008-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Masiero, Antonio, Ferruccio Feruglio, Stefano Rigolin, and Roberto Strocchi. "Bounds on heavy chiral fermions." Physics Letters B 355, no. 1-2 (July 1995): 329–36. http://dx.doi.org/10.1016/0370-2693(95)00696-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Cyrot, M. "Superconductivity in Heavy Fermions Compounds." Physica Scripta 35, no. 4 (April 1, 1987): 510–12. http://dx.doi.org/10.1088/0031-8949/35/4/017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Barzykin, Victor, and Lev P. Gor'kov. "Singlet Magnetism in Heavy Fermions." Physical Review Letters 74, no. 21 (May 22, 1995): 4301–4. http://dx.doi.org/10.1103/physrevlett.74.4301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Hasenfratz, Anna, and Thomas A. DeGrand. "The role of heavy fermions." Nuclear Physics B - Proceedings Supplements 34 (April 1994): 317–19. http://dx.doi.org/10.1016/0920-5632(94)90378-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Flouquet, J., P. Haen, F. Lapierre, D. Jaccard, and G. Remenyi. "Experimental aspects of heavy fermions." Journal of Magnetism and Magnetic Materials 54-57 (February 1986): 322–26. http://dx.doi.org/10.1016/0304-8853(86)90606-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Souletie, J., J. P. Brison, A. de Visser, and J. Odin. "Static scaling in heavy fermions." Journal of Magnetism and Magnetic Materials 76-77 (December 1988): 123–24. http://dx.doi.org/10.1016/0304-8853(88)90336-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Schuh, B. "Hybrid Pairing and Heavy Fermions." physica status solidi (b) 131, no. 1 (September 1, 1985): 243–48. http://dx.doi.org/10.1002/pssb.2221310125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Heffner, R. H. "Muon studies of heavy fermions." Journal of Magnetism and Magnetic Materials 108, no. 1-3 (February 1992): 23–26. http://dx.doi.org/10.1016/0304-8853(92)91335-q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Murani, A. P. "Paramagnetic scattering from heavy and moderately heavy fermions." Neutron News 8, no. 2 (January 1997): 21–27. http://dx.doi.org/10.1080/10448639708231973.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

ZHURIDOV, DMITRY V. "NEUTRINO MASSES AND LEPTOGENESIS FROM EXTRA FERMIONS." International Journal of Modern Physics A 28, no. 21 (August 20, 2013): 1350104. http://dx.doi.org/10.1142/s0217751x13501042.

Full text
Abstract:
Generation of the neutrino masses and leptogenesis (LG) in the standard model extended by the heavy Majorana fermions is considered. Classification of LG scenarios according to the new fermion mass spectra is given, where singlet–triplet LG is considered for the first time. The upper bound on the CP asymmetry relevant for LG with hierarchical heavy neutrinos (Davidson–Ibarra bound) is revised, and shown that in the case of one massless neutrino it essentially depends on the type of the light neutrino mass hierarchy. The resonant scenarios, which help to avoid the problem of extremely high reheating temperature in the early universe, are discussed. In particular, we present new simplified, generalized and detailed formulation of freed LG, which violates Davidson–Ibarra bound in a special class of models.
APA, Harvard, Vancouver, ISO, and other styles
41

Călugăru, Dumitru, Maksim Borovkov, Liam L. H. Lau, Piers Coleman, Zhi-Da Song, and B. Andrei Bernevig. "Twisted bilayer graphene as topological heavy fermion: II. Analytical approximations of the model parameters." Low Temperature Physics 49, no. 6 (June 1, 2023): 640–54. http://dx.doi.org/10.1063/10.0019421.

Full text
Abstract:
The recently-introduced topological heavy fermion (THF) model [1] of twisted bilayer graphene (TBG) aims to reconcile the quantum-dot-like electronic structure of the latter observed by scanning tunneling microscopy, with its electron delocalization seen in transport measurements. The THF model achieves this by coupling localized (heavy) fermions with anomalous conduction electrons. Originally, the parameters of the THF model were obtained numerically from the Bistritzer–Macdonald (BM) model of TBG [1]. In this work, we derive analytical expressions for the THF model parameters as a function of the twist angle, the ratio between the tunneling amplitudes at the AA and AB regions (w0/w1), and the screening length of the interaction potential. By numerically computing the THF model parameters across an extensive experimentally-relevant parameter space, we show that the resulting approximations are remarkably good, i.e., within the 30% relative error for almost the entire parameter space. At the single-particle level, the THF model accurately captures the energy spectrum of the BM model over a large phase space of angles and tunneling amplitude ratios. When interactions are included, we also show that the THF description of TBG is good around the magic angle for realistic values of the tunneling amplitude ratios (0.6 ≤ w0/w1 ≤ 1.0), for which the hybridization between the localized and conduction fermions γ is smaller than the onsite repulsion of the heavy fermions U1 (i.e., |γ| < U1).
APA, Harvard, Vancouver, ISO, and other styles
42

Lin, L., J. P. Ma, and I. Montvay. "A scalar-fermion model in the limit of infinitely heavy fermions." Zeitschrift f�r Physik C Particles and Fields 48, no. 2 (June 1990): 355–64. http://dx.doi.org/10.1007/bf01554486.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Masuda, Keisuke, and Daisuke Yamamoto. "Cooper Pairing of Fermions with Unequal Masses in Heavy-Fermion Systems." Journal of the Physical Society of Japan 81, Suppl.B (January 2012): SB010. http://dx.doi.org/10.1143/jpsjs.81sb.sb010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

STEGLICH, F., C. GEIBEL, A. LOIDL, G. SPARN, C. D. BREDL, and R. CASPARY. "HEAVY FERMIONS — THEIR MAGNETISM AND SUPERCONDUCTIVITY." International Journal of Modern Physics B 07, no. 01n03 (January 1993): 2–8. http://dx.doi.org/10.1142/s0217979293000020.

Full text
Abstract:
Heavy-fermion compounds are ideally suited to study cooperative phenomena in highly correlated electron systems. We discuss local-moment magnetism and heavy-fermion band magnetism in the exemplary systems CeCu 2 Ge 2 and Ni-rich Ce(Cu 1− x Ni x )2 Ge 2, respectively. In addition, the coexistence of long-range antiferromagnetic order and heavy-fermion superconductivity in UM 2 Al 3 (M: Ni, Pd) will be addressed.
APA, Harvard, Vancouver, ISO, and other styles
45

Yang, Keyan. "Anomalous Decay of Heavy Fermions by Electroweak Instanton." International Journal of Modern Physics A 12, no. 19 (July 30, 1997): 3365–81. http://dx.doi.org/10.1142/s0217751x97001766.

Full text
Abstract:
The presence of a heavy fermion doublet in the electroweak instanton probably leads to unsuppressed fermion number nonconservation. By calculating numerically the effective potential barrier of electroweak instanton with heavy fermion in Minkowski space by using semiclassical approximation, it is shown that, if the mass of heavy fermion exceeds a critical value [Formula: see text] TeV (for MH = MW), the tunneling by electroweak instanton should be unsuppressed and the heavy fermion decays with fermion number violation. The dependence of critical fermion mass on the Higgs mass is also presented.
APA, Harvard, Vancouver, ISO, and other styles
46

Bonatsos, D., R. F. Casten, A. Martinou, I. E. Assimakis, N. Minkov, S. Sarantopoulou, R. B. Cakirli, and K. Blaum. "A new scheme for heavy nuclei: proxy-SU(3)." HNPS Proceedings 25 (April 1, 2019): 6. http://dx.doi.org/10.12681/hnps.1951.

Full text
Abstract:
The SU(3) symmetry realized by J. P. Elliott in the sd nuclear shell is destroyed in heavier shells by the strong spin-orbit interaction. However, the SU(3) symmetry has been used for the description of heavy nuclei in terms of bosons in the framework of the Interacting Boson Approximation, as well as in terms of fermions using the pseudo-SU(3) approximation. We introduce a new fermionic approximation, called the proxy-SU(3), and we discuss how some of its novel predictions come out as a consequence of the short range of the nucleon-nucleon interaction and the Pauli principle.
APA, Harvard, Vancouver, ISO, and other styles
47

Continentino, Mucio Amado. "Quantum critical point in heavy fermions." Brazilian Journal of Physics 35, no. 1 (March 2005): 197–203. http://dx.doi.org/10.1590/s0103-97332005000100018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Stewart, G. R., B. Andraka, and C. Quitmann. "Current Understanding of Heavy Fermions; Phenomenology." Physica Scripta T23 (January 1, 1988): 119–21. http://dx.doi.org/10.1088/0031-8949/1988/t23/021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Hewson, A. C., and Piers Coleman. "The Kondo Problem of Heavy Fermions." Physics Today 47, no. 3 (March 1994): 60–61. http://dx.doi.org/10.1063/1.2808446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Smidman, M., B. Shen, C. Y. Guo, L. Jiao, X. Lu, and H. Q. Yuan. "Heavy fermions in high magnetic fields." Chinese Physics B 28, no. 1 (January 2019): 017106. http://dx.doi.org/10.1088/1674-1056/28/1/017106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography