Academic literature on the topic 'Heavy mineral'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Heavy mineral.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Heavy mineral"
Akon, Eunuse. "Mineralogy, geochemistry and economic potentialities of heavy mineral sand resources of Bangladesh." Journal of Nepal Geological Society 59 (July 24, 2019): 1–8. http://dx.doi.org/10.3126/jngs.v59i0.24981.
Full textMarcinkowski, Bogusław, and Elżbieta Mycielska-Dowgiałło. "Heavy-mineral analysis in Polish investigations of Quaternary deposits: a review." Geologos 19, no. 1-2 (May 1, 2013): 5–23. http://dx.doi.org/10.2478/logos-2013-0002.
Full textGartmair, Gisela, Milo Barham, and Christopher L. Kirkland. "Detrital Zircon Perspectives on Heavy Mineral Sand Systems, Eucla Basin, Australia." Economic Geology 117, no. 2 (March 1, 2022): 383–99. http://dx.doi.org/10.5382/econgeo.4871.
Full textLünsdorf, Kalies, Ahlers, Dunkl, and von Eynatten. "Semi-Automated Heavy-Mineral Analysis by Raman Spectroscopy." Minerals 9, no. 7 (June 26, 2019): 385. http://dx.doi.org/10.3390/min9070385.
Full textGarzanti, Eduardo, and Sergio Andò. "Heavy Minerals for Junior Woodchucks." Minerals 9, no. 3 (February 28, 2019): 148. http://dx.doi.org/10.3390/min9030148.
Full textCascalho, João, Pedro J. M. Costa, Guy Gelfenbaum, Seanpaul La Selle, and Bruce Jaffe. "Selective sediment transport during Hurricane Sandy on Fire Island (New York, USA): Inferences from heavy-mineral assemblages." Journal of Sedimentary Research 90, no. 3 (March 5, 2020): 269–85. http://dx.doi.org/10.2110/jsr.2020.12.
Full textSun, Lei, Yuanyun Xie, Chunguo Kang, Yunping Chi, Peng Wu, Zhenyu Wei, Siqi Li, Qian Zhao, and Shuo Liu. "The composition of heavy minerals of the sandy lands, Northeast China and their implications for tracing detrital sources." PLOS ONE 17, no. 10 (October 20, 2022): e0276494. http://dx.doi.org/10.1371/journal.pone.0276494.
Full textKim, Hyesu, Jaehyung Yu, Lei Wang, Yongsik Jeong, and Jieun Kim. "Variations in Spectral Signals of Heavy Metal Contamination in Mine Soils Controlled by Mineral Assemblages." Remote Sensing 12, no. 20 (October 9, 2020): 3273. http://dx.doi.org/10.3390/rs12203273.
Full textSpark, K. M., J. D. Wells, and B. B. Johnson. "Sorption of heavy metals by mineral-humic acid substrates." Soil Research 35, no. 1 (1997): 113. http://dx.doi.org/10.1071/s96010.
Full textSetiady, Deny, and Noor C. D. Aryanto. "HEAVY MINERALS IN PLACER DEPOSIT IN SINGKAWANG WATERS, WEST Kalimantan, RELATED TO FELSIC SOURCE ROCK OF ITS COASTAL AREA." BULLETIN OF THE MARINE GEOLOGY 25, no. 1 (February 15, 2016): 13. http://dx.doi.org/10.32693/bomg.25.1.2010.21.
Full textDissertations / Theses on the topic "Heavy mineral"
Dydak, Sara M. "The Hydraulic Sorting of Light and Heavy Minerals, Heavy-Mineral Concentrations, and Grain Size." W&M ScholarWorks, 1991. https://scholarworks.wm.edu/etd/1539617625.
Full textEisenmann, Matthew Donnel. "Elutriation Technology in Heavy Mineral Separations." Thesis, Virginia Tech, 2001. http://hdl.handle.net/10919/35707.
Full textMaster of Science
Lener, Edward F. "Mineral Chemistry of Heavy Minerals in the Old Hickory Deposit, Sussex and Dinwiddie Counties, Virginia." Thesis, Virginia Tech, 1997. http://hdl.handle.net/10919/35803.
Full text-
Fe2+TiO3 + 2H+ --> Fe2+ (aq) + TiO2 + H2O
Master of Science
Hughes, Nicholas. "Heavy mineral distribution in upland gravel-bed rivers." Thesis, Loughborough University, 1992. https://dspace.lboro.ac.uk/2134/27944.
Full textHapugoda, Priyanthi Devika. "Rapid measurement of heavy mineral content in wet-plant streams /." [St. Lucia, Qld.], 2004. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe18496.pdf.
Full textDe, Villiers Dawid. "Characterisation of heavy mineral sands and soils by radiometry and its use in mineral benefication and agriculture." Thesis, Stellenbosch : University of Stellenbosch, 2011. http://hdl.handle.net/10019.1/6851.
Full textENGLISH ABSTRACT: Radioactivity is well known and well understood, but its usefulness in industrial applications to optimise processes or increase economic viability is not yet fully utilised by many industries. This study focuses on the measurement of natural radioactivity and its application in heavy mineral separation and vineyard soil classification. The gamma radiometry set-up consisted of a high purity germanium detector, a Marinelli beaker as sample container and associated electronics. It was calibrated for laboratorybased measurements by minimising the background radiation with the use of lead castle and energy and resolution calibrations. Furthermore, detection parameters were optimised; these included the counting time, the selection of gamma rays used for analysis of a sample, the peak area calculation for the detector dead time and the detector efficiency. Given that the samples had different densities and volumes, the detector efficiency had to be corrected for volume and density effects. After implementation of the corrections and optimisations the detection system was tested and found able to accurately measure radioactivity concentrations. The systematic measurement errors for 238U were 5.1 % in the case of the heavy mineral sands and 34.3 % for the vineyard soils, 4.5 % for the 232Th concentrations and 4.7 % for 40K concentrations. Statistical errors were kept below 2 %. The application of radiometry has not been done before at any South African heavy mineral separation plant. For this reason radiometry is suggested as an easier, faster and cheaper alternative to X-ray fluorescence (XRF) for effective implementation of grade control for zircon to improve the cost benefit of the heavy mineral separation process. Zircon is an example of a heavy mineral that is worldwide in demand with a consumption of more than a million tonnes per year. It is used in a wide range of industrial applications and products that include tiles, sanitary ware and plasma displays. South Africa is the second largest producer of zircon in the world and also has the second largest reserve of available zircon, making this mineral a viable source of income for several years to come. Radioactivity, in the form of uranium and thorium, and other impurities such as iron oxide and titanium oxide are found in the crystal lattice of zircon. For it to be a sellable product, the sum of the uranium and thorium concentrations must be less than 500 parts per million for prime or first grade zircon and less than 1000 parts per million for second grade zircon. At present the concentrations of uranium and thorium in zircon concentrates are measured on a whole rock basis by XRF during and at the end of the processing cycle before the final products are ready to be shipped. This is not an ideal situation as the grab samples are taken periodically and are not necessarily representative of the stream or final assignment and has resulted in significant losses by the producer. The solution is to accurately measure the uranium and thorium concentrations fast or immediately, preferably the measurements must be made online and in real time so that processing decisions can be implemented quickly to optimise the final product. Heavy mineral sand samples were obtained from the various separation processes in a Mineral Separation Plant and their 238U and 232Th concentrations determined. The results indicated that the samples’ uranium to thorium ratios together with their total concentrations can be used to differentiate between the samples (i.e. separation processes). The measurement results were compared with those obtained with XRF. The correlations with radiometry were excellent for the uranium (r2 = 0.992), thorium (r2 = 0.998) and total concentrations (r2 = 0.998). Radiometric measurements were also conducted by decreasing the counting time from 3600 s to 1 s to investigate its effect on the accuracy of the results. Correlations between the different times and 3600 s ranged from excellent to good. The obtained results are then used to recommend that radiometry is used in a Mineral Separation Plant to verify that the zircon and zirkwa meet the specifications, to optimise the entrance feed and the other separation processes and to monitor the tailings streams. Finally the practical aspects of the implementation of radiometry are discussed. As a second application was radiometry applied in an agricultural pilot study to demonstrate the applicability of radiometry as a possible useful tool in soil classification. The creation of a vineyard is a long term and expensive investment and its yield and quality will be influenced by many factors such as the type of soil, viticultural preparations and climate. Information on the different soil types in a vineyard is therefore indispensable for the optimisation of land use with respect to vine cultivar, wine quality and production. Soil samples were obtained from Kanonkop, Simonsig and Spier vineyards and their 238U, 232Th and 40K concentrations determined, assuming that fertilisers would have no effect on the results. The difference in 40K concentrations were related to the clay fraction of the soil and demonstrated that the Kanonkop and Simonsig soils are fine-grained and clay-rich compared to the sandy coarse-grained soils of Spier. The uranium and thorium concentrations were indicators of whether the mineralogy of the soil is the same as the underlying bedrock as well as soil maturity. The measurement results were compared with those obtained with XRF. The correlation with radiometry were poor for the uranium concentrations (r2 = 0.314), as many of the samples concentrations were below the XRF detection limit. The correlations were excellent for both thorium (r2 = 0.985) and potassium (r2 = 0.999). As a positive result from the findings of the study was an in-situ measurement performed by Newman et al. for the radiometric mapping of a Simonsig vineyard for soil classification.
AFRIKAANSE OPSOMMING: Radioaktiwiteit is wel bekend en word goed verstaan, tog is die gebruik daarvan in industriele toepassings om prosesses te optimiseer of winsgrense te verhoog nog nie deur baie industrië ten volle benut nie. Hierdie studie fokus op die meting van natuurlike radioaktiwiteit en die toepassing daarvan in swaar mineraal skeiding en wingerd grond klassifikasie. Die gamma radiometrie opstelling het bestaan uit ‘n hoë suiwerheid germanium detektor, 'n Marinelli beker as monster houer en verwante elektronika. Dit was gekalibreer vir laboratorium gebaseerde metings deur die vermindering van die agtergrondstraling met die gebruik van lood kasteel en energie en resolusie kalibrasies. Verder was deteksie parameters geoptimaliseer, dit sluit in die teltyd, die keuse van gammastrale wat gebruik word vir die ontleding van 'n monster, die piek area berekening, die korreksie vir die detektor se dooie tyd en die detektor doeltreffendheid. Gegee dat die monsters van mekaar verskil het in terme van dighteid en volume was dit nodig om die detektor doeltreffendheid te korrigeer vir volume en digtheid effekte. Na die implementering van die korreksies en optimalisasie was die detektor stelsel getoets en was gevind dat radioaktiwiteit konsentrasies akkuraat gelewer kan lewer. Die sistematiese meet foute vir 238U was 5.1 % vir die mineraal sand en 34.3 % vir wingerd grond, 4.5 % vir 232Th konsentrasies en 4.7 % vir 40K konsentrasies. Statistiese foute was onder 2 % gehou. Die toepassing van radiometrie was nog nie voorheen by enige Suid-Afrikaanse swaar mineraal skeidings aanleg gedoen nie. Vir die rede is radiometrie voorgestel as ‘n makliker, vinniger en goedkoper alternatief teenoor XSF vir effektiewe implementering van graad beheer vir zirkon om die koste voordeel van die swaar mineral skeiding proses te verbeter. Zirkon is ‘n voorbeeld van ‘n swaar mineraal wat wêreldwyd in aanvraag is met ‘n verbruik van meer as ‘n miljoen ton per jaar. Dit word in ‘n wye reeks van industriele toepassings en produkte gebruik onder andere teëls, sanitêre ware en plasma skerms. Suid Afrika is die tweede grootste vervaardiger van zirkon in die wêreld en het ook die tweede grootste reserwe van besikbare zirkon. Dit veroorsaak dat die mineraal ‘n lewensvatbare brom van inkomste is vir nog etlike jare. Radioaktiwiteit, in die vorm van uraan en thorium, word tesame met ander onsuiwerhede soos ysteroksied en titaanoksied in zirkon se kristal rooster gevind. Om ‘n verkoopbare produk te wees moet die som van die uraan en thorium konsentrasies minder wees as 500 dele per miljoen vir prima en eerste graad zirkon en minder wees as 1000 dele per miljoen vir tweede graadse zirkon. Huidiglik word die uraan en thorium konsentrasies in die zirkon konsentraat gemeet op ‘n heel gesteente basis met X-straal fluoroskopie (XSF) gedurende en op die einde van die prosesering siklus net voor die finale produk reg is om versend te word. Dit is nie die ideale situasie nie, want die monsters word periodies geneem en is nie noodwendig verteenwoordigend van die stroom of die finale produk nie en het al tot beduidende verliese deur die vervaardiger gelei. Die oplossing is om die uraan en thorium konsentrasies vinnig of onmiddelik te meet, verkieslik moet die metings inlyn en intyds gedoen word om verwerkings besluite vinnig geimplementeer kan word om die finale produk te optimaliseer. Swaar mineraal sand monsters was verkry van die verskeie skeidingsprosesse in ‘n Mineraal Skeidings Aanleg en hul 238U en 232Th konsentrasies bepaal. Die resultate het aangetoon dat die monsters se uraan en thorium verhoudings saam met hul totale konsentrasies gebruik kan word om te onderskei tussen die monsters (oftewel die skeiding prosesse). Die meting resultate was vergelyk met dié verkry met XSF. Die korrelasies met radiometrie was uitstekend vir die uraan (r2 = 0.992), thorium (r2 = 0.998) en totale konsentrasies (r2 = 0.998). Radiometriese metings was ook uigevoer deur die teltyd te verminder van 3600 s tot 1 s om die uitwerking daarvan op die akkuraatheid van die resultate te ondersoek. Korrelasies tussen die verskillende tye en 3600 s het gewissel van uitstekend tot goed. Die bevindinge was dan gebruik om aan te beveel dat radiometrie in a Mineraal Skeidings Aanleg gebruik kan word om te verifeer dat daar aan die zirkon en zirkwa spesifikasies voldoen word, om die begin voer en ander skeidings prosesse te optimaliseer en ook die uitskot strome te monitor. Laastens is die praktiese aspekte van die implementering van radiometrie bespreek. Vir die tweede toepassing was radiometrie toepgepas in ‘n loods studie in die landbou om die toepaslikheid van radiometrie as ‘n moontlike nuttige instrument in grond klassifikasie te demonstreer. Die skepping van ‘n wingerd is ‘n lang termyn en duur belegging waarvan die opbrengs en kwaliteit beinvloed sal word deur vele faktore, onder andere die tipe grond, wynbou voorbereidings en die klimaat. Inligiting oor die verskillende grond tipes in ‘n wingerd is daarom onmisbaar vir die optimalisering van land gebruik in betrekking tot die wingerdstok kultivar, wyn kwaliteit en produksie. Radiometrie is toegepas om te demonstreer die toepaslikheid daaran as ‘n moontlike nuttige instrument in grond klassifikasie. Grondmonsters was verkry vanaf Kanonkop, Simonsig en Spier wingerde en hul 238U, 232Th en 40K konsentrasies bepaal met die aanname dat kunsmis nie ‘n uitwerking op die resultate sou hê nie. Die verskil in 40K konsentrasies was verwant aan die kleifraksie van die grond en het getoon dat die Kanonkop en Simonsig gronde is fyn korrelrig en kleiryk is in vergelyking met die sanderige growwe korrel grond van Spier. Die uraan en thorium konsentrasies het gedui op die samestelling van die grond en ook aangedui watter grond dieselfde is as die onderliggende rots. Die meting resultate was vergelyk met dié verkry met XSF. Die korrelasie met die radiometrie was sleg vir die uraan konsentrasies (r2 = 0.314) aangesien baie van die monster konsentrasies laer was as die XSF deteksie limiet. Die korrelasies was uitstekend vir beide thorium (r2 = 0.985) en kalium (r2 = 0.999). As ‘n positiewe resultaat van die studie se bevindinge was ‘n in-situ meting gedoen deur Newman et al. om ‘n Simonsig wingerd radiomeries te karteer vir grond klassifasie.
Duffin, P. A. "The effect of phytate on mineral bioavailability and heavy metal contaminants." Thesis, University of Surrey, 1989. http://epubs.surrey.ac.uk/595/.
Full textCarelse, Candice. "Mineralogy and provenance of the Namakwa Sands heavy mineral satellite deposits." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/71980.
Full textENGLISH ABSTRACT: Five areas proximal to the world class Namakwa Sands heavy mineral deposit have been studied and include the farms Houtkraal Remainder Portion 2, Houtkraal Remainder, Geelwal Karoo, Graauwduinen and Rietfontein. These are locally referred to as the satellite deposits and are sub-economic occurrences. The primary objective of the study was to quantify the mineralogy and mineral chemistry, determine the provenance of the heavy mineral suite and draw a comparison between the satellite deposits and the Namakwa Sands deposit from an exploratory point of view. Methodology used to achieve the above objectives included optical microscopy, Scanning Electron Microscope (SEM), Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS), Quantitative Evaluation of Minerals by Scanning Electron Microscopy (QEMSCAN), X- Ray Fluorescence (XRF) and Zr-geothermometry of rutile. The five satellite areas contain the same heavy mineral suite but mineral proportions differ. The total heavy mineral population (THM) are diverse and consist of ilmenite and its alteration products (hydrated ilmenite, pseudorutile and leucoxene), magnetite, hematite, spinel, rutile, tourmaline, pyroxene, amphibole, garnet, aluminosilicates, staurolite, corundum, epidote, zircon, monazite and sphene. Ilmenite and garnet are the two most dominant heavy minerals present. The valuable heavy minerals (VHM) suite consists of ilmenite, zircon, rutile and leucoxene. The mineralogy of the satellite areas and chemistry of the ore minerals (rutile, zircon, ilmenite and leucoxene) are similar to the Namakwa Sands deposit. The whole spectrum of ilmenite alteration products (hydrated ilmenite, pseudorutile, and leucoxene) is present and allowed the quantitative use of the alteration index. The indices is low (22-24%) and indicates that the surficial deposits have formed under arid to semi-arid climatological conditions which preserved the pristine character of most of the minerals. This allowed reliable provenance studies using the characteristics of most of the heavy mineral suite, which showed that the minerals were derived from a diversity of source rocks. These included mainly medium to high-grade metamorphites and felsic intrusives of the underlying Mesoproterozoic Namaqualand Metamorphic Complex and a minor contribution from the Neoproterozoic Gariep Supergroup. This relationship indicates a limited transport distance from source to depositional basin. Mineral ratios in particular the THM-VHM relationship showed that the deposits located close to the shoreline such as Geelwal Karoo, Graauwduinen and Rietfontein have a relatively low proportion of valuable heavy minerals whereas those more inland such as Houtkraal Remainder Portion 2 and Houtkraal Remainder are close to unity. Heavy mineral concentration as such is low in the satellite areas and the mechanism to increase the concentration is clearly not only a function of distance from the present shoreline but is also topographically controlled. Steep sided linear depressions channelled the unconsolidated sediments and heavy minerals were upgraded into economic concentrations by aeolian processes. The quality of the valuable heavy minerals in the satellite areas however is similar to those of the adjacent Namakwa Sands deposit. This study has demonstrated that Houtkraal Remainder is the northeasterly continuation of the red aeolian sand (RAS) associated East Mine orebody and offers the best exploration potential.
AFRIKAANSE OPSOMMING: Vyf areas proksimaal aan die Namakwa Sands swaar mineral afsetting is bestudeer en sluit in Houtkraal Remainder, Houtkraal Remainder Portion 2, Geelwal Karoo, Graauwduinen en Rietfontein. Hierdie areas word plaaslik na verwys as satelliet afsettings en is subekonomies. Die hoofdoel van hierdie studie was om die mineralogie en mineral chemie te kwantifiseer, die oorsprong van die swaar mineraal suite te bepaal asook n vergelyking te tref tussen die satelliet areas en die Namakwa Sands afsetting vanuit n verkennende eksplorasie oogpunt. Optiese mikroskopie, SEM, LA-ICP-MS, QEMSCAN, XRF en die Zr-geotermometer van rutiel is gebruik om bostaande doele te bereik. Die vyf satellite areas bestaan uit dieselfde swaar minerale maar mineral proporsies verskil. Die totale swaar mineraal populasie is divers en bestaan uit ilmeniet en ilmeniet se veranderingsprodukte (gehidreerde ilmeniet, pseudorutiel en leukokseen), magnetiet, hematiet, spinel, rutiel, toermalyn, pirokseen, amfibool, granaat, aluminiumsilikate, stauroliet, korund, epidoot, sirkoon, monasiet and sfeen. Ilmenite en granaat is die twee mees dominante swaar minerale teenwoordig. Die waardevolle swaar mineraal populasie bestaan uit ilmeniet, rutiel, sirkoon en leukokseen. Die mineralogie van die satelliet areas en die chemie van die erts minerale (rutiel, sirkoon, ilmeniet en leukokseen) is dieselfde as die van die Namakwa Sands afsetting. Die hele spektrum ilmeniet veranderingsprodukte is teenwoordig en het die kwantitatiewe gebruik van die alterasie indeks toegelaat. Die alterasie indekse is laag (22-24%) en dui aan dat die oppervak afsettings gevorm het tydens droë tot semi droë toestande wat die eertydse karakter van meeste minerale bewaar het. Deurdat die karakter van meeste minerale behoue gebly het, kon provenans studies toegepas word op die swaar mineraal suite. Provenans studies het aangedui dat die swaar minerale afkomstig is van n verskeidenheid van bron gesteentes. Dit sluit in medium tot hoë graad metamorfe gesteentes en felsiese intrusies van die Mesoproterosoïese Namakwaland Metamorfiese Kompleks met n geringe bydrae van die Neo Proterosoïese Gariep Supergroep. Hierdie verhouding dui n beperkte vervoer afstand aan vanaf die bron tot by die afsettings omgewing. Mineraal vehoudings spesifiek die totale swaar mineraal-waardevolle swaar mineraal verhoudings dui aan dat afsettings na aan die kus soos Geelwal Karoo, Graauwduinen en Rietfontien n lae inhoud van waardevolle swaar minerale het teenoor afsettings soos Houtkraal Remainder Portion 2 en Houtkraal Remainder wat meer land in is met verhoudings na aan eenheid. Swaar mineral konsentrasie is laag in die satellite areas en die meganisme verantwoordelik vir die toename in konsentrasie is nie net n funksie van die afstand van die bestaande kuslyn nie maar word ook deur topografie beheer. Steil sydige lineêre depressies kanaliseer die ongekonsolideerde sediment en swaar minerale en word opgradeer tot ekonomiese konsentrasies deur wind prossese. Die kwaliteit van die waardevolle swaar minerale in die satelliet areas is egter dieselfde as die van die aangrensende Namakwa Sands afsetting. Hierdie studie het gewys dat Houtkraal Remainder is die noordelike voortsetting van die Rooi Aeoliese Sand geassosieerde Oos Myn ertsliggam en bied die beste eksplorasie potensiaal.
Berquist, C. R. Jr. "Stratigraphy and heavy mineral analysis in the lower Chesapeake Bay, Virginia." W&M ScholarWorks, 1986. https://scholarworks.wm.edu/etd/1539616565.
Full textLynn, Michael David. "The development and distribution of heavy mineral concentrations in alluvial systems." Thesis, Rhodes University, 1992. http://hdl.handle.net/10962/d1005549.
Full textBooks on the topic "Heavy mineral"
International Heavy Minerals Conference (3rd 2001 Freemantle, W.A.). International Heavy Minerals Conference 2001: Proceedings : advances in mineral beneficiation. Carlton South, Victoria: AusIMM, 2001.
Find full textInternational Heavy Minerals Conference (5th 2005 Ponte Vedra, Jacksonville, FL). 2005 heavy minerals conference proceedings. Littleton, Colo: Society for Mining, Metallurgy, and Exploration, Inc., 2005.
Find full textLuepke, Gretchen. Economic heavy minerals in sediments from an offshore area east of Cape Charles, Virginia. [Menlo Park, CA]: U.S. Geological Survey, 1991.
Find full textR, Berquist C., ed. Heavy-mineral studies--Virginia inner continental shelf. Charlottesville, Va: Commonwealth of Virginia, Dept. of Mines, Minerals, and Energy, Division of Mineral Resources, 1990.
Find full textBrooks, Denis R. Reclamation in Australia's heavy mineral sands industry. S.l: s.n, 1989.
Find full textRosenblum, Sam. Methods and preliminary results of heavy-mineral studies in Liberia. Denver, Colo: U.S. Dept. of the Interior, U.S. Geological Survey, 2000.
Find full textGrosz, A. E. NURE stream sediment geochemical data indicative of prospective terranes for Ti-Zr-REE placer exploration in selected regions of the United States. Reston, VA: U.S. Geological Survey, 1993.
Find full textJ, Poppe Lawrence, and Geological Survey (U.S.), eds. Sand-sized heavy-mineral distributions in the Rio Cibuco system and adjacent rivers of north-central Puerto Rico. [Menlo Park, Calif.]: U.S. Dept. of the Interior, U.S. Geological Survey, 1993.
Find full textLuepke, Gretchen. Sand-sized heavy-mineral distributions in the Rio Cibuco system and adjacent rivers of north-central Puerto Rico. [Menlo Park, Calif.]: U.S. Dept. of the Interior, U.S. Geological Survey, 1993.
Find full textR, Griffitts Wallace, and Geological Survey (U.S.), eds. Distribution of zinc heavy-mineral-concentrate from the. [Reston, Va.]: U.S. Dept. of the Interior, Geological Survey, 1985.
Find full textBook chapters on the topic "Heavy mineral"
Weijnen, M. P. C., J. N. Schinkel, and F. Elgersma. "Reduction of Metal Emissions by Cleaner Mineral Processing Technology." In Heavy Metals, 209–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79316-5_13.
Full textMange, Maria A., and Heinz F. W. Maurer. "Heavy mineral descriptions and colour plates." In Heavy Minerals in Colour, 39–133. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2308-2_7.
Full textMange, Maria A., and Heinz F. W. Maurer. "Presentation and numerical analysis of heavy mineral data." In Heavy Minerals in Colour, 27–28. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2308-2_4.
Full textMerry, R. H. "Tolerance of plants to ‘heavy metals’." In Genetic Aspects of Plant Mineral Nutrition, 165–71. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3581-5_14.
Full textKhan, Marga, Ummey Aymen, Ashiq Hussain Mir, Anupam Tiwari, Sheo Mohan Prasad, Joginder Singh, Praveen C. Ramamurthy, Rachana Singh, Simranjeet Singh’, and Parul Parihar. "Understanding Heavy Metal Stress in Plants Through Mineral Nutrients." In Heavy Metals in Plants Physiological to Molecular Approach, 281–309. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003110576-13.
Full textKudrass, H. R. "Sedimentary Models to Estimate the Heavy-Mineral Potential of Shelf Sediments." In Marine Minerals, 39–56. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3803-8_5.
Full textMatis, K. A., D. Zamboulis, A. I. Zouboulis, and N. K. Lazaridis. "Goethite Mineral as a Sorbent for Heavy Metal Ions." In Natural Microporous Materials in Environmental Technology, 425–33. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4499-5_32.
Full textLaverov, N. P., I. A. Chizhova, D. P. Khrushchov, A. V. Lalomov, and E. A. Remezova. "Digital Modeling in the Study of Heavy Mineral Placers." In Geostatistical and Geospatial Approaches for the Characterization of Natural Resources in the Environment, 583–88. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-18663-4_87.
Full textVan Steveninck, R. F. M., M. E. Van Steveninck, and D. R. Fernando. "Heavy-metal (Zn, Cd) tolerance in selected clones of duck weed (Lemna minor)." In Genetic Aspects of Plant Mineral Nutrition, 387–96. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1650-3_48.
Full textAttanasi, Emil D., John H. DeYoung, Eric R. Force, and Andrew E. Grosz. "Resource Assessments, Geologic Deposit Models, and Offshore Minerals with an Example of Heavy-Mineral Sands." In Marine Minerals, 485–513. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3803-8_32.
Full textConference papers on the topic "Heavy mineral"
Solisio, C., A. Del, A. Esposito, A. Lodi, A. Reverberi, and F. Vegliò. "Biological removal of heavy metals from acid wastewaters." In The 8th International Mineral Processing Symposium. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.4324/9780203747117-109.
Full textEroglu, B., and H. Stallknecht. "A laboratory density analysis developed using non-toxic heavy liquid." In The 8th International Mineral Processing Symposium. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.4324/9780203747117-23.
Full textKudrass, H. R. "Heavy-Mineral Potential of Shelf Areas: A Review." In Offshore Technology Conference. Offshore Technology Conference, 1989. http://dx.doi.org/10.4043/6021-ms.
Full textMonin, J.-C., and A. Audibert. "Thermal Cracking of Heavy Oil/Mineral Matrix Systems." In SPE International Symposium on Oilfield Chemistry. Society of Petroleum Engineers, 1987. http://dx.doi.org/10.2118/16269-ms.
Full textAkar, G., A. Seyrankaya, E. Güler, and A. Akar. "Removal of heavy minerals from albite of Muğla-Milas district by froth flotation." In The 8th International Mineral Processing Symposium. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.4324/9780203747117-62.
Full textFathaddin, Muhammad Taufiq, Nabilah Hisanah, Widya Yanti, R. Hari Karyadi Oetomo, and Ilman Muhammad Azmi. "Designing pressure drawdown test on heavy oil well." In 2ND INTERNATIONAL CONFERENCE ON EARTH SCIENCE, MINERAL, AND ENERGY. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0007494.
Full textPatchejieff, B., S. Gaydardjiev, and S. Stoev. "On the influence of the disturbed conditions in the centrifugal concentration of heavy fine particles." In The 8th International Mineral Processing Symposium. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.4324/9780203747117-33.
Full textWorthington, Eleanor Nucup, Kelvin W. Ramsey, C. R. Berquist, and Brent E. Owens. "EVALUATION OF OFFSHORE HEAVY MINERAL RESOURCES OF SOUTHERN DELAWARE." In 67th Annual Southeastern GSA Section Meeting - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018se-311841.
Full textMcLemore, Virginia T. "Distribution, origin, and mineral resource potential of Late Cretaceous heavy mineral, beach-placer sandstone deposits." In 61st Annual Fall Field Conference. New Mexico Geological Society, 2010. http://dx.doi.org/10.56577/ffc-61.197.
Full textPramadika, Havidh, Apriandi Rizkina Rangga Wastu, Bayu Satiyawira, Cahaya Rosyidan, Mustamina Maulani, Andry Prima, Lisa Samura, and Zakiah Darajat. "Demulsification optimization process on separation of water with heavy oil." In 3RD INTERNATIONAL CONFERENCE ON EARTH SCIENCE, MINERAL, AND ENERGY. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0061527.
Full textReports on the topic "Heavy mineral"
Paulen, R. C., R. D. King, I. R. Smith, and S. J. A. Day. Heavy mineral dispersal studies. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2017. http://dx.doi.org/10.4095/306093.
Full textLougheed, H. D., M. B. McClenaghan, D. Layton-Matthews, and M. I. Leybourne. Indicator minerals in fine-fraction till heavy-mineral concentrates determined by automated mineral analysis: examples from two Canadian polymetallic base-metal deposits. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/328011.
Full textWiltse, M. A. Suggested collection methods for heavy-mineral samples. Alaska Division of Geological & Geophysical Surveys, 1986. http://dx.doi.org/10.14509/1232.
Full textde Caritat, Patrice, Brent McInnes, and Stephen Rowins. Towards a heavy mineral map of the Australian continent: a feasibility study. Geoscience Australia, 2020. http://dx.doi.org/10.11636/record.2020.031.
Full textLougheed, H. D., M. B. McClenaghan, and D. Layton-Matthews. Mineral markers of base metal mineralization: progress report on the identification of indicator minerals in the fine heavy mineral fraction. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2018. http://dx.doi.org/10.4095/306605.
Full textDay, S. J. A., R. C. Paulen, I. R. Smith, and R. D. King. Heavy-mineral and indicator-mineral data from stream sediments of southwest Northwest Territories: new potential for undiscovered mineralization. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2018. http://dx.doi.org/10.4095/306587.
Full textBundtzen, T. K., B. C. Cox, and N. C. Veach. Heavy mineral provenance studies in the Iditarod and Innoko districts, western Alaska. Alaska Division of Geological & Geophysical Surveys, 1987. http://dx.doi.org/10.14509/1318.
Full textBarker, J. C., J. J. Kelley, and A. S. Naidu. Heavy mineral concentration in a marine sediment transport conduit, Bering Strait, Alaska. Alaska Division of Geological & Geophysical Surveys, June 2016. http://dx.doi.org/10.14509/29666.
Full textRobinson, S. V. J., C. W. Jefferson, R. C. Paulen, D. Layton-Matthews, B. Joy, and D. Quirt. Till and bedrock heavy mineral signatures of the Kiggavik uranium deposits, Nunavut. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2016. http://dx.doi.org/10.4095/297563.
Full textLesemann, J. E., D. I. Cummings, B. A. Kjarsgaard, H. A. J. Russell, and D. R. Sharpe. Heavy mineral partitioning in sedimentary facies: Lac Baby Esker, Lac Timiskaming region, Canada. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2013. http://dx.doi.org/10.4095/292817.
Full text