Academic literature on the topic 'Heisenberg limit'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Heisenberg limit.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Heisenberg limit"

1

Gaete, Patricio. "Some Remarks on Nonlinear Electrodynamics." Advances in High Energy Physics 2016 (2016): 1–10. http://dx.doi.org/10.1155/2016/2463203.

Full text
Abstract:
By using the gauge-invariant, but path-dependent, variables formalism, we study both massive Euler-Heisenberg-like and Euler-Heisenberg-like electrodynamics in the approximation of the strong-field limit. It is shown that massive Euler-Heisenberg-type electrodynamics displays the vacuum birefringence phenomenon. Subsequently, we calculate the lowest-order modifications to the interaction energy for both classes of electrodynamics. As a result, for the case of massive Euler-Heisenbeg-like electrodynamics (Wichmann-Kroll), unexpected features are found. We obtain a new long-range (1/r3-type) cor
APA, Harvard, Vancouver, ISO, and other styles
2

Putra, Fima Ardianto. "De Broglie Wave Analysis of the Heisenberg Uncertainty Minimum Limit under the Lorentz Transformation." Jurnal Teras Fisika 1, no. 2 (2018): 1. http://dx.doi.org/10.20884/1.jtf.2018.1.2.1008.

Full text
Abstract:
A simple analysis using differential calculus has been done to consider the minimum limit of the Heisenberg uncertainty principle in the relativistic domain. An analysis is made by expressing the form of and based on the Lorentz transformation, and their corresponding relation according to the de Broglie wave packet modification. The result shows that in the relativistic domain, the minimum limit of the Heisenberg uncertainty is p x ?/2 and/or E t ?/2, with is the Lorentz factor which depend on the average/group velocity of relativistic de Broglie wave packet. While, the minimum limit accordin
APA, Harvard, Vancouver, ISO, and other styles
3

Luis, Alfredo. "Nonlinear transformations and the Heisenberg limit." Physics Letters A 329, no. 1-2 (2004): 8–13. http://dx.doi.org/10.1016/j.physleta.2004.06.080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lisnyi, B. M. "Distorted Diamond Ising–Hubbard Chain in the Special Limit of Infinite On-Site Repulsion." Ukrainian Journal of Physics 69, no. 10 (2024): 732. http://dx.doi.org/10.15407/ujpe69.10.732.

Full text
Abstract:
The exact solution of the distorted diamond Ising–Hubbard chain is analyzed in the special limit of infinite on-site electron-electron repulsion, where the two-electron Hubbard dimer becomes equivalent to the antiferromagnetic isotropic Heisenberg dimer. The special limit of infinite repulsion for the matrix of the cell Hamiltonian of this model is analytically calculated, and it is demonstrated that the exact solution of the distorted diamond Ising–Hubbard chain in this limit coincides with the exact solution of the spin-1/2 distorted diamond Ising–Heisenberg chain with antiferromagnetic isot
APA, Harvard, Vancouver, ISO, and other styles
5

SIOPSIS, GEORGE. "THE PENROSE LIMIT OF AdS×S SPACE AND HOLOGRAPHY." Modern Physics Letters A 19, no. 12 (2004): 887–95. http://dx.doi.org/10.1142/s0217732304013891.

Full text
Abstract:
In the Penrose limit, AdS ×S space turns into a Cahen–Wallach (CW) space whose Killing vectors satisfy a Heisenberg algebra. This algebra is mapped onto the holographic screen on the boundary of AdS. We show that the Heisenberg algebra on the boundary of AdS may be obtained directly from the CW space by appropriately constraining the states defined on it. The transformations generated by the constraint are similar to gauge transformations. The "holographic screen" on the CW space is thus obtained as a "gauge-fixing" condition.
APA, Harvard, Vancouver, ISO, and other styles
6

Gietka, Karol, Friederike Metz, Tim Keller, and Jing Li. "Adiabatic critical quantum metrology cannot reach the Heisenberg limit even when shortcuts to adiabaticity are applied." Quantum 5 (July 1, 2021): 489. http://dx.doi.org/10.22331/q-2021-07-01-489.

Full text
Abstract:
We show that the quantum Fisher information attained in an adiabatic approach to critical quantum metrology cannot lead to the Heisenberg limit of precision and therefore regular quantum metrology under optimal settings is always superior. Furthermore, we argue that even though shortcuts to adiabaticity can arbitrarily decrease the time of preparing critical ground states, they cannot be used to achieve or overcome the Heisenberg limit for quantum parameter estimation in adiabatic critical quantum metrology. As case studies, we explore the application of counter-diabatic driving to the Landau-
APA, Harvard, Vancouver, ISO, and other styles
7

Sanchidrián-Vaca, Carlos, and Carlos Sabín. "Parameter Estimation of Wormholes beyond the Heisenberg Limit." Universe 4, no. 11 (2018): 115. http://dx.doi.org/10.3390/universe4110115.

Full text
Abstract:
We propose to exploit the quantum properties of nonlinear media to estimate the parameters of massless wormholes. The spacetime curvature produces a change in length with respect to Minkowski spacetime that can be estimated in principle with an interferometer. We use quantum metrology techniques to show that the sensitivity is improved with nonlinear media and propose a nonlinear Mach–Zehnder interferometer to estimate the parameters of massless wormholes that scales beyond the Heisenberg limit.
APA, Harvard, Vancouver, ISO, and other styles
8

Napolitano, M., M. Koschorreck, B. Dubost, N. Behbood, R. J. Sewell, and M. W. Mitchell. "Quantum Optics and the “Heisenberg Limit” of Measurement." Optics and Photonics News 22, no. 12 (2011): 40. http://dx.doi.org/10.1364/opn.22.12.000040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ohring, Peter. "A central limit theorem on Heisenberg type groups." Proceedings of the American Mathematical Society 113, no. 2 (1991): 529. http://dx.doi.org/10.1090/s0002-9939-1991-1045146-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Maleki, Yusef, and Aleksei M. Zheltikov. "Spin cat-state family for Heisenberg-limit metrology." Journal of the Optical Society of America B 37, no. 4 (2020): 1021. http://dx.doi.org/10.1364/josab.374221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Heisenberg limit"

1

Exler, Matthias. "On classical and quantum mechanical energy spectra of finite Heisenberg spin systems." Doctoral thesis, [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=980110440.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shettell, Nathan. "Quantum Information Techniques for Quantum Metrology." Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS504.

Full text
Abstract:
La métrologie quantique est une discipline prometteuse de l'information quantique qui connaît actuellement une vague de percées expérimentales et de développements théoriques. L'objectif principal de la métrologie quantique est d'estimer des paramètres inconnus aussi précisément que possible. En utilisant des ressources quantiques comme sondes, il est possible d'atteindre une précision de mesure qui serait autrement impossible en utilisant les meilleures stratégies classiques. Par exemple, en ce qui concerne la tâche d'estimation de la phase, la précision maximale (la limite d'Heisenberg) est
APA, Harvard, Vancouver, ISO, and other styles
3

Tashiro, Kenshiro. "Gromov-Hausdorff limits of compact Heisenberg manifolds with sub-Riemannian metrics." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263433.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Baker, Travis J. "Quantum correlations: Schrodinger's steering in lossy conditions; Heisenberg's limit to laser coherence." Thesis, Griffith University, 2021. http://hdl.handle.net/10072/405636.

Full text
Abstract:
Quantum correlations are a fundamental resource for technologies arising out of quantum information science. This thesis contains a body of work consisting of published and unpublished papers, which document theoretical developments in two active topics within this field - Einstein-Podolsky-Rosen (EPR) steering, and optical laser coherence. While these two topics might seem unrelated at first glance, all results contained within this work fundamentally arise from exploring the correlations between nonlocal quantum systems of low dimension. As such, this thesis is composed of two parts. The fir
APA, Harvard, Vancouver, ISO, and other styles
5

Benoit, Jérôme. "Symétrie, géométrie, topologie et spins : spins de Heisenberg à la limite continue, membranes magnétiques." Cergy-Pontoise, 1999. http://www.theses.fr/1999CERG0076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kipper, Carla Judite. "Emprego da parametrização de heisenberg e do método de adomian no decaimento da camada limite convectiva." Universidade Federal de Santa Maria, 2009. http://repositorio.ufsm.br/handle/1/3893.

Full text
Abstract:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior<br>In this paper we present a spectral model to describe the decay of turbulent kinetic energy in the Convective Boundary Layer (CLC) of the earth s surface, where the physical processes that occur generate turbulence of convective origin and mechanics in the air. Using the equations of conservation of time, which describe the dynamics of an element of fluid in a flow, you get an equation for the spectrum of kinetic energy in a homogeneous turbulent flow, but not isotropic. The spectrum of energy is expressed in terms of number of wav
APA, Harvard, Vancouver, ISO, and other styles
7

Conti, William Remo Pedroso. "Teorema Central do Limite para o modelo O(N) de Heisenberg hierárquico na criticalidade e o papel do limite N -> infinito na dinâmica dos zeros de Lee-Yang." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-26082008-093457/.

Full text
Abstract:
Neste trabalho estabelecemos o Teorema Central do Limite para o modelo O(N) de Heisenberg hierárquico na criticalidade via equação a derivadas parciais no limite N -> infinito. Por simplicidade consideramos apenas o caso d = 4, sendo o teorema também válido para d > 4. Pelo estudo de uma dada equação a derivadas parciais (EDP) determinamos a temperatura inversa crítica do modelo esférico hierárquico contínuo para um d > 2 qualquer, havendo conexão entre criticalidade e o ponto fixo da EDP. Por meio de uma análise geométrica da trajetória crítica obtemos informações sobre a dinâmica e distribui
APA, Harvard, Vancouver, ISO, and other styles
8

Facon, Adrien. "Chats de Schrödinger d'un atome de Rydberg pour la métrologie quantique." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066534/document.

Full text
Abstract:
Il n'y a pas de limite fondamentale à une mesure classique : la position d'une aiguille sur un cadran peut être déterminée avec une incertitude arbitrairement faible. Au contraire, dans le monde quantique, la précision de toute mesure est limitée par le bruit quantique. Lorsque l'aiguille de mesure devient un système mésoscopique, tel un moment cinétique J qui évoluerait sur le cadran sphérique d'une sphère de Bloch, les fluctuations quantiques affectant les états cohérents conduisent alors à une incertitude de mesure en 1/√J appelée limite quantique standard. La métrologie quantique consiste
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Heisenberg limit"

1

Neuenschwander, Daniel. Probabilities on the Heisenberg group: Limit theorems and Brownian motion. Springer, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Probabilities on the Heisenberg group: Limit theorems and Brownian motion. Springer, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Neuenschwander, Daniel. Probabilities on the Heisenberg Group: Limit Theorems and Brownian Motion. Springer London, Limited, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Heisenberg limit"

1

LaPierre, Ray. "Heisenberg Limit." In Getting Started in Quantum Optics. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12432-7_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Neuenschwander, Daniel. "Other limit theorems on H." In Probabilities on the Heisenberg Group. Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0094033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Croca, Josee R. "Beyond Heisenberg’S Uncertainty Limits." In Gravitation and Cosmology: From the Hubble Radius to the Planck Scale. Springer Netherlands, 2002. http://dx.doi.org/10.1007/0-306-48052-2_38.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Schmidt-Böcking, H., S. Eckart, H. J. Lüdde, G. Gruber, and T. Jahnke. "The Precision Limits in a Single-Event Quantum Measurement of Electron Momentum and Position." In Molecular Beams in Physics and Chemistry. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63963-1_12.

Full text
Abstract:
AbstractA modern state-of-the-art “quantum measurement” [The term “quantum measurement” as used here implies that parameters of atomic particles are measured that emerge from a single scattering process of quantum particles.] of momentum and position of a single electron at a given time [“at a given time” means directly after the scattering process. (It should be noticed that the duration of the reaction process is typically extremely short =&gt; attoseconds).] and the precision limits for their experimental determination are discussed from an experimentalists point of view. We show—by giving
APA, Harvard, Vancouver, ISO, and other styles
5

Eckle, Hans-Peter. "Finite Heisenberg Quantum Spin Chain." In Models of Quantum Matter. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780199678839.003.0020.

Full text
Abstract:
The Bethe ansatz genuinely considers a finite system. The extraction of finite-size results from the Bethe ansatz equations is of genuine interest, especially against the background of the results of finite-size scaling and conformal symmetry in finite geometries. The mathematical techniques introduced in chapter 19 permit a systematic treatment in this chapter of finite-size corrections as corrections to the thermodynamic limit of the system. The application of the Euler-Maclaurin formula transforming finite sums into integrals and finite-size corrections transforms the Bethe ansatz equations
APA, Harvard, Vancouver, ISO, and other styles
6

Eckle, Hans-Peter. "Bethe Ansatz for the Anisotropic Heisenberg Quantum Spin Chain." In Models of Quantum Matter. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780199678839.003.0014.

Full text
Abstract:
This chapter verifies the conjecture for the wave function, the Bethe ansatz wave function, of the anisotropic Heisenberg quantum spin chain by examining first the cases for one, two, and three spin deviations. The equations determining the quasi- momenta are the Bethe ansatz equations, now obtained from the coordinate Bethe ansatz. The Bethe ansatz equations derive from the eigenvalue equation in combination with boundary conditions, here periodic boundary conditions. These quasi-momenta also determine the energy eigenvalue. However, solving the Bethe ansatz equations to obtain a particular s
APA, Harvard, Vancouver, ISO, and other styles
7

Bertlmann, Reinhold A., and Nicolai Friis. "Quantum Metrology." In Modern Quantum Theory. Oxford University PressOxford, 2023. http://dx.doi.org/10.1093/oso/9780199683338.003.0024.

Full text
Abstract:
Abstract Chapter 24 provides a compact introduction to the topic of quantum metrology, focusing on Hamiltonian parameter estimation in the frequentist and in the Bayesian paradigms. We first discuss how estimates of non-directly measurable quantities such as phases are obtained from measurement statistics in the frequentist approach. We then discuss the Cramér-Rao bound and the Fisher information and study single-qubit phase estimation in the light of this result. We then turn to the multi-qubit setting and discuss the quantum Cramér-Rao bound, for which the quantum Fisher information is the c
APA, Harvard, Vancouver, ISO, and other styles
8

Clerk, Aashish A. "Optomechanics and Quantum Measurement." In Quantum Optomechanics and Nanomechanics. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198828143.003.0005.

Full text
Abstract:
After a quick review of the basic theory of quantum optomechanical systems, based largely on linearized Heisenberg–Langevin equations, this chapter focuses on selected topics related to quantum measurement and quantum optomechanics. Included are: a comprehensive discussion of the quantum limit on the added noise of a continuous position detector, following the quantum linear response approach; a detailed discussion of the role of noise correlations, and how these can be achieved in an optomechanical cavity (by using squeezed input light, or by modifying the choice of measured output quadrature
APA, Harvard, Vancouver, ISO, and other styles
9

Nitzan, Abraham. "The quantum mechanical density operator and its time evolution." In Chemical Dynamics in Condensed Phases. Oxford University PressOxford, 2024. http://dx.doi.org/10.1093/9780191947971.003.0010.

Full text
Abstract:
Abstract This chapter introduces the density operator and the Liouville equation and outlines how reduced dynamical description of open quantum systems naturally leads to the appearance of relaxation processes. (1) The density operator and the quantum Liouville equation (the density matrix for a pure system, statistical mixtures, representations, coherences, thermodynamic equilibrium). (2) An example: The time evolution of a two-level system in the density matrix formalism. (3) Reduced descriptions. (4) Time evolution equations for reduced density operators: The quantum master equation (projec
APA, Harvard, Vancouver, ISO, and other styles
10

Gherdjikov, Serghey Stoilov. "The Limits of Science." In The Paideia Archive: Twentieth World Congress of Philosophy. Philosophy Documentation Center, 1998. http://dx.doi.org/10.5840/wcp20-paideia199837655.

Full text
Abstract:
Does science have any limits? Scientists say no. Philosophers are divided in their response. The humanities say that science is not "humanitarian," and thus not metaphysically deep. In response, scientists and some philosophers contend that science is the best knowledge we have about the world. I argue that science is limited by its form. Science has no object that derives from the human form. Everything that is incomparable to the dimension of the human body is reducible to notions that are commensurable to that body. This phenomenologically clarifies some of the most important discoveries in
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Heisenberg limit"

1

Reichert, Maximilian, Quntao Zhuang, and Mikel Sanz. "Heisenberg-Limited Quantum Lidar for Joint Range and Velocity Estimation." In Quantum Sensing and Metrology. Optica Publishing Group, 2024. https://doi.org/10.1364/qsm.2024.qw3g.3.

Full text
Abstract:
We propose a quantum lidar protocol that uses pulsed squeezed light to simultaneously estimate target range and velocity. By engineering temporal modes and employing homodyne detection, we achieve the Heisenberg limit for both parameters.
APA, Harvard, Vancouver, ISO, and other styles
2

Wiseman, Howard M., S. Nariman Saadatmand, Travis J. Baker, and Dominic W. Berry. "The Heisenberg limit for laser coherence." In Conference on Coherence and Quantum Optics. OSA, 2019. http://dx.doi.org/10.1364/cqo.2019.m3a.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Walter, Michael, and Joseph M. Renes. "A Heisenberg limit for quantum region estimation." In 2014 IEEE International Symposium on Information Theory (ISIT). IEEE, 2014. http://dx.doi.org/10.1109/isit.2014.6875008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tsarev, D. V., Ngo-The Vinh, and A. P. Alodjants. "Beating Heisenberg limit with moving matter-wave solitons." In 2020 International Conference Laser Optics (ICLO). IEEE, 2020. http://dx.doi.org/10.1109/iclo48556.2020.9285804.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jin, Xian-Min, Martin Lebrat, Lijian Zhang, et al. "Surpassing the conventional Heisenberg limit using classical resources." In CLEO: QELS_Fundamental Science. OSA, 2013. http://dx.doi.org/10.1364/cleo_qels.2013.qf2b.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Unternährer, Manuel, Bänz Bessire, Leonardo Gasparini, Matteo Perenzoni, and André Stefanov. "Super-Resolution Quantum Imaging at the Heisenberg Limit." In CLEO: QELS_Fundamental Science. OSA, 2018. http://dx.doi.org/10.1364/cleo_qels.2018.ff1b.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tsarev, D. V., Ray-Kuang Lee, and A. P. Alodjants. "Quantum metrology beyond Heisenberg limit with entangled matter wave solitons." In 2018 International Conference Laser Optics (ICLO). IEEE, 2018. http://dx.doi.org/10.1109/lo.2018.8435438.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kolkiran, Aziz, and G. S. Agarwal. "Towards Heisenberg Limit in Magnetometry with Parametric Down Converted Photons." In Laser Science. OSA, 2006. http://dx.doi.org/10.1364/ls.2006.ltha5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bessire, Bänz, Manuel Unternährer, Leonardo Gasparini, Majid Zarghami, Matteo Perenzoni, and André Stefanov. "Super-resolution quantum imaging at the Heisenberg limit (Conference Presentation)." In Quantum Technologies, edited by Andrew J. Shields, Jürgen Stuhler, and Miles J. Padgett. SPIE, 2018. http://dx.doi.org/10.1117/12.2309773.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Napolitano, Mario, Marco Koschorreck, Brice Dubost, Naeimeh Behbood, Robert Sewell, and Morgan W. Mitchell. "Interaction-based Quantum Metrology Showing Scaling Beyond the Heisenberg Limit." In Quantum Information and Measurement. OSA, 2012. http://dx.doi.org/10.1364/qim.2012.qw1b.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!