Academic literature on the topic 'Heisenberg theory'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Heisenberg theory.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Heisenberg theory"
CURIO, GOTTFRIED. "SUPERPOTENTIAL OF THE M-THEORY CONIFOLD AND TYPE IIA STRING THEORY." International Journal of Modern Physics A 19, no. 04 (February 10, 2004): 521–55. http://dx.doi.org/10.1142/s0217751x04017720.
Full textElliott, George A., Toshikazu Natsume, and Ryszard Nest. "The Heisenberg group andK-theory." K-Theory 7, no. 5 (September 1993): 409–28. http://dx.doi.org/10.1007/bf00961535.
Full textPonge, Raphaël S. "Heisenberg calculus and spectral theory of hypoelliptic operators on Heisenberg manifolds." Memoirs of the American Mathematical Society 194, no. 906 (2008): 0. http://dx.doi.org/10.1090/memo/0906.
Full textParola, Pietro Gianinetti, Alberto. "Quantum hierarchical reference theory for Heisenberg antiferromagnets." Philosophical Magazine B 81, no. 10 (October 1, 2001): 1565–82. http://dx.doi.org/10.1080/13642810110066461.
Full textGianinetti, Pietro, and Alberto Parola. "Quantum hierarchical reference theory for Heisenberg antiferromagnets." Philosophical Magazine B 81, no. 10 (October 2001): 1565–82. http://dx.doi.org/10.1080/13642810108208570.
Full textLinshaw, Andrew R. "Invariant Theory and the Heisenberg Vertex Algebra." International Mathematics Research Notices 2012, no. 17 (September 8, 2011): 4014–50. http://dx.doi.org/10.1093/imrn/rnr171.
Full textHatano, N., and Y. Nishiyama. "Scaling theory of antiferromagnetic Heisenberg ladder models." Journal of Physics A: Mathematical and General 28, no. 14 (July 21, 1995): 3911–23. http://dx.doi.org/10.1088/0305-4470/28/14/012.
Full textCrumley, Michael. "Generic Representation Theory of the Heisenberg Group." Communications in Algebra 41, no. 8 (August 3, 2013): 3174–206. http://dx.doi.org/10.1080/00927872.2012.683908.
Full textSoukoulis, C. M., Sreela Datta, and Young Hee Lee. "Spin-wave theory for anisotropic Heisenberg antiferromagnets." Physical Review B 44, no. 1 (July 1, 1991): 446–49. http://dx.doi.org/10.1103/physrevb.44.446.
Full textAslaksen, Helmer, Soo Teck Lee, and Judith Packer. "K-Theory for the Integer Heisenberg Groups." K-Theory 16, no. 3 (March 1999): 201–27. http://dx.doi.org/10.1023/a:1007785106768.
Full textDissertations / Theses on the topic "Heisenberg theory"
Juhász, Junger Irén. "Green-function theory of anisotropic Heisenberg magnets with arbitrary spin." Doctoral thesis, Universitätsbibliothek Leipzig, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-70957.
Full textNyobe, Likeng Samuel Aristide. "Heisenberg Categorification and Wreath Deligne Category." Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/41167.
Full textSchenk, Stefan. "Density functional theory on a lattice." kostenfrei, 2009. http://d-nb.info/998385956/34.
Full textWong, Ming Lai. "Q-Fourier transform, q-Heisenberg algebra and quantum group actions /." View Abstract or Full-Text, 2003. http://library.ust.hk/cgi/db/thesis.pl?MATH%202003%20WONG.
Full textShiri-Garakani, Mohsen. "Finite Quantum Theory of the Harmonic Oscillator." Diss., Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/5078.
Full textAkten, Burcu Elif. "Generalized uncertainty relations /." Digital version accessible at:, 1999. http://wwwlib.umi.com/cr/utexas/main.
Full textPrata, Guilherme Nery. "Novos funcionais para o modelo de Heisenberg anisotrópico." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/76/76131/tde-02072008-155051/.
Full textThe Heisenberg Model is generally recognized in the study of electromagnetism with origin in localized magnetic moments. Similar to the well known classical Ising model, it incorporates, however, quantum flutuations. We are interested in antiferromagnetic systems described by the Heisenberg Hamiltonian with exchange anisotropy and, eventually, non-null magnetizations. In this work, we deal with non-homogeneous systems with impurities. For this, we use Density Functional Theory and the Local Spin Aproximation (LSA), which provide a methodology for obtaining results of a non-homogeneous system from known results of the same but homogeneous system. Initially, we work with a functional provided by Spin Wave Theory on the LSA approximation, valid for anisotropies with XXZ simmetry and null magnetization. After that, we deal with the possibility of building a functional on LSA approximation valid also for exchange anisotropy but with an additional: applicable for non-null magnetizations.
Schubert, Luke. "Spectral properties of the Laplacian on p-forms on the Heisenberg group /." Title page, contents and abstract only, 1997. http://web4.library.adelaide.edu.au/theses/09PH/09phs384.pdf.
Full textBrodlie, Alastair Robert. "Relationships between quantum and classical mechanics using the representation theory of the Heisenberg group." Thesis, University of Leeds, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.410635.
Full textPenteado, Poliana Heiffig. "Modelo de Heisenberg antiferromagnético com interações não-uniformes." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/76/76131/tde-28082008-115020/.
Full textIn this dissertation, we use the Heisenberg model to describe inhomogeneous antiferromagnetic spin 1/2 chains. The translational invariance is broken mainly due to the non-uniform distribution of bond interactions (defects) and the presence of boundaries. Interested in obtaining the ground-state energy of systems with any distribution of exchange couplings (Jij), we use the density-functional theory (DFT) formalism, developed for the Heisenberg model. The DFT formalism allows an estimate of the ground-state energy of inhomogeneous systems based on the homogeneous systems. We build functionals for the ground-state energy using a local bond approximation (LBA), recently proposed in analogy to the already known LSA (local spin approximation). To obtain the functionals we studied a model that describes an alternating chain, in which the exchange coupling alternates from site-to-site. This resulted in non-local functionals on the spin-spin exchange interaction. Nevertheless, we still call them LBA functionals. All the results from the functionals are compared with exact numerical data.
Books on the topic "Heisenberg theory"
Heisenberg calculus and spectral theory of hypoelliptic operators on Heisenberg manifolds. Providence, R.I: American Mathematical Society, 2008.
Find full textWerner Heisenberg Centennial Symposium "Developments in Modern Physics" (2001 Munich, Germany). Fundamental physics-- Heisenberg and beyond: Werner Heisenberg Centennial Symposium "Developments in Modern Physics". Berlin: Springer, 2004.
Find full textWerner Heisenberg Centennial Symposium "Developments in Modern Physics" (2001 Munich, Germany). Fundamental physics-- Heisenberg and beyond: Werner Heisenberg Centennial Symposium "Developments in Modern Physics". Berlin: Springer, 2004.
Find full textBuschhorn, Gerd W. Fundamental Physics . Heisenberg and Beyond: Werner Heisenberg Centennial Symposium "Developments in Modern Physics". Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.
Find full textThangavelu, Sundaram. Harmonic Analysis on the Heisenberg Group. Boston, MA: Birkhäuser Boston, 1998.
Find full textCappelletti, Valentina. Dall'ordine alle cose: Saggio su Werner Heisenberg. Milano: Jaca Book, 2001.
Find full textD, Silvestrov Sergei, ed. Commuting elements in q-deformed Heisenberg algebras. Singapore: World Scientific, 2000.
Find full textCamilleri, Kristian. Werner Heisenberg and the interpretation of quantum mechanics. New York: University of Melbourne, 2008.
Find full textWerner, Heisenberg. Physics and philosophy: Revolution in modern science [Werner Heisenberg]. Harmondsworth: Penguin, 1990.
Find full textSallhofer, Hans H. Der Physikerstreit: Ein fiktiver Diskurs mit Schrödinger und Heisenberg. München: Universitas, 2001.
Find full textBook chapters on the topic "Heisenberg theory"
Nolting, Wolfgang, and Anupuru Ramakanth. "Heisenberg Model." In Quantum Theory of Magnetism, 273–386. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85416-6_7.
Full textSontz, Stephen Bruce. "The Heisenberg Picture." In An Introductory Path to Quantum Theory, 209–12. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40767-4_17.
Full textWess, J. "q-Deformed heisenberg algebra." In Supersymmetry and Quantum Field Theory, 259–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0105255.
Full textGooch, Jan W. "Heisenberg Theory of Atomic Structure." In Encyclopedic Dictionary of Polymers, 362. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_5880.
Full textPolchinski, Joseph. "M Theory: Uncertainty and Unification." In Fundamental Physics — Heisenberg and Beyond, 157–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18623-3_12.
Full textNeuenschwander, Daniel. "Probability theory on simply connected nilpotent Lie groups." In Probabilities on the Heisenberg Group, 7–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0094031.
Full textAbadie, Beatriz. "“Vector bundles” over quantum Heisenberg manifolds." In Algebraic Methods in Operator Theory, 307–15. Boston, MA: Birkhäuser Boston, 1994. http://dx.doi.org/10.1007/978-1-4612-0255-4_30.
Full textFröhlich, Jürg. "The Quantum Theory of Light and Matter — Mathematical Results." In Fundamental Physics — Heisenberg and Beyond, 69–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18623-3_8.
Full textWoit, Peter. "The Heisenberg group and the Schrödinger Representation." In Quantum Theory, Groups and Representations, 181–88. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64612-1_13.
Full textFeinsilver, Philip. "Heisenberg algebras in the theory of special functions." In The Physics of Phase Space Nonlinear Dynamics and Chaos Geometric Quantization, and Wigner Function, 423–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/3-540-17894-5_398.
Full textConference papers on the topic "Heisenberg theory"
Barukčić, Ilija. "Anti Heisenberg—Refutation Of Heisenberg’s Uncertainty Relation." In ADVANCES IN QUANTUM THEORY: Proceedings of the International Conference on Advances in Quantum Theory. AIP, 2011. http://dx.doi.org/10.1063/1.3567453.
Full textBogacz, Leszek, and Wolfhard Janke. "QMC simulations of Heisenberg ferromagnet." In XXIIIrd International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2005. http://dx.doi.org/10.22323/1.020.0241.
Full textRosinger, Elemér E. "Heisenberg uncertainty in reduced power algebras." In QUANTUM THEORY: RECONSIDERATION OF FOUNDATIONS 6. AIP, 2012. http://dx.doi.org/10.1063/1.4773168.
Full textGrochowski, Marek. "On the Heisenberg sub-Lorentzian metric on R3." In Geometric Singularity Theory. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc65-0-4.
Full textLee, Hyun Ho. "On Yang-Mills Theory for Quantum Heisenberg Manifolds." In Proceedings of the Noncommutative Geometry and Physics 2008, on K-Theory and D-Branes & Proceedings of the RIMS Thematic Year 2010 on Perspectives in Deformation Quantization and Noncommutative Geometry. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814425018_0015.
Full textWalter, Michael, and Joseph M. Renes. "A Heisenberg limit for quantum region estimation." In 2014 IEEE International Symposium on Information Theory (ISIT). IEEE, 2014. http://dx.doi.org/10.1109/isit.2014.6875008.
Full textBuric, Maya, Harald Grosse, and John Madore. "Gauge fields on truncated Heisenberg space." In Corfu Summer Institute on Elementary Particles and Physics - Workshop on Non Commutative Field Theory and Gravity. Trieste, Italy: Sissa Medialab, 2011. http://dx.doi.org/10.22323/1.127.0012.
Full textMacías, Alfredo. "Generalized Bertotti-Robinson solution to the Einstein-Heisenberg-Euler theory." In GRAVITATION AND COSMOLOGY: 2nd Mexican Meeting on Mathematical and Experimental Physics. AIP, 2005. http://dx.doi.org/10.1063/1.1900523.
Full textBlanchfield, Kate. "Mutually unbiased bases, Heisenberg-Weyl orbits and the distance between them." In QUANTUM THEORY: RECONSIDERATION OF FOUNDATIONS 6. AIP, 2012. http://dx.doi.org/10.1063/1.4773148.
Full textAbreu, Luis Daniel, Joao Pereira, Jose Luis Romero, and Salvatore Torquato. "The Weyl-Heisenberg ensemble: Statistical mechanics meets time-frequency analysis." In 2017 International Conference on Sampling Theory and Applications (SampTA). IEEE, 2017. http://dx.doi.org/10.1109/sampta.2017.8024413.
Full textReports on the topic "Heisenberg theory"
Brodsky, Stanley J. The Heisenberg Matrix Formulation of Quantum Field Theory. Office of Scientific and Technical Information (OSTI), November 2001. http://dx.doi.org/10.2172/798924.
Full text