Academic literature on the topic 'Heisenberg theory'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Heisenberg theory.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Heisenberg theory"

1

CURIO, GOTTFRIED. "SUPERPOTENTIAL OF THE M-THEORY CONIFOLD AND TYPE IIA STRING THEORY." International Journal of Modern Physics A 19, no. 04 (February 10, 2004): 521–55. http://dx.doi.org/10.1142/s0217751x04017720.

Full text
Abstract:
The membrane instanton superpotential for M-theory on the G2 holonomy manifold given by the cone on S3×S3 is given by the dilogarithm and has Heisenberg monodromy group in the quantum moduli space. We compare this to a Heisenberg group action on the type IIA hypermultiplet moduli space for the universal hypermultiplet, to metric corrections from membrane instantons related to a twisted dilogarithm for the deformed conifold and to a flat bundle related to a conifold period, the Heisenberg group and the dilogarithm appearing in five-dimensional Seiberg/Witten theory.
APA, Harvard, Vancouver, ISO, and other styles
2

Elliott, George A., Toshikazu Natsume, and Ryszard Nest. "The Heisenberg group andK-theory." K-Theory 7, no. 5 (September 1993): 409–28. http://dx.doi.org/10.1007/bf00961535.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ponge, Raphaël S. "Heisenberg calculus and spectral theory of hypoelliptic operators on Heisenberg manifolds." Memoirs of the American Mathematical Society 194, no. 906 (2008): 0. http://dx.doi.org/10.1090/memo/0906.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Parola, Pietro Gianinetti, Alberto. "Quantum hierarchical reference theory for Heisenberg antiferromagnets." Philosophical Magazine B 81, no. 10 (October 1, 2001): 1565–82. http://dx.doi.org/10.1080/13642810110066461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gianinetti, Pietro, and Alberto Parola. "Quantum hierarchical reference theory for Heisenberg antiferromagnets." Philosophical Magazine B 81, no. 10 (October 2001): 1565–82. http://dx.doi.org/10.1080/13642810108208570.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Linshaw, Andrew R. "Invariant Theory and the Heisenberg Vertex Algebra." International Mathematics Research Notices 2012, no. 17 (September 8, 2011): 4014–50. http://dx.doi.org/10.1093/imrn/rnr171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hatano, N., and Y. Nishiyama. "Scaling theory of antiferromagnetic Heisenberg ladder models." Journal of Physics A: Mathematical and General 28, no. 14 (July 21, 1995): 3911–23. http://dx.doi.org/10.1088/0305-4470/28/14/012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Crumley, Michael. "Generic Representation Theory of the Heisenberg Group." Communications in Algebra 41, no. 8 (August 3, 2013): 3174–206. http://dx.doi.org/10.1080/00927872.2012.683908.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Soukoulis, C. M., Sreela Datta, and Young Hee Lee. "Spin-wave theory for anisotropic Heisenberg antiferromagnets." Physical Review B 44, no. 1 (July 1, 1991): 446–49. http://dx.doi.org/10.1103/physrevb.44.446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Aslaksen, Helmer, Soo Teck Lee, and Judith Packer. "K-Theory for the Integer Heisenberg Groups." K-Theory 16, no. 3 (March 1999): 201–27. http://dx.doi.org/10.1023/a:1007785106768.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Heisenberg theory"

1

Juhász, Junger Irén. "Green-function theory of anisotropic Heisenberg magnets with arbitrary spin." Doctoral thesis, Universitätsbibliothek Leipzig, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-70957.

Full text
Abstract:
In this thesis, anisotropic Heisenberg magnets with arbitrary spin are investigated within the second-order Green-function theory. Three models are considered. First, the second-order Green-fuction theory for one-dimensional and two-dimensional Heisenberg ferromagnets with arbitrary spin S in a magnetic field is developed. For the determination of the introduced vertex parameters sum rules, higher-derivative sum rules, and regularity conditions are derived, and the equality of the isothermal and the longitudinal uniform static Kubo susceptibilities is required. Thermodynamic quantities, such as the specific heat, magnetic susceptibility, transverse and longitudinal correlation lengths are calculated. Empirical formulas describing the dependence of the position and height of the susceptibility maximum on the magnetic field are given. An anomal behavior of the longitudinal correlation length is observed. The appearance of two maxima in the temperature dependence of the specific heat is discussed. Further, as an example of a system with an anisotropy in the spin space, the S=1 ferromagnetic chain with easy-axis single-ion anisotropy is studied. Justified by the up-down symmetry of the model with respect to $S_i^z -> -S_i^z$, $\\langle S_i^z \\rangle=0$ is set. Two different ways of the determination of the introduced vertex parameters are presented. The transverse nearest-neighbor correlation function, spin-wave spectrum and longitudinal correlation length are analyzed. The effects of the single-ion anisotropy on the transverse and longitudinal uniform static susceptibilities as well as on the appearance of two maxima in the temperature dependence of the specific heat are examined. Finally, as examples of spatial anisotropic spin systems,layered Heisenberg ferromagnets and antiferromagnets with arbitrary spin are studied within the rotation-invariant Green-function theory. The long-range order is described by the condensation term, which is determined from the requirement that in the ordered state the static susceptibility has to diverge at the ordering wave vector. For determination of the introduced vertex parameters, the sum rule and the isotropy condition are used and also assumptions regarding the temperature dependence of some parameters are made. The main focus is put on the calculation of the specific heat, the Curie temperature, and the Néel temperature in dependence on the interlayer coupling and the spin-quantum number. Empirical formulas describing the dependence of the transition temperatures on the ratio of interlayer and intralayer couplings are given. For all three models, the results of the Green-function theory are compared to available results of exact approaches (Quantum Monte Carlo, exact diagonalization, Bethe-ansatz method) and to available experimental data.
APA, Harvard, Vancouver, ISO, and other styles
2

Nyobe, Likeng Samuel Aristide. "Heisenberg Categorification and Wreath Deligne Category." Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/41167.

Full text
Abstract:
We define a faithful linear monoidal functor from the partition category, and hence from Deligne's category Rep(S_t), to the additive Karoubi envelope of the Heisenberg category. We show that the induced map on Grothendieck rings is injective and corresponds to the Kronecker coproduct on symmetric functions. We then generalize the above results to any group G, the case where G is the trivial group corresponding to the case mentioned above. Thus, to every group G we associate a linear monoidal category Par(G) that we call a group partition category. We give explicit bases for the morphism spaces and also an efficient presentation of the category in terms of generators and relations. We then define an embedding of Par(G) into the group Heisenberg category associated to G. This embedding intertwines the natural actions of both categories on modules for wreath products of G. Finally, we prove that the additive Karoubi envelope of Par(G) is equivalent to a wreath product interpolating category introduced by Knop, thereby giving a simple concrete description of that category.
APA, Harvard, Vancouver, ISO, and other styles
3

Schenk, Stefan. "Density functional theory on a lattice." kostenfrei, 2009. http://d-nb.info/998385956/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wong, Ming Lai. "Q-Fourier transform, q-Heisenberg algebra and quantum group actions /." View Abstract or Full-Text, 2003. http://library.ust.hk/cgi/db/thesis.pl?MATH%202003%20WONG.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shiri-Garakani, Mohsen. "Finite Quantum Theory of the Harmonic Oscillator." Diss., Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/5078.

Full text
Abstract:
We apply the Segal process of group simplification to the linear harmonic oscillator. The result is a finite quantum theory with three quantum constants instead of the usual one. We compare the classical (CLHO), quantum (QLHO), and finite (FLHO) linear harmonic oscillators and their canonical or unitary groups. The FLHO is isomorphic to a dipole rotator with N=l(l+1) states where l is very large for physically interesting case. The position and momentum variables are quantized with uniform finite spectra. For fixed quantum constants and large N there are three broad classes of FLHO: soft, medium, and hard corresponding respectively to cases where ratio of the of potential energy to kinetic energy in the Hamiltonian is very small, almost equal to one, or very large The field oscillators responsible for infra-red and ultraviolet divergences are soft and hard respectively. Medium oscillators approximate the QLHO. Their low-lying states have nearly the same zero-point energy and level spacing as the QLHO, and nearly obeying the Heisenberg uncertainty principle and the equipartition principle. The corresponding rotators are nearly polarized along the z-axis. The soft and hard FLHO's have infinitesimal 0-point energy and grossly violate equipartition and the Heisenberg uncertainty principle. They do not resemble the QLHO at all. Their low-lying energy states correspond to rotators polaroizd along x-axis or y-axis respectively. Soft oscillators have frozen momentum, because their maximum potential energy is too small to produce one quantum of momentum. Hard oscillators have frozen position, because their maximum kinetic energy is too small to produce one quantum of momentum. Hard oscillators have frozen position, because their maximum kinetic energy is too small to excite one quantum of position.
APA, Harvard, Vancouver, ISO, and other styles
6

Akten, Burcu Elif. "Generalized uncertainty relations /." Digital version accessible at:, 1999. http://wwwlib.umi.com/cr/utexas/main.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Prata, Guilherme Nery. "Novos funcionais para o modelo de Heisenberg anisotrópico." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/76/76131/tde-02072008-155051/.

Full text
Abstract:
O modelo de Heisenberg destaca-se no estudo do magnetismo com origem em momentos magnéticos localizados. Semelhante ao bem conhecido modelo clássico de Ising, ele incorpora, no entanto, flutuações quânticas. Estamos interessados em sistemas antiferromagnéticos descritos pelo Hamiltoniano de Heisenberg com anisotropia de troca e que, eventualmente, possam apresentar magnetizações não-nulas. Neste trabalho, lidamos com sistemas não-homogêneos, apresentando impurezas e/ou sujeitos a condições de contorno abertas. Para tanto, utilizamos a Teoria do Funcional da Densidade, que proporciona uma metodologia de obtenção de resultados para um sistema não-homogêneo a partir dos resultados conhecidos do mesmo sistema quando homogêneo. Nosso trabalho resume-se a duas partes. Na primeira parte, trabalhamos inicialmente com um funcional, na aproximação ``local para o spin\'\'(LSA), advindo da Teoria de Ondas de Spin, válido para anisotropia de troca com simetria XXZ e magnetização do sistema nula. E na segunda, exploramos a possibilidade de construção de um funcional, na aproximação LSA, válido para anisotropia de troca mas com um adicional: válido para magnetizações não-nulas. Os resultados advindos dos funcionais são confrontados com resultados numericamente exatos obtidos de um programa em Fortran 90, que diagonaliza cadeias de spins na presença ou não de impurezas, para qualquer condição de contorno, descritas pelo modelo de Heisenberg com anisotropia de troca.
The Heisenberg Model is generally recognized in the study of electromagnetism with origin in localized magnetic moments. Similar to the well known classical Ising model, it incorporates, however, quantum flutuations. We are interested in antiferromagnetic systems described by the Heisenberg Hamiltonian with exchange anisotropy and, eventually, non-null magnetizations. In this work, we deal with non-homogeneous systems with impurities. For this, we use Density Functional Theory and the Local Spin Aproximation (LSA), which provide a methodology for obtaining results of a non-homogeneous system from known results of the same but homogeneous system. Initially, we work with a functional provided by Spin Wave Theory on the LSA approximation, valid for anisotropies with XXZ simmetry and null magnetization. After that, we deal with the possibility of building a functional on LSA approximation valid also for exchange anisotropy but with an additional: applicable for non-null magnetizations.
APA, Harvard, Vancouver, ISO, and other styles
8

Schubert, Luke. "Spectral properties of the Laplacian on p-forms on the Heisenberg group /." Title page, contents and abstract only, 1997. http://web4.library.adelaide.edu.au/theses/09PH/09phs384.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Brodlie, Alastair Robert. "Relationships between quantum and classical mechanics using the representation theory of the Heisenberg group." Thesis, University of Leeds, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.410635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Penteado, Poliana Heiffig. "Modelo de Heisenberg antiferromagnético com interações não-uniformes." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/76/76131/tde-28082008-115020/.

Full text
Abstract:
Nesta dissertação, estudamos cadeias unidimensionais antiferromagnéticas de spins 1/2 modeladas pelo Hamiltoniano de Heisenberg na presença de inomogeneidades causadas principalmente pela introdução de ligações substitucionais (defeitos nas ligações) e por efeitos de borda. Interessados então em determinar a energia do estado fundamental de sistemas com quaisquer distribuições das ligações, utilizamos o formalismo da Teoria do Funcional da Densidade (DFT) desenvolvido para o modelo de Heisenberg. O formalismo da DFT permite a estimativa da energia do estado fundamental de sistemas não-homogêneos conhecendo-se o sistema homogêneo. Construímos funcionais na aproximação da ligação local (LBA), proposta recentemente em analogia à já conhecida LSA (aproximação local para o spin). A obtenção dos funcionais se baseou no estudo do modelo de uma cadeia de spins em que as ligações são alternadas, isto é, a interação de troca se alterna em valor de sítio para sítio. Isso originou um funcional não-local na interação de troca da cadeia. Apesar disso, continuamos utilizando a nomenclatura LBA. Todos os resultados fornecidos pelos funcionais são comparados a dados provenientes de diagonalização numérica exata.
In this dissertation, we use the Heisenberg model to describe inhomogeneous antiferromagnetic spin 1/2 chains. The translational invariance is broken mainly due to the non-uniform distribution of bond interactions (defects) and the presence of boundaries. Interested in obtaining the ground-state energy of systems with any distribution of exchange couplings (Jij), we use the density-functional theory (DFT) formalism, developed for the Heisenberg model. The DFT formalism allows an estimate of the ground-state energy of inhomogeneous systems based on the homogeneous systems. We build functionals for the ground-state energy using a local bond approximation (LBA), recently proposed in analogy to the already known LSA (local spin approximation). To obtain the functionals we studied a model that describes an alternating chain, in which the exchange coupling alternates from site-to-site. This resulted in non-local functionals on the spin-spin exchange interaction. Nevertheless, we still call them LBA functionals. All the results from the functionals are compared with exact numerical data.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Heisenberg theory"

1

Heisenberg calculus and spectral theory of hypoelliptic operators on Heisenberg manifolds. Providence, R.I: American Mathematical Society, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Werner Heisenberg Centennial Symposium "Developments in Modern Physics" (2001 Munich, Germany). Fundamental physics-- Heisenberg and beyond: Werner Heisenberg Centennial Symposium "Developments in Modern Physics". Berlin: Springer, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Werner Heisenberg Centennial Symposium "Developments in Modern Physics" (2001 Munich, Germany). Fundamental physics-- Heisenberg and beyond: Werner Heisenberg Centennial Symposium "Developments in Modern Physics". Berlin: Springer, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Buschhorn, Gerd W. Fundamental Physics . Heisenberg and Beyond: Werner Heisenberg Centennial Symposium "Developments in Modern Physics". Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Thangavelu, Sundaram. Harmonic Analysis on the Heisenberg Group. Boston, MA: Birkhäuser Boston, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cappelletti, Valentina. Dall'ordine alle cose: Saggio su Werner Heisenberg. Milano: Jaca Book, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

D, Silvestrov Sergei, ed. Commuting elements in q-deformed Heisenberg algebras. Singapore: World Scientific, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Camilleri, Kristian. Werner Heisenberg and the interpretation of quantum mechanics. New York: University of Melbourne, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Werner, Heisenberg. Physics and philosophy: Revolution in modern science [Werner Heisenberg]. Harmondsworth: Penguin, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sallhofer, Hans H. Der Physikerstreit: Ein fiktiver Diskurs mit Schrödinger und Heisenberg. München: Universitas, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Heisenberg theory"

1

Nolting, Wolfgang, and Anupuru Ramakanth. "Heisenberg Model." In Quantum Theory of Magnetism, 273–386. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85416-6_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sontz, Stephen Bruce. "The Heisenberg Picture." In An Introductory Path to Quantum Theory, 209–12. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40767-4_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wess, J. "q-Deformed heisenberg algebra." In Supersymmetry and Quantum Field Theory, 259–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0105255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gooch, Jan W. "Heisenberg Theory of Atomic Structure." In Encyclopedic Dictionary of Polymers, 362. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_5880.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Polchinski, Joseph. "M Theory: Uncertainty and Unification." In Fundamental Physics — Heisenberg and Beyond, 157–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18623-3_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Neuenschwander, Daniel. "Probability theory on simply connected nilpotent Lie groups." In Probabilities on the Heisenberg Group, 7–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0094031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Abadie, Beatriz. "“Vector bundles” over quantum Heisenberg manifolds." In Algebraic Methods in Operator Theory, 307–15. Boston, MA: Birkhäuser Boston, 1994. http://dx.doi.org/10.1007/978-1-4612-0255-4_30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fröhlich, Jürg. "The Quantum Theory of Light and Matter — Mathematical Results." In Fundamental Physics — Heisenberg and Beyond, 69–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18623-3_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Woit, Peter. "The Heisenberg group and the Schrödinger Representation." In Quantum Theory, Groups and Representations, 181–88. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64612-1_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Feinsilver, Philip. "Heisenberg algebras in the theory of special functions." In The Physics of Phase Space Nonlinear Dynamics and Chaos Geometric Quantization, and Wigner Function, 423–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/3-540-17894-5_398.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Heisenberg theory"

1

Barukčić, Ilija. "Anti Heisenberg—Refutation Of Heisenberg’s Uncertainty Relation." In ADVANCES IN QUANTUM THEORY: Proceedings of the International Conference on Advances in Quantum Theory. AIP, 2011. http://dx.doi.org/10.1063/1.3567453.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bogacz, Leszek, and Wolfhard Janke. "QMC simulations of Heisenberg ferromagnet." In XXIIIrd International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2005. http://dx.doi.org/10.22323/1.020.0241.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rosinger, Elemér E. "Heisenberg uncertainty in reduced power algebras." In QUANTUM THEORY: RECONSIDERATION OF FOUNDATIONS 6. AIP, 2012. http://dx.doi.org/10.1063/1.4773168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Grochowski, Marek. "On the Heisenberg sub-Lorentzian metric on R3." In Geometric Singularity Theory. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc65-0-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lee, Hyun Ho. "On Yang-Mills Theory for Quantum Heisenberg Manifolds." In Proceedings of the Noncommutative Geometry and Physics 2008, on K-Theory and D-Branes & Proceedings of the RIMS Thematic Year 2010 on Perspectives in Deformation Quantization and Noncommutative Geometry. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814425018_0015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Walter, Michael, and Joseph M. Renes. "A Heisenberg limit for quantum region estimation." In 2014 IEEE International Symposium on Information Theory (ISIT). IEEE, 2014. http://dx.doi.org/10.1109/isit.2014.6875008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Buric, Maya, Harald Grosse, and John Madore. "Gauge fields on truncated Heisenberg space." In Corfu Summer Institute on Elementary Particles and Physics - Workshop on Non Commutative Field Theory and Gravity. Trieste, Italy: Sissa Medialab, 2011. http://dx.doi.org/10.22323/1.127.0012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Macías, Alfredo. "Generalized Bertotti-Robinson solution to the Einstein-Heisenberg-Euler theory." In GRAVITATION AND COSMOLOGY: 2nd Mexican Meeting on Mathematical and Experimental Physics. AIP, 2005. http://dx.doi.org/10.1063/1.1900523.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Blanchfield, Kate. "Mutually unbiased bases, Heisenberg-Weyl orbits and the distance between them." In QUANTUM THEORY: RECONSIDERATION OF FOUNDATIONS 6. AIP, 2012. http://dx.doi.org/10.1063/1.4773148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Abreu, Luis Daniel, Joao Pereira, Jose Luis Romero, and Salvatore Torquato. "The Weyl-Heisenberg ensemble: Statistical mechanics meets time-frequency analysis." In 2017 International Conference on Sampling Theory and Applications (SampTA). IEEE, 2017. http://dx.doi.org/10.1109/sampta.2017.8024413.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Heisenberg theory"

1

Brodsky, Stanley J. The Heisenberg Matrix Formulation of Quantum Field Theory. Office of Scientific and Technical Information (OSTI), November 2001. http://dx.doi.org/10.2172/798924.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography