Academic literature on the topic 'Heisenberg uncertainty principle'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Heisenberg uncertainty principle.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Heisenberg uncertainty principle"
Barukčić, Ilija. "Anti Heisenberg – Refutation of Heisenberg’s Uncertainty Principle." International Journal of Applied Physics and Mathematics 4, no. 4 (2014): 244–50. http://dx.doi.org/10.7763/ijapm.2014.v4.292.
Full textPeijnenburg, Jeanne, and David Atkinson. "Hoe zeker is Heisenbergs onzekerheidsprincipe?" Algemeen Nederlands Tijdschrift voor Wijsbegeerte 113, no. 1 (February 1, 2021): 137–56. http://dx.doi.org/10.5117/antw2021.1.006.peij.
Full textJesi Pebralia. "PRINSIP KETIDAKPASTIAN HEISENBERG DALAM TINJAUAN KEMAJUAN PENGUKURAN KUANTUM DI ABAD 21." JOURNAL ONLINE OF PHYSICS 5, no. 2 (July 25, 2020): 43–47. http://dx.doi.org/10.22437/jop.v5i2.9049.
Full textCao, Zhaozhong. "Uncertainty principle and complementary variables." Highlights in Science, Engineering and Technology 61 (July 30, 2023): 18–23. http://dx.doi.org/10.54097/hset.v61i.10260.
Full textPutra, Fima Ardianto. "On the Semiclassical Approach of the Heisenberg Uncertainty Relation in the Strong Gravitational Field of Static Blackhole." Jurnal Fisika Indonesia 22, no. 2 (April 16, 2020): 15. http://dx.doi.org/10.22146/jfi.v22i2.34274.
Full textFei, Minggang, Yubin Pan, and Yuan Xu. "Some shaper uncertainty principles for multivector-valued functions." International Journal of Wavelets, Multiresolution and Information Processing 14, no. 06 (November 2016): 1650043. http://dx.doi.org/10.1142/s0219691316500430.
Full textBarukčić, Ilija. "Anti Heisenberg—The End of Heisenberg’s Uncertainty Principle." Journal of Applied Mathematics and Physics 04, no. 05 (2016): 881–87. http://dx.doi.org/10.4236/jamp.2016.45096.
Full textWulandari, Dewi. "Mathematics Behind the Heisenberg Uncertainty Principle." Jurnal Penelitian Pendidikan IPA 9, no. 4 (April 30, 2023): 2223–28. http://dx.doi.org/10.29303/jppipa.v9i4.3545.
Full textBeckwith, A. W., and S. S. Moskaliuk. "Generalized Heisenberg Uncertainty Principle in Quantum Geometrodynamics and General Relativity." Ukrainian Journal of Physics 62, no. 8 (September 2017): 727–40. http://dx.doi.org/10.15407/ujpe62.08.0727.
Full textHleili, Khaled. "A variety of uncertainty principles for the Hankel-Stockwell transform." Open Journal of Mathematical Analysis 5, no. 1 (January 29, 2021): 22–34. http://dx.doi.org/10.30538/psrp-oma2021.0079.
Full textDissertations / Theses on the topic "Heisenberg uncertainty principle"
Akten, Burcu Elif. "Generalized uncertainty relations /." Digital version accessible at:, 1999. http://wwwlib.umi.com/cr/utexas/main.
Full textChan, Chi Hung. "3-dimensional Heisenberg antiferromagnet in cubic lattice under time periodic magnetic field /." View abstract or full-text, 2009. http://library.ust.hk/cgi/db/thesis.pl?PHYS%202009%20CHANC.
Full textRekuc, Steven Joseph. "Eliminating Design Alternatives under Interval-Based Uncertainty." Thesis, Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7218.
Full textShiri-Garakani, Mohsen. "Finite Quantum Theory of the Harmonic Oscillator." Diss., Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/5078.
Full textDurham, Ian T. "Sir Arthur Eddington and the foundations of modern physics." Thesis, University of St Andrews, 2005. http://hdl.handle.net/10023/12933.
Full textKelley, Logan. "The Quantum Dialectic." Scholarship @ Claremont, 2011. http://scholarship.claremont.edu/pitzer_theses/4.
Full textScipioni, Angel. "Contribution à la théorie des ondelettes : application à la turbulence des plasmas de bord de Tokamak et à la mesure dimensionnelle de cibles." Electronic Thesis or Diss., Nancy 1, 2010. http://www.theses.fr/2010NAN10125.
Full textThe necessary scale-based representation of the world leads us to explain why the wavelet theory is the best suited formalism. Its performances are compared to other tools: R/S analysis and empirical modal decomposition method (EMD). The great diversity of analyzing bases of wavelet theory leads us to propose a morphological approach of the analysis. The study is organized into three parts. The first chapter is dedicated to the constituent elements of wavelet theory. Then we will show the surprising link existing between recurrence concept and scale analysis (Daubechies polynomials) by using Pascal's triangle. A general analytical expression of Daubechies' filter coefficients is then proposed from the polynomial roots. The second chapter is the first application domain. It involves edge plasmas of tokamak fusion reactors. We will describe how, for the first time on experimental signals, the Hurst coefficient has been measured by a wavelet-based estimator. We will detail from fbm-like processes (fractional Brownian motion), how we have established an original model perfectly reproducing fBm and fGn joint statistics that characterizes magnetized plasmas. Finally, we will point out the reasons that show the lack of link between high values of the Hurst coefficient and possible long correlations. The third chapter is dedicated to the second application domain which is relative to the backscattered echo analysis of an immersed target insonified by an ultrasonic plane wave. We will explain how a morphological approach associated to a scale analysis can extract the diameter information
Scipioni, Angel. "Contribution à la théorie des ondelettes : application à la turbulence des plasmas de bord de Tokamak et à la mesure dimensionnelle de cibles." Thesis, Nancy 1, 2010. http://www.theses.fr/2010NAN10125.
Full textThe necessary scale-based representation of the world leads us to explain why the wavelet theory is the best suited formalism. Its performances are compared to other tools: R/S analysis and empirical modal decomposition method (EMD). The great diversity of analyzing bases of wavelet theory leads us to propose a morphological approach of the analysis. The study is organized into three parts. The first chapter is dedicated to the constituent elements of wavelet theory. Then we will show the surprising link existing between recurrence concept and scale analysis (Daubechies polynomials) by using Pascal's triangle. A general analytical expression of Daubechies' filter coefficients is then proposed from the polynomial roots. The second chapter is the first application domain. It involves edge plasmas of tokamak fusion reactors. We will describe how, for the first time on experimental signals, the Hurst coefficient has been measured by a wavelet-based estimator. We will detail from fbm-like processes (fractional Brownian motion), how we have established an original model perfectly reproducing fBm and fGn joint statistics that characterizes magnetized plasmas. Finally, we will point out the reasons that show the lack of link between high values of the Hurst coefficient and possible long correlations. The third chapter is dedicated to the second application domain which is relative to the backscattered echo analysis of an immersed target insonified by an ultrasonic plane wave. We will explain how a morphological approach associated to a scale analysis can extract the diameter information
Guerra, Rita Catarina Correia. "Generalizations of the Fourier transform and their applications." Doctoral thesis, 2019. http://hdl.handle.net/10773/29813.
Full textNesta tese, consideramos uma nova generalização da transformação de Fourier, dependente de quatro parâmetros complexos e de todas as potências da transformação de Fourier. Esta nova transformação é estudada em alguns espaços de Lebesgue. De facto, tendo em conta os valores dos parâmetros, podemos ter núcleos muito diferentes e assim, o correspondente operador é estudado em diferentes espaços de Lebesgue, de acordo com o seu núcleo. Começamos com a caracterização de cada operador pelo seu polinómio característico. Esta caracterização serve de base para o estudo das propriedades seguintes. Seguindo isto, apresentamos, para cada caso, o espetro do correspondente operador, condições necessárias e suficientes para as quais o operador é invertível, identidades do tipo de Parseval e condições para as quais o operador é unitário e uma involução de ordem n. Depois disto, construímos novas convoluções associadas àqueles operadores e obtemos as correspondentes identidades de factorização e algumas desigualdades da norma. Usando estes novos operadores e convoluções, construímos novas equações integrais e estudamos a sua solvabilidade. Neste sentido, temos equações geradas pelos operadores estudados e também uma classe de equações do tipo de convolução dependendo de funções de Hermite multidimensionais. Além disso, estudamos a solvabilidade de equações integrais clássicas, usando os novos operadores e convoluções, nomeadamente uma classe de equações de Wiener-Hopf mais Hankel, cuja solução é escrita em termos de uma série do tipo de Fourier. Para um caso desta generalização da transformação de Fourier, que depende apenas das transformações de Fourier do cosseno e do seno, obtemos resultados de Paley-Wiener e resultados Tauberianos de Wiener, usando a convolução associada e uma nova translação induzida por essa convolução. Princípios de incerteza de Heisenberg para os casos unidimensional e multidimensional são obtidos para um caso particular do operador introduzido. No final, como uma aplicação fora da matemática, obtemos um novo resultado em processamento de sinal, mais propriamente, num processo de filtragem, por aplicação de uma das nossas novas convoluções.
Programa Doutoral em Matemática Aplicada
Ganguly, Pritam. "Quasi-analytic Functions, Spherical Means, and Uncertainty Principles on Heisenberg Groups and Symmetric Spaces." Thesis, 2022. https://etd.iisc.ac.in/handle/2005/5697.
Full textBooks on the topic "Heisenberg uncertainty principle"
Füting, Manfred. Werner Heisenberg und die Unschärferelation: Ihre Bedeutung für die Determinismusauffassung und für die These von der Erkennbarkeit der Welt. Weimar: Redaktion der Wissenschaftlichen Zeitschrift und Publikationen Hochschule für Architektur und Bauwesen Weimar, 1987.
Find full textCendon, Fernando Blanco. En torno al principio de indeterminación de Werner Karl Heisenberg. Madrid: Instituto Pontificio de Filosofía, 1986.
Find full textGonzalo, Julio A. Cosmological implications of Heisenberg's principle. Singapore: World Scientific, 2015.
Find full textde, Broglie Louis. Heisenberg's uncertainties and the probabilistic interpretation of wave mechanics: With critical notes of the author. Dordrecht: Kluwer Academic Publishers, 1990.
Find full textSándor, Koch, and Juhász-Nagy Pál, eds. A Tökéletlenség és korlátosság dicsérete. Budapest: Gondolat, 1989.
Find full textTo phantasma tēs operas: Hē epistēmē ston politismo mas. Hērakleio, Krētēs: Panepistēmiakes Ekdoseis Krētēs, 2014.
Find full text1974-, Pods Sonja, ed. The geometry of Heisenberg groups in signal theory, optics, quantization, and field quantization. Providence, R.I: American Mathematical Society, 2008.
Find full textNATO Advanced Study Institute on Sixty-two Years of Uncertainty: Historical, Philosophical, and Physical Inquiries into the Foundations of Quantum Mechanics (1989 Erice, Italy). Sixty-two years of uncertainty: Historical, philosophical, and physical inquiries into the foundations of quantum mechanics. New York: Plenum Press, 1990.
Find full textNational Science Foundation (U.S.), ed. Toeplitz approach to problems of the uncertainty principle. Providence, Rhode Island: Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, 2015.
Find full textTheology and scientific knowledge: Changing models of God's presence in the world. Notre Dame: University of Notre Dame Press, 1996.
Find full textBook chapters on the topic "Heisenberg uncertainty principle"
Rajasekar, S., and R. Velusamy. "Heisenberg Uncertainty Principle." In Quantum Mechanics I, 205–22. 2nd ed. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003172178-8.
Full textGooch, Jan W. "Heisenberg Uncertainty Principle." In Encyclopedic Dictionary of Polymers, 362. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_5881.
Full textHolbrow, Charles H., James N. Lloyd, Joseph C. Amato, Enrique Galvez, and M. Elizabeth Parks. "The Heisenberg Uncertainty Principle." In Modern Introductory Physics, 553–67. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-79080-0_18.
Full textHolbrow, C. H., J. N. Lloyd, and J. C. Amato. "The Heisenberg Uncertainty Principle." In Modern Introductory Physics, 407–23. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4757-3078-4_15.
Full textThangavelu, Sundaram. "Heisenberg Groups." In An Introduction to the Uncertainty Principle, 45–104. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-0-8176-8164-7_2.
Full textPérez-Marco, Ricardo. "Blockchain Time and Heisenberg Uncertainty Principle." In Advances in Intelligent Systems and Computing, 849–54. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01174-1_66.
Full textCapozziello, Salvatore, and Wladimir-Georges Boskoff. "The Heisenberg Uncertainty Principle and the Mathematics Behind." In UNITEXT for Physics, 145–71. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-86098-1_8.
Full textWilliams, Floyd. "Heisenberg’s Uncertainty Principle." In Topics in Quantum Mechanics, 157–70. Boston, MA: Birkhäuser Boston, 2003. http://dx.doi.org/10.1007/978-1-4612-0009-3_7.
Full textStannard, Russell. "Heisenberg’s Uncertainty Principle." In Encyclopedia of Sciences and Religions, 979. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-1-4020-8265-8_200566.
Full textShankar, R. "The Heisenberg Uncertainty Relations." In Principles of Quantum Mechanics, 237–46. New York, NY: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-0576-8_9.
Full textConference papers on the topic "Heisenberg uncertainty principle"
D'Angelo, Milena, Morton H. Rubin, and Yanhua Shih. "EPR inequality and Heisenberg uncertainty principle." In International Quantum Electronics Conference. Washington, D.C.: OSA, 2004. http://dx.doi.org/10.1364/iqec.2004.ituj6.
Full textSingh, Gurkirat, Aman Singh, and N. M. Sreenarayanan. "Quantum Cryptography with Photon Polarization and Heisenberg Uncertainty Principle." In 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). IEEE, 2022. http://dx.doi.org/10.1109/icacite53722.2022.9823504.
Full textHuo, Mandy, Aristotelis Asimakopoulos, and John C. Doyle. "Measurement back action and a classical uncertainty principle: Heisenberg meets Kalman." In 2019 American Control Conference (ACC). IEEE, 2019. http://dx.doi.org/10.23919/acc.2019.8814965.
Full textFrieden, B. Roy. "Fisher information and error complimentarity." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.fl3.
Full textCastro, L. P., R. C. Guerra, and N. M. Tuan. "Heisenberg uncertainty principles for an oscillatory integral operator." In ICNPAA 2016 WORLD CONGRESS: 11th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences. Author(s), 2017. http://dx.doi.org/10.1063/1.4972629.
Full textSCHIPPER, HYMAN M., and RABBI RAPHAEL AFILALO. "Did the Kabbalah Anticipate Heisenberg’s Uncertainty Principle?" In Unified Field Mechanics II: Preliminary Formulations and Empirical Tests, 10th International Symposium Honouring Mathematical Physicist Jean-Pierre Vigier. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813232044_0032.
Full textYoung, Jeffrey L., and Christopher D. Wilson. "An application of Heisenberg's Uncertainty principle to line source radiation." In 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, 2015. http://dx.doi.org/10.1109/aps.2015.7304918.
Full textKarlsson, Anders, Lars Gillner, Edgard Goobar, and Gunnar Björk. "Networks with quantum amplifiers." In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/cleo_europe.1994.cthd1.
Full textRibak, Erez N., and Gal Gumpel. "Beyond the Quantum Optical Diffraction Limit." In Imaging Systems and Applications. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/isa.2022.itu3e.1.
Full textPrasad, Narasimha S., and Chandrasekhar Roychoudhuri. "Microscope and spectroscope results are not limited by Heisenberg's Uncertainty Principle!" In SPIE Optical Engineering + Applications, edited by Chandrasekhar Roychoudhuri, Andrei Yu Khrennikov, and Al F. Kracklauer. SPIE, 2011. http://dx.doi.org/10.1117/12.895207.
Full textReports on the topic "Heisenberg uncertainty principle"
Soloviev, V. N., and Y. V. Romanenko. Economic analog of Heisenberg uncertainly principle and financial crisis. ESC "IASA" NTUU "Igor Sikorsky Kyiv Polytechnic Institute", May 2017. http://dx.doi.org/10.31812/0564/2463.
Full textСоловйов, Володимир Миколайович, and V. Saptsin. Heisenberg uncertainty principle and economic analogues of basic physical quantities. Transport and Telecommunication Institute, 2011. http://dx.doi.org/10.31812/0564/1188.
Full textBielinskyi, Andriy, Serhiy Semerikov, Oleksandr Serdiuk, Victoria Solovieva, Vladimir Soloviev, and Lukáš Pichl. Econophysics of sustainability indices. [б. в.], October 2020. http://dx.doi.org/10.31812/123456789/4118.
Full textChen, Yu. Inverse Scattering via Heisenberg's Uncertainty Principle. Fort Belvoir, VA: Defense Technical Information Center, February 1996. http://dx.doi.org/10.21236/ada305113.
Full textSoloviev, V., V. Solovieva, and V. Saptsin. Heisenberg uncertainity principle and economic analogues of basic physical quantities. Брама-Україна, 2014. http://dx.doi.org/10.31812/0564/1306.
Full text